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Cancer is a severe health issue, and cancer cases are rising yearly. New anticancer
drugs have been developed as our understanding of the molecular mechanisms
behind diverse solid tumors, and metastatic malignancies have increased. Plant-
derived phytochemical compounds target different oncogenes, tumor suppressor
genes, protein channels, immune cells, protein channels, and pumps, which have
attracted much attention for treating cancer in preclinical studies. Despite the
anticancer capabilities of these phytochemical compounds, systemic toxicity,
medication resistance, and limited absorption remain more significant
obstacles in clinical trials. Therefore, drug combinations of new phytochemical
compounds, phytonanomedicine, semi-synthetic, and synthetic analogs should
be considered to supplement the existing cancer therapies. It is also crucial to
consider different strategies for increased production of phytochemical bioactive
substances. The primary goal of this review is to highlight several bioactive
anticancer phytochemical compounds found in plants, preclinical research,
their synthetic and semi-synthetic analogs, and clinical trials. Additionally,
biotechnological and metabolic engineering strategies are explored to enhance
the production of bioactive phytochemical compounds. Ligands and their
interactions with their putative targets are also explored through molecular
docking studies. Therefore, emphasis is given to gathering comprehensive data
regarding modern biotechnology, metabolic engineering, molecular biology, and
in silico tools.

KEYWORDS

biosynthetic pathway, molecular docking, nanotecehnology, genetic engineering,
phytochemical compounds

Introduction

The Global Cancer Observatory database predicted that the anticipated new cancer-
related cases would be around 21.6 million globally from 2020 to 2025. There will be a 12.1%
rise in new cancer cases, with 11.4 million cases in males and 10.2 million in females by 2025
(Cancer Tomorrow, n.d.). There were an estimated 10 million deaths because of cancer in
2020. According to projected estimates, there will be 47% more cancer cases by 2040, low
human development index (HDI) countries will contribute to 95% of cases, and medium
HDI countries will contribute to 64% of cases (Sung et al., 2021). By 2025, it is predicted that
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there will be 11.3 million cancer-related deaths worldwide (Cancer
Tomorrow, 2023). Among Indians, the primary cause of death by
cancer of the lips and mouth is due to the practice of chewing betel
nuts (Gupta et al., 2018). In India, cancer of the oral cavity, digestive
system, respiratory system, and genital system indicated a higher
projected crude cancer rate for the year 2020 (Mathur et al., 2020).
The predicted incidence of new cancer cases in India by the various
states and Union territories in 2020 was 1.39 million. It grew to
1.42 million in 2021 and 1.46 million in 2022, according to the
National Cancer Registry Programme of the Indian Council of
Medical Research (ICMR) report (Mathur et al., 2020; Krishnan
et al., 2022; Kumar & Anupama, 2022). India is expected to burden
29.8 million cancer patients by 2025 (Krishnan et al., 2022).

A tumor or neoplasm arises because of uncontrolled cell growth
(increase in mass) and the proliferation of an abnormal cell. Benign
tumors remain locally confined, and wrecking these abnormal cells
cures the disease. Benign tumors do not destroy the local tissue and
are non-aggressive. When these abnormal cells become malignant
and form secondary tumors called metastases at other body sites, it
becomes difficult to eradicate them. Cancer is a malignant tumor in
which the cells divide more rapidly. By secreting signal proteins and
proteolytic enzymes, they also alter their microenvironment, which
comprises connective tissue and inflammatory leukocytes (Feig
et al., 2012). Cancer is classified as Carcinoma, sarcoma,
leukemia, and lymphoma, depending upon the site of occurrence.

A substantial amount of rare genetic and epigenetic changes in
cells derived from single-cell lineage convert them into cancerous
outgrowth. These changes arise due to defective DNA damage
repair, replication error, chromosomal segregation, and apoptotic
machinery, giving the clonal cells the selective advantage of cell
proliferation (You and Peter, 2012). Usually, carcinogens, pro-
mutagens, and the accumulation of reactive oxygen species are
the chemical substances that cause these abnormal mutations or
cause tissue damage (Barnes et al., 2018). This tissue damage caused
by non-mutagenic carcinogens like alcohol will induce cell
proliferation at that site, and due to replication errors, there
would be chances of driver mutations to arise, which lead to
cancer (Roswall and Weiderpass, 2015).

Overexpression of genes that promote cell proliferation and
under-expression of genes that inhibit cell proliferation are the
mutations leading to uncontrolled cell growth (Levine & Puzio-
Kuter, 2010). Some examples of oncogenes are K-Ras, which is
involved in receptor tyrosine kinase signaling, and ß-Catenin, which
is involved in Wnt signaling. Contrarily, tumor suppressor genes
include TGF-ß receptor II, which is involved in TGF-ß signaling,
Apc, which is involved in Wnt signaling, p53, which is activated in
response to abnormal proliferation; and mutated DNA sequences;
and Rb, which arrests the cell-cycle transition fromG1 to the S phase
(Lee & Muller, 2010). Tumor suppressor genes like the p53 gene
positively regulate apoptosis, whereas oncogenes like Bcl-2
negatively regulate apoptosis (Larsson, 2011). These mutations in
cancer cells favor cell proliferation, cell motility, cell invasiveness,
and reduced apoptosis.

The clonal evolution of cancer is the process of forming clones of
cells with abnormal mutations and developing into true malignancy.
The average cancer genome comprises hundreds of mutations.
Among all those mutations, there are only 3–15 mutations in
tumor suppressors and oncogenes (Bozic et al., 2010; Tomasetti

et al., 2015). These are termed driver mutations, as these mutations
lead to cancer development, and other mutations are termed
passenger mutations (Pao & Girard, 2011). In viruses like the
human papillomavirus, the genes E6 and E7 encode proteins that
prevent the expression of pRB and p53 genes, respectively. Females
develop cervical cancer when specific tumor suppressor genes in the
cervix are silenced (Moody & Laimins, 2010). Lifestyle changes can
reduce cancer risk by eating a healthy diet, exercising, using
sunscreen, and avoiding smoking and alcohol. Based on these
studies, immunotherapies, gene therapy, targeted therapies
against mutated genes in cancer cells, and conventional therapies
are some modes of treating cancer.

There is a therapeutic window between the effect of a given
concentration of cancer drugs on normal cells and cancer cells.
Drugs typically affect cancer cells at a lower concentration, while
normal cells require higher concentrations (Dan et al., 2018). By
creating cross-links within and between DNA strands,
chemotherapy medications like carboplatin and cisplatin cause
damage to DNA in cancer cells. Another drug, procarbazine,
methylates DNA and prevents replication (Skeel & Khleif, 2011).
Clinical usage of cisplatin is associated with several toxicities and
side effects; however, the precise mechanism underlying these
adverse effects is still unknown (Qi et al., 2019). Chemical drugs
like 5-azacytidine, 5-aza-2′ deoxycytidine, 1-β-D-arabinofuranosyl-
5-azacytosine, and dihydro-5-azacytidine exert their action by
incorporating into the promoter region of tumor suppressor
genes and hence reactivating it (Bojang & Ramos, 2014). These
nucleoside analogs cannot be constantly administered to patients
due to their cytotoxicity and instability, which is a significant
drawback.

Histone acetyltransferase inhibitors, like Lys-CoA, work by
preventing HAT activity since they are similar molecules to
acetyl-CoA and thus inhibit HAT reaction (Lau et al., 2000).
Similarly, many histone deacetylase inhibitors like vorinostat and
romidepsin are helpful in cell cycle arrest (Fatkins & Zheng, 2008).
Since many macromolecule protein complexes and enzymes are
involved during epigenetic regulation, targeting these enzymes and
protein complexes requires efficient molecular docking strategies to
eliminate unintended consequences. The major downside of
radiation therapy is the emergence of radioresistance in cancer
cells and radiotoxicity in normal cells (Nambiar, Rajamani, and
Singh 2011).

Plants have various chemical substances that can be used for
medicinal purposes. Many bioactive substances have been utilized as
anticancer agents, and most of these are currently the subject of
clinical trials. Paclitaxel act by increasing microtubule
polymerization, thus inhibiting cell proliferation (Ardalani, Avan,
and Ghayour-Mobarhan 2017). However, paclitaxel side effects in
treating gynecological cancers include neutropenia and peripheral
neuropathy (de Castro et al., 2019). Podophyllotoxin derivatives,
especially etoposide and teniposide, act as inhibitors of DNA
Topoisomerase II, leading the cell to apoptosis (Gallego-Jara
et al., 2020). The hydrophobic property of curcumin continues to
be the major obstacle to developing effective medicines for cancer
treatment (Ayubi et al., 2019). Parthenolide (PTL) also has low
bioavailability due to its poor solubility in water (Karam et al., 2021).
Neurotoxicity caused by vinca alkaloids is a significant side effect of
using these alkaloids as cancer medication (Arora &Menezes, 2021).
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TABLE 1 Different Phytochemical compounds possessing anticancer activity.

Sr.
No.

Bioactive
compound

Plant source Clinical trial Compound activity in
cancer cells

Reference

1 Curcumin Rhizome of Curcuma longa Phase I/II clinical trial • Regulate NF-κB, JAK/STAT
and TGF-ß signaling pathways

Willenbacher et al. (2019)

• Antioxidant properties

2 Podophyllotoxin and
its derivatives

Chaerophyllum aurium, Justica
heterocarpa, Podophyllum hexandrum

VP/16 cisplatin; Phase
III clinical trial.

