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Chimeric antigen receptor T (CAR T)-cell therapy promises to revolutionize the
management of hematologic malignancies and possibly other tumors. However,
the main side effect of cytokine release syndrome (CRS) is a great challenge for its
clinical application. Currently, treatment of CRS caused by CAR T-cell therapy is
limited to tocilizumab (TCZ) and corticosteroids in clinical guidelines. However, the
theoretical risks of these two agents may curb clinicians’ enthusiasm for their
application, and the optimal treatment is still debated. CAR T-cell therapy
induced-CRS treatment is a current research focus. Glycyrrhizin, which has diverse
pharmacological effects, good tolerance, and affordability, is an ideal therapeutic
alternative for CRS. It can also overcome the shortcoming of TCZ and corticosteroids.
In this brief article, we discuss the therapeutic potential of glycyrrhizin for treating CRS
caused by CAR T-cell therapy from the perspective of its pharmacological action.
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1 Introduction

Chimeric antigen receptor T (CAR T) cells, in the simplest form, are T cells that are
genetically engineered with a CAR structure that can recognize a specific antigen on the tumor
cell surface and destroymalignant cells. Over the past decades, significant progress has beenmade
in the development of CAR T-cell therapy. This therapy has initiated a new class of therapies and
gained fresh prominence for antitumor treatment, especially in hematologicmalignancies. Today,
CAR T-cell therapy is a therapy that can cure patients with certain hematologic malignancies,
although oncologists have not used the word “cure” lightly (Freyer and Porter, 2020).

One of the major hallmark challenges associated with almost all CAR T-cell therapies is the
development of cytokine release syndrome (CRS). CRS is a potentially life-threatening systemic
inflammatory response driven by elevations in inflammatory cytokines and chemokines. It is
characterized by flu-like symptoms, hypotension, hypoxia, and even multi-organ failure in severe
cases. The onset latency of CRS is determined by a multitude of factors, and CRS usually occurs
within the first 2 weeks after CAR T-cell administration. Currently, only corticosteroids and
tocilizumab (TCZ, an IL-6 receptor antagonist that blocks IL-6-mediated signal transduction by
inhibiting IL-6 binding to IL-6 receptor and is the only FDA-approved therapy for treating
CART-cell-associated CRS (Si and Teachey, 2020)) are recommended by many national and
international guidelines for the management of CRS (Santomasso et al., 2021; Hayden et al., 2022).
However, the theoretical risks of impairing the function of CAR T cells with the use of
corticosteroids, worsening neurotoxicity with the use of TCZ, and predisposing patients to
infections with the use of either agents may tend to stifle clinicians’ initiative to prescribe these
two drugs though data supporting these risks are relatively limited (Banerjee et al., 2021).
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Contradictory evidence of the lethal effect of corticosteroids on CAR
T cells has been found in different studies (Brentjens et al., 2013; Davila
et al., 2014; Liu et al., 2020a). Nevertheless, it has been demonstrated in
real-world analyses that higher cumulative doses of corticosteroids
exposure, as well as both prolonged and early use of corticosteroids,
were associated with worse overall survival, following CART-cell therapy
(Strati et al., 2021), suggesting that the risk of corticosteroids affecting the
amplification and persistence of CAR T cells is real. IL-6 is mainly
eliminated via IL-6 receptor-mediated clearance, and TCZ treatment
can induce a marked increase in serum IL-6 (Nishimoto et al., 2008).
The transient rise of serum IL-6 can increase the passive diffusion of IL-6
into cerebrospinal fluid (CSF), but TCZ cannot cross the blood–brain
barrier as easily as IL-6 (Nellan et al., 2018). Theoretically, TCZ could
exacerbate cytokine-mediated neurotoxicity by causing an unopposed
increase of IL-6 in CSF. This hypothesis is supported by the fact that
patients who received TCZ treatment for CAR T-cell-related CRS were
more likely to experience neurotoxicity (Frigault et al., 2020). IL-6 is a
pivotal cytokine in the integrated immune response. One of its roles is to
support the host in responding to infections (Rose-John et al., 2017).
Hence, IL-6 receptor antagonist TCZ treatment might increase the risk
of infections, as has been generally observed in corticosteroid therapies.
Corticosteroid therapies can induce complicated infections by
suppressing the immune response and altering host defense (Dale
and Petersdorf, 1973). Although some data suggest that short-term
use of TCZ for CRS will not significantly increase the susceptibility to
infectious complications (Frigault et al., 2020), the use of corticosteroids
is associated with higher rates of infections (Baird et al., 2021). More
importantly, treatment of CRS with TCZ is clinically ineffective in more
than 30%of patients, and corticosteroid-refractory CRS can also develop
in some patients (Pan et al., 2021). Therefore, a novel treatment to
minimize the lethal severity of CRS andmaximize the benefits associated
with CAR T-cell therapy is urgently needed in the clinical setting.

