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Introduction

Glucose-6-phosphate dehydrogenase (G6PD, glucose 6-phosphate: NADP (+)
oxidoreductase, EC1.1.1.1.49) enzyme is the first and rate-limiting step in the pentose
phosphate pathway (PPP). G6PD is an allosteric enzyme found in monomer, homodimer,
and homotetramer forms and catalyzes the production of 6-phosphogluconolactone from
glucose-6-phosphate (G6P) (Meng et al., 2022). G6PD maintains the reduction of NADP+

into coenzyme NADPH which is vital for various reductive biosynthetic reactions such as
maintaining reduced glutathione (GSH), protection against reactive oxygen species (ROS),
and detoxification of xenobiotics (B Tandogan, 2011; Gao et al., 2019). NADPH is used by
the glutathione reductase (GR) enzyme to convert oxidized glutathione (GSSG) into reduced
glutathione (GSH) which is one of the most powerful antioxidant molecules in the cell. GSH
is used by glutathione s-transferase (GST) enzyme to detoxify xenobiotics such as
environmental pollutants, drugs, and chemicals used in industrial products (Aydemir
et al., 2018, 2019a; 2019b, 2020a).

G6PD activity is tightly regulated via NADPH/NADP+ ratio, extracellular oxidants, and
posttranslational modifications such as phosphorylation, acetylation, glycosylation,
ubiquitinylation, and glutarylation (Aydemir and Ulusu, 2020a). G6PD is the common
player in glycolysis, gluconeogenesis, PPP, and lipid metabolism; also, overexpression of
G6PD activity is associated with lipid dysregulation, insulin resistance, increased body
weight, and obesity (Park et al., 2005). The increasing incidence of diabetes and obesity is the
leading cause of death, and disabilities worldwide are considered a major public health
problem (Lin et al., 2020). Excessive exposure to industrial products and environmental
pollutants such as processed food and beverages is directly associated with an increased risk
of obesity, metabolic disorders, and diabetes (Bhupathiraju and Hu, 2016). A wide variety of
synthetic chemicals used in industrial products such as cosmetics, pharmaceuticals, food and
beverage packaging, dyes, households, pesticides, and hygiene products interfere with
hormone metabolism altering the endocrine system in humans and wildlife; thus, they
are called endocrine-disrupting chemicals (EDCs) (Metcalfe et al., 2022).

Since EDCs activate peroxisome proliferating activating receptors (PPARs) and exert
adverse effects on hormone metabolism, they dysregulate lipid, glucose, and energy
metabolisms and are referred to as obesogens (Darbre, 2017). People are exposed to
EDCs daily at various concentrations via inhalation, digestion, and dermal route. After
exposure, these chemicals are metabolized by the liver, kidney, gut, and skin esterases;
however, some parts accumulate in the body without metabolizing over time (Aydemir et al.,
2020). On the other hand, administration of phthalate and butylparaben altered G6PD
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activity in various tissues and cells, including the liver, kidney, testis,
brain, breast, and spleen, according to the literature (Table 1)
(Aydemir et al., 2018, 2019b; 2019a, 2020a). Therefore, we
suggest that EDCs can adversely affect the G6PD activity
associated with increased body weight, obesity, metabolic
syndrome, and diabetes.

Impact of EDCs on the G6PD activity via
hormonal regulation

EDCs can be natural or environmental, affecting synthesis,
uptake, or hormone-release mechanism in humans and wildlife
(Autrup et al., 2020). Natural EDCs can be classified as
phytoestrogens and mycoestrogens. Phytoestrogens are the most
prominent group mimicking 17 β-estradiol (E2) hormones that can
bind estrogen receptors. Increased G6PD activity has been reported

in breast cancer cells upon 17 β-estradiol administrations (Monet
JD, 1987; Shin and Koo, 2021). Genistein is found in soybeans as the
primary dietary source of phytoestrogens, and it increases the G6PD
in transgenic mice with lower G6PD activity (Atm-ΔSRI mice) (Zin
et al., 2013; Godschalk et al., 2022).

Ferula assafoetida (“Ferula assa-foetida”) belongs to the
Umbelliferae family containing terpenoids and affects the
estrogen signaling pathway specifically via estrogen receptor α
and estrogen receptor β same as phytoestrogens (Ikeda et al.,
2002). The extracts of Ferula assafoetida and Chinaberry (“Melia
azedarach”) have estrogenic effects, and they cause pregnancy failure
when administered to pregnant rats. On the other hand, these
extracts exhibit inhibitory effects on the G6PD (Keshri et al.,
2004). Saraca asoca (Roxb.) de Wilde, Ashok has estrogenic
effects, which is very popular in India; however, dose-dependent
G6PD activity increased by using this plant’s extracts, according to
the literature (Swar et al., 2017). On the other hand, Epicatechin,

TABLE 1 Impact of the natural and environmental endocrine disrupting chemicals (EDCS) on the G6PD enzyme activity in different species.