• Prevents the conversion of
tubulin into microtubules

Zhao et al. (2021), Shen
et al. (2022), Motyka et al.
(2023)

• Induces cell apoptosis

3 Paclitaxel and its
analogs

Taxus brevifolia, Taxus baccata, Taxus
cuspidata, Taxus wallichiana, Taxus
chinensis, Taxus floridana, Taxus
Canadensis, Corylus avellana

Larotaxel; Phase II
clinical trial

• Inhibits the depolymerization of
microtubules

Naaz et al. (2019)

BMS-184476; Phase II
clinical trial

• Inhibits Bcl-2 expression

Ortataxel; Phase I
clinical trial

• Upregulate p27 and p21 gene

4 Diindoylmenthane Cauliflower, Cabbage, Mustard, Radish,
Broccol, Brussels sprouts

Phase II clinical trial for
prostate cancer

• Activation Nrf2 signaling
pathway

Wang et al. (2022)

• Suppresses TGF-ß, Smad2/
Smad3 signaling, and Ap-1
transcription factor

5 Parthenolide and its
analogs

Leaves of Tanacetum
parthenium and Chrysanthemum
parthenium

Phase I clinical trial of
DMAPT

• Suppresses HDACI-
mediated NF-κB activation

(Karam et al., 2021)

• Downregulates the expression
of tubulin carboxypeptidase
activity

• Increases ATM gene expression

6 Vinca alkaloids Catharanthus roseus Phase II/III clinical trial:
Vincristine in
combination with other
drugs

• Inhibit microtubule assembly Škubník et al. (2021), Asati
(2022)

7 Resveratol Roots – Polygonum cuspidatum
Rhizomes – Veratrum formosanum
Seeds – Vitis vinifera

Phase I/II • Activates Nrf2 Whitlock and Baek 2012;
Tian and Liu 2020;
Farkhondeh et al. (2020),
Carter, D’Orazio, and
Pearson 2014

• Activates p53

• Inactivate NF-κB signaling

• Resveratol has activity on
enzymes related to oxidative
metabolism and there by
detoxification of these
metabolites

• Activates ATF3 in colorectal
cancer cells

• Inhibits of COX-1 activity

8 Pomiferin Fruits – Maclura pomifera - • Inhibits activity of histone
deacetylase

Amin et al. (2009),
Greenwell and Rahman
2015; Venturelli et al.
(2016)• Reduces viability of malignant

neoplastic glioma cells

• Strong antioxidant property

• Reduces the expression of
S100A6 protein

9 Thymoquinone Seeds of Nigella sativa Phase I/II • Inhibit activity of aconitase
enzyme

Amin et al., 2009; Woo
et al. (2011),
Asaduzzaman Khan et al.
(2017)• Increases accumulation of ROS.

(Continued on following page)
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TABLE 1 (Continued) Different Phytochemical compounds possessing anticancer activity.

Sr.
No.

Bioactive
compound

Plant source Clinical trial Compound activity in
cancer cells

Reference

• Upregulate p21WAF1 and p27Kip1

• Induces apoptotic activity in
neoplastic cells

• Interfere with DNA structure

10 Combretastatin A-4
analogs

Combretum caffrum Phase II/III • Inhibits tubulin polymerization Shan et al. (2011), Nainwal
et al. (2019)

• Antiangiogenic activity

• Inhibits metastasis

11 Epigallocatechin-3-
gallate

Leaves of Camellia sinensis Phase I • Inhibits c-Jun N-terminal
Kinase

Min and Taeg Kyu (2014),
Amin et al. (2009), H.
Zhao et al. (2016)

• Activate Rb tumor suppressor
gene

• Reduces telomerase activity in
small cell lung carcinoma

• Inhibition of DNA
methyltransferase activity

• Downregulate PI3K/AKT
signaling

12 Homoharringtonine Cephalotaxus harringtonia Phase I/II • Homoharringtonine cause
inhibition of protein synthesis

Amin et al. (2009),
Srivastava and
Raghuwanshi 2021;
Mazumder et al. (2022)• Inhibits TMEM16A in lung

cancer cells (Transmembrane
protein 16A Ca2+ dependent
chloride channel)

13 Triptolide and its
derivatives

Tripterygium wilfordii Phase I/II • Induce apoptosis by targetting
genes like 5-LOX, Bcl-2, XIAP
and Estrogen Receptor

Noel et al. (2019)

• Regulates autophagy process by
targetting genes like HSP70 and
mTOR.

• Inhibits transcription in tumor
cells by targeting genes like
RPB1, MYC, SP1 and FOS.

14 Protopanaxadiol Panax ginseng - • Induces caspase dependent
apoptosis

C.-Z. Wang et al. (2013),
Z. Zhang et al. (2015)

• Induces G1 cell cycle arrest

• Induces ROS production

• Activates NF-κB pathway

• Induces paraptosis

15 Bruceantin Brucea antidysentrica - • Inhibits activity of (AR-FL) and
(AR-V7)

Cuendet and Pezzuto
2004; Moon et al. (2021)

• Inhibits HSP90 Chaperon
function

• Inhibits protein synthesis by
interfering with activity of
peptidyltransferase enzyme

16 Roscovitie Cotyledons of Raphnus sativus Phase I/II • Inhibits CDK/Cyclin E activity Cicenas et al. (2015)
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This overview illustrates the biosynthesis of many anticancer
compounds, including curcumin, paclitaxel, vinca alkaloids,
sulforaphane (SFN), diindolylmethane, PTL, and
podophyllotoxin. Several research studies have been highlighted
depicting the role of synthetic analogs in increasing the solubility
of phytochemical compounds and overcoming the side effects of
these phytochemical compounds using various pharmacological
approaches. Along with this, we highlighted the structural
activity relationships and the mechanism of action of these
phytochemical compounds. We also explored metabolic
engineering and other related approaches to enhance the levels of
anticancer compounds. The last section of this article discusses
molecular docking techniques to explore a vast array of secondary
metabolites in chemotherapy.

Anticancer phytochemical compounds
and their mechanism of action

Curcumin and its analogs

Curcumin, a phenolic compound derived from the Curcuma
longa plant, has been demonstrated to control the expression of
various growth factors in cells. Diferuloylmethane or curcumin
also regulates the expression of kinases, inflammatory cytokines,
transcription factors, cell cycle regulators, and apoptotic proteins
(Giordano & Tommonaro, 2019). Curcumin has been used in
treating prostate, cervical, uterine, and breast cancer with clinical
trials in several trial phases (Giordano & Tommonaro, 2019). In
pancreatic cancer, Diferuloylmethane downregulates the
expression of NF-κB, miR-21, c-Myc, Hes-1, Stat-3, COX-2,
CD-31, VEGF, Notch gene and upregulates the expression of
p21 and p27 genes thereby suppress tumor growth (Bimonte
et al., 2016). Curcumin inhibits the cell cycle in colorectal cancer
by upregulating caspases and downregulating cyclin D1 and
cyclin D3.

Additionally, it upregulates the expression of apoptotic genes
like Bax while downregulating inflammation-related genes like
TNF-α, cytokines, and NF-κB (Pricci et al., 2020). Similarly,
various cell signal transduction pathways are targeted in breast
cancer, lymphoma, leukemia, multiple myeloma, prostate cancer,
and brain tumors (Liu and Chen, 2013; Giordano & Tommonaro,
2019). The IC50 value of curcumin using MCF-7 cell line of
Human Breast Adenocarcinoma cells at 24, 48, and 72 h was
79.58, 53.18, and 30.78 nM respectively (p < 0.05). Mcl-1 gene
product was also suppressed by the action of curcumin (Koohpar
et al., 2015). There was a significant difference between inhibitory
concentration IC50 value for curcumin and nano curcumin on
cancer cell line MDA-MB231 of breast cancer cells, with nano
curcumin having IC50 value at lower concentrations than
curcumin with p < 0.01. Hence, nanotechnology is better for
treating human breast cancer (Khosropanah et al., 2016).
Moreover, curcumin-encapsulated nano-micelles had better
cytotoxicity against cisplatin-resistant human oral cancer due
to better cellular localization in these cells (Kumbar et al., 2022).
For individuals with benign prostatic hypertrophy, a pilot
product evaluation study was conducted to examine the effects
of curcumin. Curcumin decreases signs and symptoms and

enhances the quality of life. Curcumin has a limited
bioavailability, although it is non-etheless used in clinical
settings. A combination of curcumin and imatinib reduced
nitric oxide levels in a randomized control trial of patients
with chronic myeloid leukemia (Table 1). A phase II clinical
trial of intestinal adenoma patients revealed no significant
clinical response due to poor oral bioavailability (Tomeh
et al., 2019).

Studies on chemoprevention in murine hepatoma cells showed
that the -C=C-C=O moiety in curcumin analogs helps enhance the
activation of Phase II detoxifying enzymes. The structural activity
relationship (Figure 1) also revealed that, in prostate cancer cells, the
conjugated ß-diketone moiety is essential for biological activity
(Kaur, Kaur, and Bansal 2021). Adding two ortho-chloro groups
in phenyl rings also helps reduce the multiplication of endothelial
cells. Introducing the para-methoxy group in the phenyl ring is helpful
in the anti-angiogenesis property of curcumin analogs. The anti-
angiogenesis property is significantly diminished when the phenyl
rings are swapped with pyridyl rings or when the phenyl rings are
substituted with ortho chlorine groups (Lin & Lee, 2006). Recently,
some curcumin derivatives have been developed where the
phenolic–OH groups are entirely or partially substituted, or the
diketo chain has been substituted on C4 carbon. Some of these
compounds were able to block the expression of NF-κB in triple-
negative breast cancer cells more potently than curcumin (Bonaccorsi
et al., 2019). Another curcumin derivative, EF24 displayed improved
anticancer efficacy compared to curcumin, higher bioavailability, and a
slower metabolic rate (Nocito et al., 2021).

FIGURE 1
Structural activity relationship of curcumin.
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TABLE 2 Molecular Docking studies and different aspects considered.

Sr
No.