2 Glycyrrhizin and its potential
advantages in the treatment of CRS
induced by CAR T-cell therapy

Glycyrrhizin, also known as glycyrrhizinic acid, is a triterpene
glycoside (saponin) with a molecular formula of C42H62O16 and a
weight of 823 g/mol. It is the main water-soluble component of licorice
root extract and consists of one molecule of glycyrrhetinic acid and two
molecules of glucuronic acid. Glycyrrhizin has been used in China for
more than 4,000 years. It is widely employed to treat a variety of diseases
and conditions because it possesses multiple pharmacological
properties, including anti-inflammation, antioxidative,
immunomodulatory, antiviral, anticancer, and hepatoprotective
effects (Chen et al., 2020; Rehman et al., 2020; Bakr et al., 2022).

The most important pharmacological effect of glycyrrhizin is anti-
inflammation, and its anti-inflammatory actions are similar to those of
glucocorticoids due to the structural similarity of glycyrrhizin with
adrenocortical hormones (Chen et al., 2020). Glycyrrhizin elicits broad-
spectrum anti-inflammatory actions via interacting with various
inflammatory factors and pathways, as shown in Figure 1, which
were summarized in detail by Richard (2021). However, unlike
glucocorticoids that elicit immune-suppressing effects, glycyrrhizin is
expected to enhance the immune response (Li et al., 2011; Soufy et al.,
2012; Xu et al., 2018a). Moreover, unlike glucocorticoids that

preferentially affect T lymphocytes for rapid apoptotic cell death
(Tuosto et al., 1994), glycyrrhizin displays a mild action to slowly
induce the apoptotic death of lymphocytes (Oh et al., 1999).

Some studies suggested that glycyrrhizin can stimulate both T- and
B-lymphocyte proliferation (Chavali et al., 1987; Jiang et al., 2020).
Compared with glucocorticoids, it seems that the negative impact of
glycyrrhizin on the pharmacokinetics/survival of CART cells is extremely
low, and administration of glycyrrhizin will not put the patient into a
condition with a risk of infections. In addition, with its broad-spectrum
anti-inflammatory properties, glycyrrhizin can minimize the rate of
clinical inefficacy when managing CRS, and it should be more
effective than the therapies like TCZ that only target one single
cytokine. No evidence indicates that glycyrrhizin can worsen
neurotoxicity. Therefore, as expected from the established role of
glycyrrhizin, glycyrrhizin could be a promising treatment for CRS
with some distinct advantages over glucocorticoids and TCZ.

3 Broad-spectrum anti-inflammatory
capability forms the cornerstone of
glycyrrhizin in managing CRS induced
by CAR T-cell therapy