Endocrine Disrupting Chemicals (EDCs) G6PD activity Species References

Natural EDCs

Dehydroepiandrosterone (DHEA) ↓ Breast cancer cells Human Song et al. (2022)

17 β-estradiol ↑ Breast cancer cells Human Shin and Koo (2021)

Genistein ↑ Testis Mice Godschalk et al. (2022)

Ferula assafoetida ↓ Uterus Rat Keshri et al. (2004)

Melia azedarach ↓ Uterus Rat Keshri et al. (2004)

Saraca asoca (Roxb.) de Wilde ↓ Blood Rat Swar et al. (2017)

Epicatechin ↓ Pure Enzyme Leuconostoc mesenteroides Camara et al. (2016)

Epigallocatechin ↓ Pure Enzyme Leuconostoc mesenteroides Camara et al. (2016)

Epicatechin gallate ↓ Pure Enzyme Leuconostoc mesenteroides Camara et al. (2016)

Epigallocatechin ↓ Pure Enzyme Leuconostoc mesenteroides Camara et al. (2016)

Testosterone ↑ Muscle Rat Max and Knudsen (1980)

Estradiol ↑ Muscle Rat Max and Knudsen (1980)

Environmental EDCs

Butylparaben ↓ Liver, ↑ Kidney, ↑ Spleen Rat Aydemir et al. (2019)

DEHP ↑ Liver, ↑↓ Kidney Rat Aydemir et al. (2018)

Methoxychlor ↑ Uterus Mice Ghosh et al. (1999)

Bisphenol A (BPA) ↑ Breast cancer cells Human Kim et al. (2003)

4-nonylphenol (NP) ↑ Breast cancer cells Human Kim et al. (2003)

4-octylphenol (OP) ↑ Breast cancer cells Human Kim et al. (2003)

Zinc ↓ Kidney Lamb Tandogan and Ulusu (2006)

Cadmium ↓ Kidney Lamb Tandogan and Ulusu (2006)
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epigallocatechin, epicatechin gallate, and epigallocatechin are found
in green tea and have anticancer and anti-inflammatory properties.
The literature shows they inhibit the G6PD activity (Camara et al.,
2016).

G6PD activity is regulated by various hormones (Stanton,
2012), and its activity is considered an indicator of testosterone
or estradiol levels. It was proven that injection of the indicated
hormones could activate the G6PD activity in a dose-dependent
manner (Max and Knudsen, 1980). Xenobiotics, including
antibiotics, drugs, and EDCs, can interfere with the secretion,
production, metabolism, and transport of estrogen or androgen
hormones affecting the G6PD activity. For instance, BPA,
dichlorodiphenyltrichloroethane (DDTs), polychlorinated
biphenyls (PCBs), and polybrominated diphenyl ethers
(PBDEs) have adverse effects on the estrogenic or androgenic
pathways associated with reproductive disorders (Amir et al.,
2021). Dehydroepiandrosterone (DHEA), androstenolone, is an
endogenous steroid hormone precursor. This hormone is
produced by the brain, gonads, and adrenal glands and is one
of the non-competitive inhibitors of the G6PD in breast cancer
cells (Song et al., 2022). Methoxychlor, an insecticide known as
an EDC and accepted as a xenoestrogen, can activate the G6PD in
mice’s uterus (Ghosh et al., 1999).

Endocrine-disrupting chemicals can cause a
metabolic shift in human and wildlife

EDCs, including bisphenol A (BPA), phthalates,
perfluoroalkyl substances (PFAS), and aluminum, contributes
to obesity via increasing fatty acid storage and appetite (Braun,
2017; Tinkov et al., 2019). EDCs-related obesity may be due to the
downregulation of mitochondrial pyruvate carriers (MPC) since,
in aerobic conditions, MPC transports pyruvate into
mitochondria to be metabolized in the Krebs cycle (Ruiz-
Iglesias and Mañes, 2021). Downregulation of MPC results in
decreased pyruvate levels in the mitochondria, causing a
metabolic shift to the triacylglycerol synthesis associated with
obesity (Chen et al., 2018; Hodges et al., 2022). Hypoxia-
inducible factor 1α (HIF-α) is one of the essential regulators
of the G6PD. EDCs induce HIF-α expression; for instance, BPA
can activate HIF-α and vascular endothelial growth factor
(VEGF) by triggering the G-protein estrogen receptor (GPER)
(Xu et al., 2017; Yang et al., 2021). Both cellular signaling factors,
HIF-α and VEGF, can upregulate the G6PD activity (Leopold
et al., 2003).