Source Docking receptor Ligand Aspects considered References

1 Taxus wallichiana EGFR 4-Deacetylbaccatin III; Taxawallin J;
Tasumatrol B; Paclitaxel

MTT assay was performed using
HepG2, A498, NCI-H226, MDR
2780AD cell line. Tasumatrol B
showed significant cytotoxicity
compared to other compounds

Qayum et al. (2019)

Binding energy range: 6.9 kcal/mol
to -7.1 kcal/mol

2 Chemical Synthesis by click
chemistry

Topoisomerase Podophyllotoxin-glycerol triazoles MTT assay was performed using
Du145, A-549, MCF-7 and HeLa
cell lines. Molecular docking and
cytotoxicity assay showed
significant results

Nerella et al. (2021)

3 Compounds were chemically
synthesized

Vinca binding domain of
tubulin

Compound 5; Compound 6;
Compound 7; Compound 8;
Vinblastine Anhydrovinblastine

Binding energy lied in range of
-12.80 kcal/mol to -7.23 kcal/mol

Quan et al. (2019)

Compound 7 showed better binding
affinity and cytotoxicity

4 Tanacetum parthenium EGFR Parthenolide Parthenolide binds to the active site
of EGFR via hydrogen bonding and
hydrophobic interaction

Li et al. (2020)

5 Members of Cruciferae family ABCB1
ABCC1

DIM DIM binds with substrate binding
site of ABCB1 and ABCC1 in breast
cancer cells

Penta et al. (2021)

6 Fusion conjugate of Curcumin
and Dichloroaceta

DYRK2 Curcumin; CMC1; CMC2; CMC3;
CMC4; CMC6

Binding energy lied in the range:
21 kJ/mol to -67 kJ/mol

Panda et al. (2022)

CMC2 conjugate has better binding
energy

CMC1 and CMC2 reduced growth
of human breast cancer cells

7 Xylopia vielana B-Raf kinase protein Vieloplain F ADMET estimation, Bioactivity
score, Binding efficiency tested
which showed significant results

Hassan et al. (2022)

8 Endophytic fungi
Pestalotiopsis breviseta

Bcl-2 Paclitaxel extracted from fungus Binding energy value -13.0061
KJ/mol

Kathiravan et al.
(2012)

Further in-vitro studies required

9 Fungus Fusarium oxysporum,
Penicillium wortmannii

Point Mutated as well as
wild type PIK3CA

Wortmannin extracted from
Fusarium oxysporum

Resazurin cell growth inhibition
assay performed and degree of
resistance for sensitive and
multidrug-resistant P-glycoprotein/
MDR1-overexpressing cancer cell
lines was 0.81

Kuete et al. (2015)

10 Polygonum hydropiper Tyrosine Kinase ß-stiosterol and stigmasterol MTT assay performed on HeLa,
MCF-7, NIH/3T3 cell lines showed
promising results

Ayaz et al. (2019)

11 Cordia sebestena flowers E6 protein of HPV16 Hesperetin MTT cytotoxicity assay on HeLa
cell line showed significant results

Prakash et al. (2020)

12 Compounds extracted from
different plants

E6 protein of HPV16 Out of colchicine, Curcumin,
Daphnoretin, Ellipticine and
Epigallocatechin-3-gallate;
Daphnoretin has better binding
properties than others

Further in-vitro studies required Mamgain et al. (2015)

13 Dr. Dukes phytochemicals and
ethnobotanical database

JAK2 protein Out of different ligands docked
ajmalimine showed better binding
properties with JAK2 protein

Further in-vitro studies required (Achutha, Pushpa,
and Manoj 2021)

(Continued on following page)
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Podophyllotoxin and its analogs

Podophyllotoxin can be extracted fromvascular plants belonging to
60 different families, which include genera like Chaerophyllum aurium
from the Apiaceae family and Justica heterocarpa from the Acanthaceae
family. (Shah et al., 2021). A critically endangered plant, Podophyllum
hexandrum of the family Berberidaceae rhizomes, processes several
lignans which show anticancer activities (Arora et al., 2010). Various
Podophyllotoxin derivatives have been synthesized to address
drawbacks like systemic toxicity, drug resistance, and limited
bioavailability (H. Fan et al., 2021). Etoposide, teniposide, and
etopophos are semi-synthetic anticancer compounds derived from
podophyllotoxin. These compounds have fewer side effects than
podophyllotoxin (Changxing et al., 2020; Shah et al., 2021; Mishra
et al., 2022). Due to systemic toxicity, drug resistance, and low
absorption, nearly all podophyllotoxin derivatives were severely
constrained in clinical therapy (Zhao et al., 2021). These drugs can
efficiently deal with several malignancies, such as Hodgkin’s and non-
Hodgkin’s lymphoma, multiform glioblastoma lymphoma, non-
lymphocytic leukemia, Wilms tumors, testicular cancer,
neuroblastoma and hepatocellular carcinoma (Yu, Che, and Xu
2017; Găman, Egbuna, and Găman 2020). Topoisomerase II activity
is inhibited by etoposide, etopophos, and teniposide, which work by
creating complexes with DNA and the enzyme. However, the
cytotoxicity caused by teniposide is much more than etoposide due
to the lesser potency of teniposide andmore accumulation of teniposide
in cells (B. H. Long 1992). Epipodophyllotoxin is ß confirmation
derivative of podophyllotoxin. When 1.2, 3triazole acts as a linker
with another pharmacophore moiety, they are categorized as Type II
hybrids of epipodophyllotoxin (Xiao et al., 2020). The anticancer
property of GL331, NK-611, TOP53, and NPF, as well as other
podophyllotoxin compounds such as etopophos and teniposide, are
supported by several investigations (Shah et al., 2021). The
glucopyranose derivatives of 4-demethylepipodophyllotoxin (DMEP),
known as Etoposide (VP-16) and Teniposide (VM-26), are preferred
for high-dose chemotherapy treatment of lymphoma, particularly for
those patients who experienced recurrence in incurable non-small cell
lung cancer (Zhao et al., 2021). The negative consequences of
VP16 therapy include genotoxicity and bone marrow suppression.

The 3-year overall survival of radiation combined with VP-16/
cisplatin was significantly higher than that of paclitaxel/carboplatin
in the treatment of non-small cell lung cancer, and the median survival
time was 23.3 months, according to the results of a phase III clinical
study for the drug combination (Zhao et al., 2021).

Teniposide is more effective than etoposide and causes less
damage to hematopoietic stem cells than etoposide (Motyka
et al., 2023). 2,6-dimethoxy-4-(6-oxo-(5R,5aR,6,8,8aR, 9-
hexahydrofuro [3′,4′:6.7]naphtho[2,3-day] [1,3]dioxol-5-yl)phenyl
((R)-1-amino-4-(methylthio)-1-oxobutan-2-yl)carbamate (DPMA)
is a derivative of deoxypodophyllotoxin has more cytotoxic activity
compared to etoposide. It also induces Bax and inhibits Bcl-2
expression (Motyka et al., 2023). Multiplication of human
cervical adenocarcinoma HeLa cells in in-vitro cytotoxicity study
was significantly suppressed by the nanoscale drug delivery system
Graphene oxide-Polyethylene glycol disulfide prodrug of
podophyllotoxin than those of 293T cells, which were taken from
normal human kidney. This stemmed from the fact that cancer cells
have much greater intracellular glutathione levels than other cells (Y.
Liu et al., 2020). Consequently, a redesigned drug delivery
mechanism lessens the cytotoxicity of podophyllotoxin
derivatives. Hodgkin’s lymphoma patients are treated with
etoposide and teniposide using various combinations of other
drugs. They can be administered orally or by intravenous route.
Myelosuppression, digestive issues, and baldness are toxicities seen
during chemotherapy (Găman, Egbuna, and Găman 2020). Aiming
the abnormally expressed genes in breast cancer cells, like p53, cyclin
B1, Cdk1, VEGF-A, STAT-3, ERK1/2, and AKT-1 podophyllotoxin
derivatives like 4ß-amidopodophyllotoxins induce cell cycle arrest.
Similarly, by acting on CDK1 and Cyclin B1, podophyllotoxin-
norcantharidin hybrids cause cell cycle inhibition and apoptosis (H.
Fan et al., 2021).

The IC50 value for accessing the cytotoxicity of
podophyllotoxin, picropodophyllotoxin, and
deoxypodophyllotoxin (DPT) on colorectal cancer cells by using
MTT assay was found to be 649.7, 532.1, and 56.1 nM respectively.
In cell lines, namely HT29, DLD1, and Caco2, the IC50 value of DPT
was 56.1, 23.4, and 26.9 nM, respectively, at 48 h of drug exposure.
This was attributed to the fact that DPT destabilizes microtubules,

TABLE 2 (Continued) Molecular Docking studies and different aspects considered.

Sr
No.

Source Docking receptor Ligand Aspects considered References

14 Taxus spp. And also chemical
synthesis

CYP3A4 Paclitaxel; Isotaxel; 2’Phosphonoxy
methyl etherderivative of Paclitaxel;
2’Phosphonoxy methyl carbonate
Paclitaxel

Binding energy lied in the range:
32.63 kJ/mol to-48.28 kJ/mol

Munjal et al. (2022)

There were both hydrogen bonding
and hydrophobic interactions. In
case of isotaxel ionic interactions
were also there

15 Compounds were extracted
from different plants

MAPK namely Chrysophanol; Curcumin;
Hesperidin; Physcion

All compounds had P38α inhibitory
activity based on molecular
docking. Considerable cytotoxicity
was present at high concentration of
drug

Selim et al. (2019)

P38α

ERK2

JNK

MK3

Frontiers in Pharmacology frontiersin.org07

Dogra and Kumar 10.3389/fphar.2023.1136779

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1136779


increases the production of BAX protein, and suppression of
production of Bcl-xL protein, leading to programmed cell death
(Gamage et al., 2019). Similarly, JNC-1043, a podophyllotoxin
derivative, has an IC50 value of 114.5 and 157 nM by using cell
viability assay on HCT116 and DLD-1 cell lines of colorectal cancer
cell lines at 72 h of drug exposure. Both JNC-1043 and gamma
ionizing radiations had effects on increased mitochondrial ROS
production (Kwon et al., 2022). For cell lines, namely NCI-H1299
and A549 cells of non-small cell lung cancer cells, the IC50 value of
podophyllotoxin acetate was found to be 7.6 and 16.1 nM,
respectively, at 72 h of drug exposure. This was due to the
inhibition of microtubule polymerization and cell cycle arrest,
ultimately leading to apoptosis (Choi et al., 2015).