In recent years, great progress has been made in exploring the
potential pathophysiology of CRS trigged by CAR T-cell therapies. It is
now generally accepted that CAR T cells are activated following target
tumor cells and then induce the release of various inflammatory factors
such as IFN-γ, TNF-α, which leads to the activation of bystandermyeloid
cell populations (e.g., monocytes, macrophages, and dendritic cells) and
endothelial cells. These cells further promote the rapid production and
secretion of proinflammatory cytokines such as IL-6 and IL-1β that
trigger a cascade reaction and contribute to inflammatory toxicities. Large
amounts of IL-6, in turn, activate the T cells and other immune cells and
then lead to a positive CRS feedback loop (Cobb and Lee, 2021; Cosenza
et al., 2021; Schubert et al., 2021). Therefore, strategies targeted at the
cytokines mentioned previously or that can reduce myeloid and/or
endothelial cell activation may prevent CRS. Numerous studies have
shown that glycyrrhizin can downregulate themRNA expression and the
production of cytokines such as IL-1β, IL-6, TNF-α, and IFN-γ (Ni et al.,
2011; Chen et al., 2017; Yu et al., 2017; Xu et al., 2018a; Sun et al., 2018;
Tian et al., 2019) andmitigate the activation or dysfunction ofmonocytes,
macrophages, dendritic cells, and endothelial cells in a variety of
pathological models (Matsushima and Baba, 1992; Feng et al., 2013;
Wakabayashi et al., 2018; Gowda et al., 2021). Some clinical trials have
confirmed the anti-inflammatory properties of glycyrrhizin (Takeuchi-
Hatanaka et al., 2016; Li et al., 2019; Cao et al., 2020). On a broader aspect,
glycyrrhizin can represent an excellent therapeutic modality for CRS
triggered by CAR T-cell therapies (Figure 2).

4 Suppressing pyroptosis contributes to
glycyrrhizin’s potential therapeutic
effects in managing CRS induced by
CAR T-cell therapy

Recent research conducted by Liu et al. showed that CAR T cells
rapidly activate caspase-3 in human B leukemic cells and other
targeted tumor cells through releasing of perforin/granzyme B and
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leading to pyroptosis of the targeted cells. Consequently, pyroptosis-
released factors activate caspase-1 for gasdermin D (GSDMD)
cleavage in macrophages to stimulate macrophages to produce
proinflammatory cytokines, which may trigger CRS in CAR
T-cell-treated patients (Liu et al., 2020b). However, it was
reported that glycyrrhizin plays a role in inhibiting caspase 1/
GSDMD and suppressing pyroptosis (Hua et al., 2019; Wang
et al., 2020), indicating that it could block the occurrence of CRS
in CAR T-cell treated patients. Moreover, the results from Liu et al.
demonstrated that pyroptosis-released factors, particularly extensive
extracellular adenosine 5′-triphosphate (ATP) and high-mobility
group box 1 (HMGB1), contribute to the release of the CRS-related
cytokine by macrophages (Liu et al., 2020a). ATP activates NACHT,
LRR, and the PYD domain-containing protein 3 (NLRP3)
inflammasome that cleaves caspase-1 in macrophages to promote
the release of IL-1β. HMGB1 may induce IL-6 production in
macrophages after tumor cell pyroptosis through the activation
of mitogen-activated protein kinase (MAPK) and nuclear factor
κB (NF-κB) (Liu et al., 2020b). It has been observed that glycyrrhizin
has efficacy in suppressing the NLRP3 inflammasome and inhibiting
the activation of NF-κB and MAPK signaling pathways (Yao and
Sun, 2019). More importantly, glycyrrhizin itself was frequently used

FIGURE 1
Schematic illustration of the comprehensive anti-inflammatory mechanisms of glycyrrhizin. The figure is drawn based on Figure 1 of Richard (2021).

FIGURE 2
Schematic illustration of the therapeutic benefits of glycyrrhizin
for CRS triggered by CAR T-cell therapy. The figure is drawn based on
Figure 1 of Schubert et al. (2021) and Xiao et al. (2021).
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as an inhibitor of HMGB1. Research has also confirmed that
glycyrrhizin can rescue macrophage activation induced by
multiple etiological factors (Li et al., 2015; Gowda et al., 2021).
These evidences suggest that glycyrrhizin has a potential effect in
regulating CRS during CAR T-cell therapy by intervening in
pyroptosis and/or its cascades (Figure 2).