Bisphenols can regulate the nuclear factor erythroid 2–related
factor 2 (Nrf2), which controls antioxidant metabolism upon
physiological and pathophysiological outcomes of exposure to
oxidative stress. Nrf2 transcriptionally induces G6PD activity to
upregulate the PPP pathway involved in the antioxidant response of
the cell (Salehabadi et al., 2022; H.-C; Yang et al., 2021). Another
activator of the G6PD Ataxia-telangiectasia mutated kinase (ATM),
a DNA damage-inducible protein kinase that can be activated by
BPA (Tichý et al., 2010; Ganesan & Keating, 2016; Xu et al., 2017).
2,3,7,8-Tedtrachlorodibenzo-p-dioxin (TCDD) is one themost toxic
EDC with dioxin-like properties inducing TGF-beta1-Smad
pathway, oxidative stress, and G6PD activity (Jin et al., 2008; H.-

C; Yang et al., 2021). 17beta-estradiol (E2), 4-nonylphenol (NP), and
BPA induce the G6PD activity in a concentration-dependent
manner in the estrogen-sensitive human breast cancer cell (MCF-
7 cells) (Kim et al., 2003).

BPA administration reduces the G6PD activity in
erythrocytes leading to hemolysis and morphological changes
in the erythrocytes. Thus exposure to EDCs can be life-
threatening in G6PD enzyme-deficient individuals (Trivedi
et al., 2020). On the other hand, the G6PD was used to
explain BPA-mediated diseases in colon cancer cells (SW480),
mammary glands, and Sertoli cells because the G6PD was
accepted as one of the sensitive biomarkers and can be used
for the prediction of BPA-mediated diseases (Ryu et al., 2017).
Butylparaben-induced and phthalate-induced oxidative stress via
altered G6PD activity caused tissue damage in rats’ liver, kidney,
brain, and testis tissue (Aydemir et al., 2020).

Toxic metals such as cadmium lead, silver nitrate, thallium
sulfate, cobalt, nitrate, arsenic oxide, and arsenic, and essential
trace metals copper, nickel, and manganese are found to be
related to G6PD enzyme inhibition and various organ damage
associated with the pathogenesis of multiple disorders
(Tandogan & Ulusu, 2006; 2007). For instance, cadmium and
zinc inhibit the G6PD enzyme in lamb kidneys (Tandogan and
Ulusu, 2006). On the other hand, exposure to various EDCs can
change trace elements’ homeostasis and affect the activity of
antioxidant and detoxification enzymes (Akbay et al., 2004;
Aydemir et al., 2018; Aydemir, Öztaşcı, et al., 2019; Aydemir
& Ulusu, 2020; Anapali et al., 2022). Metals can interfere with the
enzymes’ active site, affect the substrate’s binding to the active
site and cause reversible or irreversible enzyme inhibitions. Since
heavy metals can denature enzymes by disturbing the native state
of proteins’ by destroying secondary and tertiary structures’
disulfide bonds, heavy metal ions are accepted as the most
effective inhibitors of the G6PD. Workplace exposure to heavy
metals such as lead can cause hematotoxicity, hematopoietic
malignancies, and mortality in G6PD-deficient individuals
(Cocco, 1998; Cocco et al., 2006). G6PD is vital for all living
organisms since the detoxification system relies on NADPH
production via G6PD, 6PGD, and IDH enzymes. On the other
hand, individuals with G6PD deficiency are more vulnerable to
various diseases, primarily oxidative stress-induced disorders,
including endocrine, cardiovascular, and metabolic disorders
(Tandogan and Ulusu, 2006; Arese et al., 2012; Aydemir et al.,
2018; 2019b; 2019a; 2020; Aydemir and Ulusu, 2020).

Conclusion

G6PD enzyme is vital for cell proliferation, production of
cellular metabolites, cellular energy, oxidative stress status, and
antioxidant response in the cell. G6PD is the rate-limiting
enzyme of the PPP responsible for NADPH production.
NADPH is vital for various reductive biosynthetic reactions,
such as maintaining reduced glutathione (GSH), protecting
against reactive oxygen species (ROS), and detoxifying
xenobiotics, including drugs, environmental pollutants, and
environmental pollutants and EDCs. G6PD activity is tightly
regulated via NADPH/NADP+ ratio, extracellular oxidants, and
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posttranslational modifications such as phosphorylation,
acetylation, glycosylation, ubiquitinylation, and glutarylation.
Altered G6PD activity is associated with lipid dysregulation,
insulin resistance, increased body weight, and obesity since
G6PD is the common player in glycolysis, gluconeogenesis,
lipid metabolism PPP, and oxidative stress. EDCs are found in
most industrial products, including cosmetics, hygiene products,
food and beverage packages, toys, and medical devices, and these
chemicals interfere with hormone metabolism in humans and
wildlife. Since EDCs activate PPARs and adversely affect
hormone metabolism, they dysregulate lipid, glucose, and
energy metabolisms and are called obesogens. EDCs, including
BP, DEHP, BPA, DDT, cadmium, phytoestrogens, PFAS, TCDD,
silver nitrate, copper, nickel, manganese, arsenic oxide, and
phthalates impair G6PD activity at transcriptional,
translational, and posttranslational levels in human and
wildlife. Therefore, we suggest that EDCs dysregulate oxidative
stress, lipid, and glucose by interfering with G6PD enzyme
activity. Individuals with G6PD deficiency can be vulnerable
to EDCs-induced adverse health effects, including endocrine,
metabolic, and cardiovascular disorders.
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