The structural activity relationship (Supplementary File S1)
revealed that both A and E rings are crucial for podophyllotoxin
anti-cancer activity. Lactone from the D ring is preferred; the
C4 position in the C ring can be modified with bulky groups,
and modifications in the B ring are not tolerated (Xiao et al.,
2020; X. Zhang et al., 2018; Reddy et al., 2018; Dong et al.,
2016). A and D rings can be modified to increase biological
activity. E ring shows orthogonal free rotation, which is necessary
for the anti-tumor activity of the compound (Nagar et al., 2011).

Paclitaxel and its analogs

Paclitaxel can be extracted from plants of the Taxaceae family,
such as Taxus brevifolia, found in the Western United States; Taxus
baccata, known as European Yew, Taxus cuspidata, known as
Japanese Yew; Taxus wallichiana, Taxus chinensis, Taxus
floridana, Taxus canadensis found in the Eastern United States,
Taxus globosa, and plants of Betulaceae family namely Corylus
avellana Known as the hazel plant is also a source of paclitaxel
(Hodgson, 2012; Swamy et al., 2022). Taxus wallichiana is known as
Himalayan yew and is located in the temperate Himalayas between
1800 and 3,300 m above sea level, as well as at the height of 1,500 m
in the highlands of Meghalaya and Manipur (Juyal et al., 2014).
Paclitaxel (generic name) was first synthesized from the bark of
Taxus brevifolia and is commonly known as Western yew (Juyal
et al., 2014). These taxine alkaloids are found in the plant’s leaves,
bark, and seeds. Clinically relevant concentrations of paclitaxel cause
multipolar spindle fiber formation causing aneuploidy in mitotic
tumor cells (Weaver, 2014). In recent studies, it has been confirmed
that chromosomal missegregation and cell death were more likely to
happen, when spindle multipolarity lasted longer, especially after
anaphase began. However, multipolar spindles caused by paclitaxel
throughout mitosis can concentrate into bipolar spindles, and thus
cells survive. So, paclitaxel efficacy is expected to be increased by
therapies that prevent cells from focusing multipolar spindles caused
by paclitaxel into bipolar spindles (Scribano et al., 2021).

When administered with carboplatin, paclitaxel has been
used successfully to treat ovarian cancer. A lower
concentration of paclitaxel causes apoptosis by upregulating
the expression of p21 and p27 genes. At higher concentrations,
paclitaxel causes the stable assembly of microtubules from ß
tubulin heterodimers and inhibits their depolymerization.
Paclitaxel also increases the activity of the enzyme
nicotinamide adenine dinucleotide phosphate oxidase; hence,

oxidative stress conditions can be enhanced in ovarian cancer
cells. In addition to this, multidrug resistance is alarmingly
developing in ovarian cancer patients due to altered gene
expression, altered tumor microenvironmen, altered cellular
metabolism, altered cellular architecture, and altered cellular
processes. All these changes cause drug efflux, reduction of
intracellular tubulin concentration, and inhibition of mitosis
by activating Raf-1 Kinase (Kampan et al., 2015).

After a protracted development period, paclitaxel finally got
clinical approval for treatment against resistant breast cancer in
1994 and ovarian cancer in 1992 (Newman et al., 2008). A phase
3 trial of untreated metastatic triple-negative breast cancer patients
received atezolizumab plus abraxane or placebo plus abraxane. With
atezolizumab plus abraxane, the patients having metastatic triple-
negative breast cancer and programmed death ligand 1 (PD-L1) had
a more prolonged progression-free survival (Schmid et al., 2018).
PD-L1 is an immune response suppressor, and Atezolizumab
inhibits PD-L1 function. Hence this combination is a helpful
immune-chemotherapy option for patients with PD-L1+
metastatic or locally progressed TNBC (Kang & Syed, 2020).
Hematological toxicity is the major drawback of the treatment of
gynecological cancer. Recent research studies revealed that the
CYP2C8*3 gene variant was significantly linked with severe
(grades 3–4) neutropenia and may be used as a potential
indicator of hematological toxicities brought on by paclitaxel/
carboplatin therapy. Such a predictive assessment might help
with the therapeutic intervention of particular individuals
receiving chemotherapy based on paclitaxel (de Castro et al.,
2019). In another study, the probiotic formulation
SLAB51 effectively increased the expression of opioid and
cannabinoid receptors in the spinal cord of CIPN mice. Probiotic
use also reduces nerve fiber damage in paws (Cuozzo et al., 2021).

MTT assay was performed to access the IC50 value on
HER2 positive cancer cell line BT-474, SKBR3. The IC50 values
were 19nM and 4 nM for BT-474 and SKBR3 cell lines of breast
cancer. Breast cancer cells with positive HER2 receptors have
increased expression of oncomiRs. These factors confer resistance
to paclitaxel therapy on HER2-positive breast cancer cells
(Haghnavaz et al., 2018). Cytotoxicity on 4T1cell line of human
breast cancer cells showed the maximum inhibitory concentration
IC50 value of 3.78 mM.

Moreover, paclitaxel encapsulated in cyclodextrin nanoparticles
increased the bioavailability of paclitaxel (Varan et al., 2021). The
maximal inhibitory concentration of paclitaxel in cervical cells
cancer cells lines such as HeLa, ME180, CaSki, SiHa, and C33A
was found to be 5.39 ± 0.208, 6.59 ± 0.711, 2.940 ± 0.390nM,
19.303 ± 1.886, and 21.567 ± 2.732 nM respectively.

However, paclitaxel-resistant cervical cancer cell lines had
increased the PI3K pathway expression. A combination of
paclitaxel with PI3K inhibitors such as BYL-719 and
LY294002 showed a synergistic effect (J. J. Liu et al., 2019). The
IC50 values of paclitaxel and curcumin mixture on the 4T1 cell line
and MDA-MB-231 were found to be 4.05 ± 0.13 and 2.79 ±
0.10 mM, respectively. Moreover, the Paclitaxel curcumin nano
drug is more efficient than the paclitaxel and curcumin mixture.
These nano drugs had better IC50 value than the curcumin and
paclitaxel mixture used in triple-negative breast cancer cell lines
(Zuo et al., 2021).

Frontiers in Pharmacology frontiersin.org08

Dogra and Kumar 10.3389/fphar.2023.1136779

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1136779


Paclitaxel inhibits the function of Bcl-2, a negative apoptosis
regulator, in Kaposi’s sarcoma patients (Tourlaki et al., 2020). In
treating various carcinomas, Taxol analog docetaxel has gained
immense attention. Docetaxel’s therapeutic application is
currently constrained because of its non-specific targeted nature
and related side effects (Newman et al., 2008). The plant component
10-deacetylbaccatin-III, an inactive precursor chemical found in the
needles of the endangered Taxus baccata, is used to synthesize
docetaxel artificially (Imran et al., 2020). The low solubility of
paclitaxel and docetaxel in water is a significant drawback that
results in the low bioavailability of these drugs. Using bio-based
nanoparticles such as chitosan helps increase the bioavailability
of these drugs (Ashrafizadeh et al., 2020). Many taxol analogs are
developed, such as larotaxel dehydrate, paclitaxel polyglumex,
cabazitaxel, ortataxel, and taxoperein, are under clinical trials
(Newman et al., 2008; Jose, 2020) (Table 1). Phase III clinical
trials for treating breast and pancreatic cancer are now being
conducted with larotaxel, which features a cyclopropane ring in
place of the C-7 hydroxyl group (Newman, Cragg, and Kingston,
2008). It acts on cell lines resistant to paclitaxel and can traverse
the blood-brain barrier (Yared and Katherine, 2012). Paclitaxel
poliglumex is a nanocarrier for paclitaxel that contains 37% of
paclitaxel and is coupled with polyglutamic acid to make it more
soluble in water (Newman et al., 2008; Pillai, 2019). A phase III
clinical trial using this analog is carried out on ovarian and non-
small cell lung cancer patients (Newman et al., 2008).
Nanoparticle albumin-bound paclitaxel, DJ-927, Cationic
liposomal paclitaxel, polymeric-micelle paclitaxel, DHA-
paclitaxel, BMS-184476 are some of the paclitaxel analogs
designed to reduce the toxicities mainly neurotoxicity caused
by docetaxel and paclitaxel (Newman et al., 2008; Yared and
Katherine, 2012).

Structural activity relationship (Supplementary File S2) showed
that phenyl moiety at C3′N is necessary for cytotoxicity and
antitumor activity. The methoxymethyl group can replace the
C7-OH group, and the acetyl group at the C10 position is not
necessary for biological activity. Removal of the C2-O-benzyl group
reduces biological activity, whereas Ortho and Meta substituted
benzyl group increases antitumor activity. Replacement of an eight-
member ring with a seven-membered ring can be possible, but an
oxetane ring is crucial for compound biological activity (Żwawiak &
Zaprutko, 2014)

Glucosinolates

When the endogenous and exogenous myrosinase hydrolyzes
the 4-Methylsulfonylbutyl glucosinolate glucoraphanin, SFN is
produced (4-methyl sulfonyl butyl isothiocyanate). The
cruciferous vegetables cauliflower, cabbage, mustard, and radish
all contain glucosinolates, with broccoli and brussels sprouts
having the highest quantities of glucoraphanin (Wang Y. et al.,
2016). These glucosinolates are present inactively in plants. At acidic
pH, some crucifer plants’ epithiospecifier protein (EPS) guides the
breakdown of glucoraphanin to produce SFN nitrile. SFN nitrile
does not have anti-carcinogenic properties; hence, the
downregulation of epithiospecifier protein is necessary to increase
sulforaphane production.

Additionally, SFN can be biotransformed reversibly into the
erucin metabolite, which affects SFN bioavailability (Bayat Mokhtari
et al., 2018). Gut bacteria also possess myrosinase enzyme that
converts glucosinolates into isothiocyanate compounds. Gut
bacteria in mammals also act on SFN and convert it into an
inactive compound (Bayat Mokhtari et al., 2018). Hydrolysis of
sinigrin, glucotropaeolin, and gluconasturtiin, glucosinolates leads
to the formation of allyl isothiocyanate, benzyl isothiocyanate, and
phenyl isothiocyanate, respectively. Upon the action of myrosinase
on glucosinolates at basic pH, thiocyanates are formed (Esteve,
2020).