5 Targeting multiple intracellular
signaling pathways contributes to the
potential therapeutic effects of
glycyrrhizin in managing CRS induced
by CAR T-cell therapy

Several studies have found that the use of small molecule inhibitors,
including ruxolitinib (an inhibitor of Janus kinases 1 and 2) and
itacitinib (a selective Janus kinase 1 inhibitor), may also help prevent
CRS induced by CAR T-cell therapy (Huarte et al., 2020; Pan et al.,
2021; Xu et al., 2022). Strikingly, it was identified that glycyrrhizin could
inhibit the phosphorylation of Janus kinases 1 and 2 and reduce the
activity of the JAK/STAT signaling pathway (Xu et al., 2018b; Wu et al.,
2018). Moreover, recent studies have confirmed that dasatinib can
switch off the cytokine release to reduce the risk of CRS by inhibiting the
SRC family kinase lymphocyte-specific protein tyrosine kinase (LCK)
(Mestermann et al., 2019; Leclercq et al., 2021). SRC family kinases
share a common architecture that underlies a shared regulatory
mechanism (Sicheri and Kuriyan, 1997). It should be noted that
glycyrrhizin could decrease SRC kinase activity reported in a
previous study (Wu et al., 2015), suggesting that it may have a
similar capacity of effectively blocking CRS to dasatinib. These data
indicate that glycyrrhizin holds a great developmental and application
prospect in the treatment of CRS caused by CAR T-cell therapy.

6 Other potential therapeutic benefits
of glycyrrhizin in CAR T-cell therapy

Glycyrrhizin, owing to its antipyretic action, hypertension
activity, and inhibitory effect on airway mucus hyperproduction
(Yanagawa et al., 2004; Nishimoto et al., 2010; Nazari et al., 2017),
could be used as a supportive remedy for the fever, hypotension, and
hypoxia that are the manifestations of CRS. In addition, adverse
events, including immune effector cell-associated neurotoxicity
syndrome (ICANS)/neurotoxicity and opportunistic infections,
are common in CAR T-cell therapy, and they are associated with
CRS (Hill et al., 2018; Ruff et al., 2020). Overwhelming evidence
affirms that glycyrrhizin has beneficial antiviral, antibacterial,
antifungal, and neuroprotective activities (Huan et al., 2021;
Astaf’eva and Sukhenko, 2014; Utsunomiya et al., 1999; Paudel
et al., 2020). These activities make glycyrrhizin a potential agent for
adjuvant or preventive therapy in simultaneously managing other
side effects of CAR T-cell therapy.

It is a general consensus that glycyrrhizin has broad activity
against a wide variety of tumor cell types (Roohbakhsh et al., 2016).
Furthermore, previous reports showed that glycyrrhizin was
tolerated by normal human leukocytes/peripheral blood
mononuclear cells, but it was effective in the treatment of both
chronic myeloid leukemia and lymphoma in vitro or in vivo

(Hibasami et al., 2006; Hostetler et al., 2017). These make
glycyrrhizin an attractive agent for combinational therapy with
CAR T cells in hematological malignancies, raising its value
beyond CRS management. It has been identified that adding a
programmed cell death protein-1 (PD-1) blockade to CAR T-cell
therapy can escalate CAR T-cell function and, to some extent,
improve prognosis and efficacy (Song and Zhang, 2020).
However, it has been reported that PD-L1/PD-1 upregulation can
be mediated by autocrine and paracrine activation of
HMGB1 signaling (Wang et al., 2019; Xu et al., 2021).
Glycyrrhizin, a direct inhibitor of HMGB1, may hold promise for
a similar job as PD-1 blockade when combined with CAR T cells,
reaffirming the superiority of using glycyrrhizin in CAR T-cell
therapy.

7 Discussion

The optimal treatment regimen of CRS caused by CAR T-cell
therapy is still a matter of debate and not well-defined.
Glycyrrhizin is valued for its many pharmacological effects
discussed previously, which make it a promising therapeutic
alternative. It can overcome the shortcomings of the current
mainstream therapeutic strategies (corticosteroids and TCZ)
against CRS. Glycyrrhizin can inhibit almost all factors
responsible for inflammatory reactions (Rehman et al., 2020).
This is a decisive advantage over alternative strategies in CRS
management, including those that can only block or neutralize
IL-1, IL-6, and GM-CSF. That glycyrrhizin is safe, tolerable,
convenient, and affordable adds interest to its clinical
application. Therefore, glycyrrhizin can be preemptively or
even prophylactically used in the early-grade CRS and can be
administered for a longer course. However, the conjecture we
proposed is based on the extensive pharmacological properties of
glycyrrhizin. The clinical efficacy and safety and appropriate
dosage regimens of glycyrrhizin in real-life clinical scenarios
need to be further investigated with well-designed clinical trials.
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