Apoptosis and cell proliferation processes are all regulated by the
PI3K-AKT signaling pathway, and in cancer cells, this pathway is
predominantly hyperactive (Shi et al., 2019). SFN blocks the
function of histone deacetylase, which increases the transcription
of genes such as Bax, BAD, and p21 that promote apoptosis. SFE
significantly inhibits the PI3K-AKT signaling in lung cancer cells,
which results in decreased PTEN expression and reduced
phosphorylation of AKT (Yang et al., 2016). SFN can stop CREB
from being phosphorylated by MSK2, which inhibits Bcl-2 and
further causes apoptosis in esophageal cancer cells (C. Zhang
et al., 2019). There have not been many human clinical trials in
China that have looked at the effect of SFN on cancer outcomes, but
there have been a lot of Phase 1 human SFN investigations using
different SFN sources. These investigations are crucial in developing
anticancer drugs (Clarke, Dashwood, and Ho 2008).

The action of myrosinase on glucosinolates also leads to the
formation of indoles at neutral pH, which, on coming at acidic pH in
the stomach, leads to the formation of diindolylmethane (DIM)
(Pawlik, Słomińska-Wojewódzka, and Herman-Antosiewicz 2016;
Kołodziejski et al., 2019; Koli et al., 2020; Singla et al., 2021;
Williams, 2021). DIM in breast cancer cell lines binds to aryl
hydrocarbon receptors. This receptor then binds to the Xenobiotic
response element sequence in the cytochrome P450 gene family,
thereby rendering them transcriptionally active (Esteve, 2020).
These cytochromes modify the molecules present within the cells,
activating or deactivating them (Ioannides and Lewis, 2005). DIM also
affects the activation of the Nrf2 signaling pathway, thereby leading to
the production of proteins involved in detoxification and oxidative
stress responses (Thomson et al., 2016). In liver cancer cells, DIM
suppresses TGF-ß, Smad2/Smad3 signaling, and Ap-1 transcription
factor (Wang S. Q. et al., 2016). DIM also regulates the expression of
miRNA, which leads to malignancy. In pancreatic cancer cell line,
DIM upregulates the expression of let-7b/c/d/e, miR-200b/c, and
miR-146a and downregulates the expression of miR-221 miRNA,
thereby controlling tumor progression (Biersack, 2020). The
combination of calcium ionophore and DIM resulted in increased
apoptosis, increased activation of p-p38 MAPK, and cell proliferation
was also significantly inhibited in hepatocellular carcinoma cells
(Jiang et al., 2019).

Recently synthetic derivatives of DIM, such as 2.2′-diphenyl-
3.3′-diindoylmethane (DPDIM) and another halo, phenyl, and
ferrocenyl derivatives with anticancer activity, have been
developed. Arsindoline B extracted from Xiamen sea bacterium
strain CB101 is a natural DIM derivative that shows anticancer
activity. Sterptindole extracted from Streptococcus faecium IB 37 is
another natural derivative showing DNA-damaging and genotoxic
properties (Pillaiyar et al., 2018). DPDIM has anticancer activity
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on triple-negative breast cancer cells, lacking estrogen receptors,
progesterone receptors, and no HER-2 overexpression (Biersack,
2020). IC50 concentration of C-substituted diindolylmethane
derivative, namely DIM10 and DIM14 on triple-negative
breast cancer cell line MDA-MB-231, MDA-MB-468, and
MDA-MB-435 range from 10 to 20 mM after 72 h of
treatment. Nano-structured lipid carriers were used to increase
the bioavailability of these drugs (Godugu et al., 2016). Although
3.3′diindoylmethane (DIM) is advocated for its efficiency in the
treatment of breast and cancer patients, the majority of the
prospective trials focused more on the biological fate of DIM
than they did on the effectiveness of DIM in the treatment of
breast or prostate cancer (Amare, 2020).

Sulforaphane causes cell cycle arrest and inhibits Akt/mTORpathway
and apoptosis in these cells (Yasunaga et al., 2022). Cytotoxicity of
Sulforaphane on Estrogen receptor positive cell lines like T47D and
MCF-7 cell lines revealed the half-maximum inhibitory concentration of
sulforaphane (IC50 value) was 6.6 and 5mM, respectively. Both erucin
and sulforaphane had similar IC50 values of cytotoxicity on these cell

lines. However, IC50 values of cytotoxicity by erucin and sulforaphane
showed a significant difference on cell line BT-474, with sulforaphane
having cytotoxicity at a less inhibitory concentration than erucin. Co-
treatment with 4-hydroxytamoxifen, an estrogen inhibitor, and
sulforaphane also sensitizes the 4-hydroxytamoxifen-resistant cell line
(Pawlik, Słomińska-Wojewódzka, and Herman-Antosiewicz 2016). For
MDA-MB-468 TNBC with overexpressing EGFR, the IC50 value of
sulforaphane was found to be 1.8 mM.

Parthenolide and its analogs

Parthenolide is found in aerial parts, mainly in leaves of
Tanacetum parthenium and Chrysanthemum parthenium. The
sesquiterpene lactone family compound 4,5-epoxy-germacra-1
(10),11, (13)-dien-12,6-olide, a secondary metabolite of plants,
has three isoprene units and a cyclic ester group (Ghantous
et al., 2013). The nucleophilic properties of cyclic ester and
epoxide groups enable quick interactions with biological targets.

FIGURE 2
Pathway of Biosynthesis of Curcuminoid. Here CST is p-coumaryl shikimate transferase, CS3′H is p-coumaroyl 5-O-shikimate 3′-hydroxylase and
CCoAOMT is caffeoyl-CoA O-methyltransferase.
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Transcription factor NF-κB is linked to various cellular responses,
particularly inflammation, immune regulation, apoptosis, and
proliferation. PTL suppresses HDACI-mediated NF-κB activation
in acute myeloid leukemia (AML) cells while promoting SAPK/JNK
and programmed cell death’s gene activation (Mathema et al., 2012).
PTL downregulates the expression of tubulin carboxypeptidase
activity; hence, tyrosine ligase can easily tyrosinase tubulins.
Healthy neurons and cardiomyocytes have a tubulin
detyrosination and retyrosination cycle that regulates microtubule
functioning. These highly differentiated cells malfunction when this
cycle is dysregulated, and in humans, this can lead to dementia and
heart failure (Sanyal et al., 2021). PTL downregulates the expression
of DNA methyltransferase enzyme and is less toxic than nucleoside
analogs such as 5-azacytidine and decitabine (Ghantous et al., 2013).
Additionally, PTL increases ATM gene expression, which decreases

the activity of the p21 and histone deacetylase genes. It has been
demonstrated that PTL depletes thiols like glutathione (GSH) and
blocks related enzymes by alkylation, including GPX1, TXN,
TXNRD1/2, and the ligase GCLC1, which accelerates the initial
rate-limiting step in the synthesis of GSH. Depletion of glutathione
results in the accumulation of ROS and ultimately leads to cell death.
PTL also shows anti-proliferative/anti-inflammatory activity. The
inhibitory concentration IC50 value for inhibition of COX-2 and
TNF-α gene expression by PTL in macrophage cell lines was 0.8 and
0.4 mM, respectively. These genes are involved in inflammatory
responses (R. R. A. Freund et al., 2020). Dimethylaminoparthenolide
(DMAPT), a PTL analog with improved bioavailability, destroys
prostate cancer cells by suppressing NF-κB activity and redox
imbalance in the cells (Mendonca et al., 2017) (Table 1). A phase
I clinical trial with PTL examined the drug’s pharmacokinetics

FIGURE 3
Biosynthesis of podophyllotoxin.
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and toxicity. A phase I clinical trial with DMAPT evaluated cancer
patients with acute myeloid leukemia and other blood lymphomas
(Sztiller-Sikorska & Czyz, 2020). Dimethylamino-micheliolide
fumarate salt (ACT001) is another analog of parthenolide which
is under phase I of clinical studies for the treatment of glioma
patients. Clinical phase I trials yielded significant findings with
acceptable bioavailability and antitumor effectiveness (Sztiller-
Sikorska & Czyz, 2020; Lickliter et al., 2021). As PD-L1 gene
transcription is decreased by ACT001, the STAT3 pathway,
which is overexpressed and contributes to immunosuppression,
can also be reduced (Tong et al., 2020).

The structural activity relationship (Supplementary File S3)
showed that the C14 methyl group and the presence of lactam
moiety are necessary for the antitumor activity of the compound
(R. R. A. Freund et al., 2020; J. Long et al., 2016; Jia et al., 2020).
Parthenolide derivative with cinnamyl or substituted cinnamyl moiety
is effective in triple-negative breast cancer (Ge et al., 2019). Moreover,
parthenolide-5-fluorouracil conjugates are also effective against
hepatocellular carcinoma (Ding et al., 2019). A lactone ring is

necessary for the compound anticancer activity (R. Freund et al.,
2019). Through cytotoxicity assay on cell lines SiHa of human cervical
cancer cells and breast cancer cell line MCF-7, the IC50 concentration
comes out to be 8.42 ± 0.76 and 9.54 ± 0.82 mM, respectively, with p <
0.001. There was over-expression of genes like p53, Bax, caspase6 and
caspase3 genes. There was also suppression of expression of the Bcl-2
gene (Al-Fatlawi et al., 2015). The IC50 value of PTL on cancer cell line
HCT116 p53+/+ and HCT116 p53−/− of colon carcinoma cells was
found to be 17.6 ± 1.8 and 41.6 ± 1.2 mM, respectively. Moreover, the
IC50 value for multidrug-sensitive cell lines such as MDA-MB-231-
BCRP was found to be 08.5 ± 1.3 mM. This was attributed to the fact
that PTL inhibits the NF-κB pathway by binding to IKK and
suppressing HIF-1α gene expression (Dawood, Ooko, and Efferth
2019).

Vinca alkaloids and their analogs

Vinca alkaloids from the Catharanthus roseus plant include the

FIGURE 4
Through sequential steps of mevalonic acid pathway and MEP pathway biosynthesis of Taxadiene takes place. Taxadiene through multistep
enzymatic process leads to the formation of paclitaxel.
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naturally occurring bis-indole alkaloids vinblastine and vincristine, as
well as various semisynthetic equivalents such as vinorelbine,
vinflunine, and KAR-2. Catharanthus roseus yields the alkaloids
vinblastine and vincristine, while Vinca minor yields vincamine.
Semisynthetic derivatives like vindesine, vinorelbine, and vinflunine
are derived from vinblastine and vincristine (Dhyani et al., 2022).
Vinblastine, which is primarily used to manage Hodgkin’s disease, and
vincristine, which is used in tandem therapy tomanage non-lymphoma
Hodgkin’s disease, are both now the subject of several human clinical
trials (Böll et al., 2011; Škubník et al., 2021). Based on their ability to
bind to tubulin, microtubule stabilizing agents can be divided into two
groups: those that bind to taxane sites and those that bind to peloruside/
laulimalide sites. Vinca domain-binding agents, colchicine domain-
binding agents, maytansine site-binding agents, and pironetin site-
binding agents are the four categories of microtubule destabilizing
agents (Zhang and Kanakkanthara, 2020). Vinca alkaloids inhibit
microtubule assembly and cell cycle progression by engaging to α
and ß subunits of tubulin (González-Burgos and Gómez-Serranillos
2021). Vinorelbine exhibits neurotoxic effects despite having a stronger
affinity for mitotic microtubules than the parent chemical, vincristine.
(Milano et al., 2022). Vinblastine and vinorelbine exhibit lower
neurotoxicity than vincristine (Verma et al., 2022).

Testicular cancer, Kaposi sarcoma, renal cell carcinoma,
lymphoma, and breast and testicular cancer are all treated with
vinblastine. One of the main drawbacks of utilizing vinblastine to
treat cancer is white blood cell toxicity (Moudi et al., 2013). For non-
Hodgkin’s lymphoma, vincristine in combination with medications
such as cyclophosphamide, hydroxydaunorubicin, oncovin, and
prednisone, as well as for Hodgkin’s lymphoma treatment,
mechlorethamine, vincristine, procarbazine, and prednisone are
used. The most frequent adverse reactions to vincristine are
peripheral neuropathy, decreased bone marrow function,
constipation, nervous system toxicity, nausea, and vomiting
(Moudi et al., 2013). Vincristine-resistant leukemia and lung
cancer cells could be treated with vindesine (Dhyani et al., 2022).
Although clinical trials are currently being conducted to determine
the effects of neuroprotective medicines against vincristine-induced
neuropathy, there is currently no proven treatment for CIPN (Islam
et al., 2019; Arora & Menezes, 2021). Vincristine, in combination
with other drugs, is under clinical trials for intravascular large B-cell
lymphoma and peripheral T-cell lymphoma. The phase II clinical
study saw positive outcomes for intravascular large B-cell lymphoma
(Table 1). However, in phase II clinical trials, severe toxicities were
seen for peripheral T-cell lymphoma (Škubník et al., 2021).

FIGURE 5
Presumed biosynthetic pathway of parthenolide biosynthesis. Fernesyl diphosphate synthase takes two molecules of isopentenyl pyrophosphate
and 1 molecule of dimenthylally pyrophosphate to form farnesyl diphosphate.
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Structural activity relationship (Supplementary File S4) showed
that the presence of electron-withdrawing groups is essential for the
cytotoxic effect of the compound (Hearn, Shaw, and Myles, 2007;
Zheng et al., 2013; Mazumder et al., 2022). The cytotoxicity of vinca
alkaloids and other chemically synthesizedmolecules was evaluated. It
was found that the IC50 value of these compounds ranges from 0.89 ±
0.07 to 38.22 ± 5.60 mM in theMCF-7 cell line of breast cancer (Table
1). Among all cell lines tested MCF-7 cell line was most sensitive to
chemically synthesized simplified vinca alkaloids. These simplified
alkaloids inhibited tubulin polymerization (Zheng et al., 2013).

Other phytochemical compounds
possessing anticancer activity

Several bioactive compounds possessing anticancer activity have
been extracted from plant sources (Table 1). A phase I clinical trial on
14 patients of prostate cancer by using resveratrol was done for
2–31 months, depending on the patient’s condition. This clinical
study increased prostate-specific antigen doubling time (Paller et al.,
2015). Similarly, a phase II clinical trial was performed on 24 patients
with colorectal cancer by using resveratrol, but this clinical trial resulted
in adverse effects on patients (Popat et al., 2013). Besides these clinical
trials, poor pharmacokinetics appears to be the twomain constraints of
the clinical use of resveratrol (Ren et al., 2021). As histone deacetylase
inhibitors, sulforaphane, pomiferin, isothiocyanates, and isoflavones
stop the activity of proteins that cause cancer (Greenwell & Rahman,
2015). Thymoquinone was tested in a phase I clinical trial on patients
with advanced refractorymalignant disease in Arabia, and it was shown
to be safe and well-tolerated. However, the dosage did not have
anticancer efficacy (Al-Amri & Bamosa, 2009). In phase II
randomized clinical trial, thymoquinone decreased the oral
premalignant lesions (Clinical and Immunohisochemical Evaluation,
2023). Inflammation caused by hepatitis can also lead to hepatocellular
carcinoma. Thymoquinone and bee pollen enhanced liver histology in
an in vitro rat model of fluvastatin-induced hepatitis (Mohamed et al.,
2021). CA-4P (fosbretabulin), a more soluble version of
combretastatin-4, exhibited good outcomes in a clinical trial on
patients with anaplastic thyroid carcinoma (Mustafa et al., 2022).
This water-soluble analog is now in phase II of the clinical trial.
Another combretastatin-4 analog, the serine 32 amide AVE8062
(ombrabulin), is undergoing a phase II clinical trial for advanced
solid tumors in conjunction with taxanes and platinum salts, as well
as a phase II/III clinical trial for patients with advanced soft tissue
sarcoma (Zhao et al., 2015).

Based on phase II randomized clinical research, epigallocatechin-
3-gallate significantly reduced dermatitis from radiation in breast
cancer patients receiving radiotherapy (Zhao et al., 2022). Although
several preclinical studies have demonstrated the efficacy of
epigallocatechin-3-gallate in the treatment of hepatocellular
carcinoma, there is yet to be a clinical trial on actual hepatocellular
carcinoma patients (Bimonte et al., 2019). In vitro studies showed that
the adverse effects of silver nanoparticles on the therapy of Ehrlich
ascetic carcinoma could be reduced by exploiting the antioxidant
properties of green tea extracts (Magdy et al., 2020). Clinical trials
employing homoharringtonine to treat children with acute refractory
myeloid leukemia have been reported; however, these trials were
ineffective. However, there were notable outcomes when

homoharringtonine was used as an induction treatment along with
Ara-C and VP-16 (Chen et al., 2019).

Triptolide also has some potential anticancer efficacy, but its main
drawbacks are its limited absorption, low solubility, and toxicity.
Moreover, much research has yet to be done on how triptolide
affects tumor immune infiltration. Minnelide, an analog of triptolide,
is currently under phase II clinical trial to treat advanced pancreatic
cancer (Noel et al., 2019). Protopanaxadiol is also under Phase I of a
clinical study to treat lung cancer and solid tumors (Asati, 2022).
Although bruceantin has been shown to have anticancer action using
cell cytotoxicity assay, no clinical trials have been conducted as of yet
(Asati, 2022). Roscovitine monotherapy in cancer clinical trials has not
been very promising, although clinical trials using RSV and sapacitabine
in advanced solid tumors are now being conducted (Pandey et al., 2019).

Bio-active principle and their
biosynthetic pathway

Biosynthesis of curcumin

Curcumin is produced in plants via the phenylpropanoid pathway.
Release of NH3 from L-phenylalanine takes place by the enzyme
phenylalanine ammonia-lyase, and Trans-cinnamic acid gets formed.
Cinnamoate-4-hydroxylase participates in the reaction that transforms
trans-cinnamic acid into p-coumaric acid. P-coumaric acid is hydrolyzed
by 4-coumarate-3-hydroxylase into caffeic acid. Although the
transformation of P-coumaric acid to caffeic acid may not be present
in-vivo in Curcuma longa and P-coumaric acid is directly converted to
coumaroyl-CoA by the formation of an activated thioester. Caffeoyl-
CoA O-methyltransferase enzyme acts on different substrates such as
S-adenosyl-L-methionine and caffeoyl-CoA. The end product of these
catalytic reactions is S-adenosyl-L-homocysteine and feruloyl-CoA,
respectively. Diketide-CoA is hydrolyzed into the equivalent ß-keto
acid by the enzyme diketide-CoA synthase (Figure 2). ß- Ketoacid
then gets condensed with feruloyl-CoA by the enzyme curcumin
synthase and curcumin forms. Horinouchi and colleagues first
reported the enzyme curcumin synthase. The enzyme
curcumin synthase couples two molecules of coumaryl-CoA and
one malonyl-CoA from the plant Oryza sativa to form
bisdemethoxycurcumin. Curcumin synthase also catalyzes the
reaction of conversion of ß-Keto acid and coumaryl-CoA to form
Bisdemethoxycurcumin (Rodrigues et al., 2015). Different metabolic
engineering strategies such as deletion of poxB, curA, and adhE genes,
overexpression of acs gene, and inactivation of the fabF gene have helped
improve curcumin’s biosynthesis in a heterologous system (Wu et al.,
2020).

Biosynthesis of epipodophyllotoxin

The Biosynthesis of Epipodophyllotoxin takes place through the
phenylpropanoid pathway. Both phenylalanine and cinnamic acid
are stable precursors for podophyllotoxin biosynthesis (Shah et al.,
2021). Phenylalanine deamination takes place with the help of the
enzyme phenylalanine ammonia-lyase to form cinnamic acid—a
multi-step enzymatic process, including hydroxylation, methyl
transfer, reduction, and dehydrogenation from coniferyl alcohol.
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Two molecules of coniferyl alcohol are combined to form
pinoresinol by the enzyme dirigent protein oxidase (Figure 3).
From pinoresinol, biosynthesis of diverse lignans takes place
through various enzymatic steps. For the synthesis of
epipodophyllotoxin, pinoresinol is subsequently reduced and
dehydrogenated by enzymes pinoresinol, lariciresinol reductase,
and secoisolariciresinol dehydrogenase to form matairesinol.
Deoxypodophyllotoxin is hydroxylated to either podophyllotoxin
or ß peltatin by the enzymes deoxypodophyllotoxin-7-hydroxylase
and deoxypodophyllotoxin-6-hydroxylase, respectively (Yousefzadi
et al., 2010). The steps that lead to the formation of
deoxypodophyllotoxin are not clear.

Biosynthesis of paclitaxel

In plastids, through the methylerythritol phosphate pathway,
pyruvate and D-glyceraldehyde 3-phosphate react in multistep
enzymatic steps to form isopentenyl pyrophosphate and
dimethylallyl pyrophosphate. There is the condensation of three
isopentenyl pyrophosphate molecules with one molecule of
dimethylallyl pyrophosphate. However, the cytosolic mevalonate
pathway also generates precursors such as isopentenyl
pyrophosphate and dimethylallyl pyrophosphate, and the formation
of paclitaxel can be stopped by inhibitors of both processes (Malik et al.,
2011). The cyclization of geranylgeranyl diphosphate (GGPP) to taxa-4
(5), 11 (12) diene4 (taxadiene) is catalyzed by taxadiene synthase, and it
marks the beginning of the taxol biosynthesis process. The tricyclic
structure formed then goes through several oxygenations and
acylations reactions that are region-specific and stereo-specific,
carried out by different cytochrome P450 (cP450) oxygenases and
acyltransferases. Membrane-bound plant cytochrome P450 called
taxadiene-5-Hydroxylase, catalyzes the conversion of taxadiene to
taxadiene-5α-ol (Figure 4). Then taxadiene-13α-hydroxylase leads to
the conversion of taxadiene-5α-ol to Taxadien-5α -13 α-diol. Through a
series of unidentified steps, Taxadien-5α -13 α-diol is converted to 2-
Debenzoyltaxane. Hydroxylation reaction converts 2-Debenzoyltaxane
to 10- Deacylbaccatin III.

ß-PhenylalanineCoA and Baccatin III in the presence of enzyme
baccatin III-13-Ophenylpropanoyl transferase mediate the attachment
of ß-PhenylalanineCoA to taxane core. Further acetylation at the
C10 position produces Baccatin III, and this reaction is catalyzed by
10-deacetylbaccatin III-10-Oacetyltransferse. By hydroxylation of ß-
Phenylalanoyl baccatin III through an unknown c450 enzyme, there is
the formation of N-Debenzoyltaxol. The transfer of the benzoyl group
to core taxane by enzyme 3′ –N-dibenzoyl-2′ –deoxytaxol-N-benzoyl
transferase leads to the formation of the final product paclitaxel
(Phillips et al., 2008; Howat et al., 2014; McElroy & Jennewein,
2018; Göbel et al., 2020).

Biosynthesis of sulforaphane, glucosinolate
and glucoraphanin

Glucoraphanin acts as a precursor for the biosynthesis of
sulforaphane. In the biosynthetic pathway, there are steps where
elongation of the methionine side chain takes place, and other steps
include the formation of glucosinolate and side chain modifications

of glucosinolate (Supplementary File S5). Through multi-enzymatic
steps, methionine gets converted into glucosinolate glucoraphanin.
When a plant is injured, the enzyme ß-thioglucosidase, a
myrosinase, comes into contact with the glucoraphanin and
hydrolyzes it to create the unstable aglucone, which is easily
transformed into the isothiocyanate sulforaphane (Supplementary
File S6). Core significations in sulforaphane structure also take place
through different enzymes in plants. The conversion of methionine
to homomethionine takes place in the chloroplast. Flavin
monooxygenase converts 4-methylglucosinolate into
glucoraphanin (Yagishita et al., 2019; Z. Li et al., 2019;
Janczewski, 2022; Nguyen et al., 2020; Neal et al., 2010).

Biosynthesis of parthenolide

The glandular trichomes in feverfew plant flowers contain
an excessive amount of parthenolide, and its biosynthesis takes
place, presumably by the mevalonate pathway. However, the
compounds produced in a heterologous system were conjugated
parthenolide (Q. Liu et al., 2014). In the mevalonate pathway,
Farnesyl pyrophosphate is formed when two molecules of
isopentenyl pyrophosphate and one molecule of
dimethylallylpyrophosphate react in the presence of Farnesyl
pyrophosphate synthase enzyme. Dimethylallylpyrophosphate
can be reversibly changed into isopentenyl pyrophosphate by
the enzyme isopentenyl diphosphate isomerase. Germarcene A
is formed first, then germacrene A oxidase and Cytochrome
P450 work together in a multi-step process to produce
germacranoic acid (Figure 5). From costunolide final
synthesis of Parthenolide takes place (Majdi et al., 2011;
Agabiti et al., 2017). Identification of essential genes involved
in the biosynthesis of parthenolide in feverfew plants, such as
parthenolide synthase (TpPT), germacrene A synthase
(TpGAS), germacrene A oxidase (TpGAO) and costunolide
synthase (TpCOS) had helped in heterologous expression of
parthenolide in Nicotiana benthamiana through metabolic
engineering strategies.

Biosynthesis of vinca alkaloids

The multistep enzymatic process of tryptamine production
from chorismate involves the shikimic acid pathway.
Anthranilate synthase catalyzes the transfer of the amido
group from glutamine in a two-step process to form
anthranilate. The formation of pyruvate and glutamate takes
place during this reaction. Anthranilate phosphoribosyl
anthranilate transferase catalyzes the transformation of
anthranilate to 5-phosphoribosyl anthranilate by the transfer
of the 5-phosphoribosephosphate group. Through a series of
enzymatic steps, there is the formation of indole glycerol
phosphate takes place. Both α and ß subunits of the
tryptophan synthase enzyme participate in the formation of
tryptophan. The tryptophan synthase α subunit catalyzes the
formation of the indole ring, and the tryptophan synthase ß
subunit adds serine residue to the indole ring, thus forming
tryptophan. Tryptophan decarboxylase is an enzyme involved in
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the decarboxylation reaction that produces tryptamine
(Supplementary File S7). Both Mevalonate and
Methylerythritol phosphate pathways through multistep
enzymatic steps can lead to the formation of geranyl
pyrophosphate. This geranyl pyrophosphate is converted to
geraniol by the enzyme geraniol synthase. NADPH:
cytochrome P450 reductase then acts on geraniol to form 10-
hydroxygeraniol. Secologanin is synthesized through a multistep
enzymatic process mediated by many cytochrome
P450 monooxygenase enzymes, including geraniol 10-
hydroxylase, deoxyloganin 7-hydroxylase, and secologanin
synthase. When the enzyme strictosidine synthase is present,
the reactions between tryptophan and secologanin produce
strictosidine during strictosidine biosynthesis (Supplementary
File S7). Different terpenoid indole alkaloids can be produced
using strictosidine as a precursor. Crystallization of strictosidine
produces strictosamide. Further oxidation-recyclization
reactions lead to the formation of camptothecin
(Sirikantaramas, Yamazaki, and Saito 2013).

Additionally, vinblastine and vindoline are biosynthesized
with strictosidine as a precursor. Through hydroxylation and
acetyltransferase reactions, the formation of vindoline takes
place. Vindoline and catharanthine through acetyltransferase
reaction catalyzed by enzyme Deacetylvindoline 4-O-acetyl
transferase lead to the formation of vinblastine. The product
of vindoline and Catharine coupling is
α3′4′anhydrovinblastine, and further, this product is
converted into vinblastine (Supplementary File S8). This
vinblastine is further converted to vincristine through an
unknown enzyme (Sirikantaramas, Yamazaki, and Saito,
2013; Zhu et al., 2015). The enzyme involved in this process
is unknown.

Biotechnological and metabolic
engineering used to enhance
anticancer compounds production

Heterologous expression of the Nfstr gene in Ophiorrhiza rugosa (a
fast-growing herbaceous plant) leads to enhanced camptothecin
production than non-transformed plants. In India, camptothecin is
extracted from the tree Nothapodytes foetida, and this heterologous
expression system can provide an alternative approach to enhancing
camptothecin production (Singh et al., 2020). Employing these
approaches requires a thorough understanding of the biosynthetic
process and the transcriptional profile of the putative genes involved
in the pathway. Agrobacterium-transformed cells in Nicotiana
benthamiana by gene Mambalgin-1 had significant cytotoxicity
against SH-SY5Y cancer cells (nerve cells). Due to this, it may be
employed as an anticancer agent (Khezri et al., 2020). Therefore,
functional genomics research is essential to understanding how
different genes involved in biosynthetic processes are expressed,
thereby helping identify those genes whose heterologous expression
can enhance the production of beneficial anticancer secondary
metabolites.

There is a sharp inclination toward biotechnological approaches
because of the complexity and expensive methods for chemical
synthesis of Rosmaric acid, which process anticancer, anti-

inflammatory, and anti-angiogenesis properties. The use of elicitors
in tissue culture, shoot culture, callus culture, cell suspension cultures,
optimization methodologies, and bioreactor technologies have all
significantly increased rosmarinic acid production (Swamy, Sinniah,
and Ghasemzadeh 2018). Moreover, using Agrobacterium rhizogenes
strain ATCC15834 to transform the hairy root culture of
Dracocephalum kostchyi and different exposure of iron oxide
nanoparticles enhanced the biomass of hairy roots and hence the
concentration of rosmarinic acid (Nourozi et al., 2019).

Cell suspension cultures of Nothapodytes nimmoniana were
supplemented with elicitors such as chitin, chitosan, pullulan,
glutathione, and jasmonic acid. This study showed that chitin-treated
cell suspension culture had a higher amount of camptothecin with
11.48-fold increases in camptothecin level (Keshavan et al., 2022).
Similar methods in in-vitro cultures are utilized to manufacture
vincristine from Catharanthus roseus and podophyllotoxin from
Podophyllum species in stirred tank bioreactors (Patel et al., 2022).
Endophytic fungal species such as Acremonium, Colletotrichum, and
Fusariumwith hostTaxus baccataproduced paclitaxel. Using pulverized
bark of Taxus baccata as an inducer in a culture medium containing
Acremonium, levels of paclitaxel biosynthesis were enhanced.

Moreover, Acremonium has a BAPT gene that encodes the
protein for paclitaxel biosynthesis (El-Bialy and El-Bastawisy,
2020). By inducing advantageous mutagenesis, those endophytes
can be chosen to endure at higher paclitaxel concentrations. This
means that the synthesis of paclitaxel employing these endophytic
fungi distant from their host plant can be accomplished through
microbial fermentation using a variety of elicitors and inducing
mutagenesis (El-Bialy and El-Bastawisy, 2020).

It is possible to boost the synthesis of paclitaxel by utilizing elicitors
from endophytic fungi (Salehi et al., 2019). Chaetomium globosum
endophytic fungi cell extract was used as an elicitor in the cell
suspension culture of Corylus avellana. Additionally, using
nanoparticles like coronatine in culture media boosts the expression
of genes involved in the generation of taxol, like BAPT and DBTNBT.
Treatment of tissue culture with calix [8]arenes increased the discharge
of paclitaxel into the culture medium, and coronatine increased the
synthesis of paclitaxel. So using coronatine and calix [8]arenes as
elicitors in in-vitro cultures of Taxus media can enhance the levels
of paclitaxel (Escrich et al., 2021). Using A4, A4T, and A8196 strains of
Agrobacterium rhizogenes hairy root phenotype of Curcuma longa
roots was produced with cultures transformed with the A4 strain of
Agrobacterium rhizogenes showed maximum biomass production.
This work used an elicitor like methyl-jasmonate and produced three
curcuminoids, namely curcumin, demethoxycurcumin, and
bisdemethoxycurcumin, with notable outcomes (Sandhya & Giri,
2022). Moreover, yeast extract and salicylic acid also elicit enhanced
curcumin biosynthesis in in-vitro cultures (Lan et al., 2019).

Not only plants but endophytic fungi present in plants also
process anticancer compounds that can be explored through
comparative metabolomics studies (Wei et al., 2020). Cell
components from related endophytic fungi may act as
elicitors and increase the levels of secondary metabolites
obtained from in-vitro cultures (Farhadi et al., 2020). Using
endophytic fungal cell extracts from Catharanthus roseus plants
such as Fusarium solani RN1 and Chaetomium funicola RN3 and
using those extracts as an elicitor in suspension culture
augmented the yield of both vincristine and vinblastine plant
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alkaloid (Linh et al., 2021). Biotic elicitors, such as cell extract
from endophytic fungi such as Alternaria sesami, were also
utilized to boost the levels of alkaloids in the cell suspension
culture of Catharanthus roseus (Birat et al., 2022).

Molecular docking studies for
anticancer compounds from different
plants

The advent of computer-aided drug designing using
conventional molecular docking tools and reverse docking
tools and the amalgamation of structural molecular biology
have carved the path of predicting the binding modes and
binding affinity of ligands with different proteins (Fan et al.,
2019). Different analogs of curcumin were docked with EGFR
receptors. The binding energy of 3,5-Bis (4-hydroxy-3-
methoxystyryl)-1H-pyrazole-1-yl-(phenoxy) ethanone and
3,5-bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(2,4-
dichloro phenoxy)ethanone lied in the range
of −7.778 and −6.003 kcal/mol (Ahsan et al., 2022). Another
study demonstrated the anticancer effects of 20 different
Curcuma longa compounds using an in silico methodology.
Out of these 20 compounds, α-curcumene, curcumin,
curcumenol, curcumin III, and curcumin II showed binding
energy in the range of −5.0 kcal/mol to −7.5 kcal/mol. These
compounds were docked with the EGFR, FGFR, and VEGFR-2
receptors (Kusuma et al., 2022). Similarly, several plant-derived
phytochemicals, anticancer compounds extracted from the
heterologous system, and synthetically and semisynthetically
derived anticancer compounds were docked with the putative
docking receptors to predict their binding modes (Table 2).

Thirteen constituents with good drug-like properties and solid
binding affinity were found through molecular docking studies of
bioactive Ficus carica constituents, with receptors such as CDK-2,
CDK-6, Topoisomerase-I, Topoisomerase-II, Bcl-2, and VEGF-2.
Moreover, ß-bourbonene has a better binding affinity with all the
potential anticancer drug targets (Gurung et al., 2021). MTT assay
on breast cancer cell line revealed that methanolic extract fractions
of plant Clinacanthus nutans having entadamide C and clinamide D
have higher cytotoxic activity than other compounds. Molecular
docking studies using receptor molecules, Caspase-3 binding site,
and ligand as entadamide C and clinamide D showed favorable
binding energy. They can be used as a ligand for Caspase-3 receptors
in breast cancer cells (Mutazah et al., 2020). Molecular docking
studies on Jasminum humile by using two compounds, namely 1-
methoxyjasmigenin and 1-methyl-9-aldojasmigenin, showed that
these compounds could be used as anticancer drugs targeting Mcl-1
(Mansour et al., 2022). Molecular docking studies on Raphia
taedigera seed oil possess compounds like 3-Methoxy-2,3-
dimethylundec-1-ene, which can be used as a target for VEGFR-
2 binding and can be used as an anticancer agent (Umar et al., 2021).

Conclusion and future perspective

In the entire world, cancer continues to be one of the leading causes
of death. Overexpression of oncogenes and down-expression in tumor

suppressor genes are the two types of mutations that lead to cancer. In
the progression of truemalignancy, several mutations in oncogenes and
tumor suppressor genes are required. Immunotherapy, gene therapy,
radiation therapy, chemotherapy, and surgery are some ways to cure
cancer patients. Nowadays, cancer cells have been becoming resistant to
chemotherapies and radiation therapies.

Moreover, there are certain levels of toxicity related to these
plants derived chemotherapeutic drugs. Hence the development of
semisynthetic plant-derived analogs and efficient drug delivery
systems using nanotechnology approaches should be considered.
By limiting our scope to conventional plants that derive anticancer
compounds, other plants should also be checked for their anticancer
properties. Endophytic microbes also possess some genes whose
expression leads to the synthesis of anticancer compounds. This
perspective should also be considered in future research.

Functional genomics, proteomics, and transcriptomics
approaches, along with bioinformatics tools such as computer-
aided drug designing, would help explore the bioactivity of the
newly identified compound and its potential targets.
Furthermore, comprehensive clinical trials are advised to
evaluate the level of toxicity of plant-derived compounds and
to use current pharmacological techniques to lessen their toxicity
and adverse effects on normal cells. Molecular docking tools
would help ascertain the binding energy of a probable anticancer
compound with its receptor and thereby add another compound
to the plant-derived anticancer compound catalog.

Metabolic engineering strategies require the introduction of
various genes of the biosynthetic pathway into the host and the
introduction of enhancer regions so that gene expression can be
enhanced, and precursor feeding is also required. Biotechnology and
heterologous expression studies of biosynthetic genes would help
accelerate anticancer compounds’ production. Functional genomics
and transcriptomics studies would help to point out the putative
functional genes and their expression patterns. Developing
secondary metabolites with anticancer capabilities in cell cultures
is also increased by applying bio-elicitors and chemical elicitors. The
increased generation of secondary metabolites with anticancer
characteristics could benefit from bioreactor optimization measures.
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SUPPLEMENTARY FILE S1
Structural activity relationship of podophyllotoxin

SUPPLEMENTARY FILE S2
Structural activity relationship of paclitaxel

SUPPLEMENTARY FILE S3
Structural activity relationship of parthenolide

SUPPLEMENTARY FILE S4
Structural activity relationship of vinca alkaloids

SUPPLEMENTARY FILE S5
Biosynthetic pathway for the synthesis of aliphatic glucosinolates. Here AT
is branched-chain amino acid aminotransferase, HM is homomethionine
N-monooxygenase, MM is (methylthio)alkanaldoxime N-monooxygenase,
ATL is S-alkyl-thiohydroximate lyase, HBG is N-hydroxythioamide S-beta-
glucosyltransferase, ADS is aromatic desulfoglucosinolate sulfotransferase.
Here X,Y,Z represent unidentified compounds. From methionine to 2-
Oxo-6-methylthiohexanoic acid represent the side chain elongation steps
and from 2-oxo-5-methylthiopentanoic acid to glucoiberverin represent
the glucosinolate core pathway. From 2-oxo-6-methylthiopentanoic acid
to glucoerucin also represent glucosinolate core pathway where synthesis of
glucosinolates takes place. 4-Methylthiobutyl glucosinolate (glucoerucin)
oxidation leads to formation of glucoraphanin (4-Methylsulfonylbutyl
glucosinolate

SUPPLEMENTARY FILE S6
Syntheses of aromatic glucosinolates from Phenylalanine, Tyrosine and
Tryptophan. Glucoraphanin (4-Methylsulfonylbutyl glucosinolate) is
aliphatic glucosinolate and is derived from Methionine. On hydrolysis of
glucoraphanin by myrosinase enzyme sulphoraphene formation takes place.
This process takes place when plant is chewed, mechanically damaged,
digested in the gut

SUPPLEMENTARY FILE S7
Production of tryptamine uses the shikimic acid route. Secologanin’s
production utilizes the MEP route Tryptamine and Secologanin both reacts
in the presence of strictosidine synthase to form strictosidine. Through
multistep biosynthetic process there is formation of camptothecin takes
place

SUPPLEMENTARY FILE S8
Biosynthesis of catharanthine, vinblastine and vindoline from strictosidine
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