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Immune cells and immune microenvironment play important in the evolution of
sepsis. This study aimed to explore hub genes related to the abundance of
immune cell infiltration in sepsis. The GEOquery package is used to download
and organize data from the GEO database. A total of 61 differentially expressed
genes (DEGs) between sepsis samples and normal samples were obtained through
the ‘limma’ package. T cells, natural killer (NK) cells, monocytes, megakaryocytes,
dendritic cells (DCs), and B cells formed six distinct clusters on the t-distributed
stochastic neighbor embedding (t-SNE) plot generated using the Seurat R
package. Gene set enrichment analysis (GSEA) enrichment analysis showed
that sepsis samples and normal samples were related to Neutrophil
Degranulation, Modulators of Tcr Signaling and T Cell Activation, IL
17 Pathway, T Cell Receptor Signaling Pathway, Ctl Pathway,
Immunoregulatory Interactions Between a Lymphoid and A Non-Lymphoid
Cell. GO analysis and KEGG analysis of immune-related genes showed that the
intersection genes were mainly associated with Immune-related signaling
pathways. Seven hub genes (CD28, CD3D, CD2, CD4, IL7R, LCK, and CD3E)
were screened using Maximal Clique Centrality, Maximum neighborhood
component, and Density of Maximum Neighborhood Component algorithms.
The lower expression of the six hub genes (CD28, CD3D, CD4, IL7R, LCK, and
CD3E) was observed in sepsis samples. We observed the significant difference of
several immune cell between sepsis samples and control samples. Finally, we
carried out in vivo animal experiments, includingWestern blotting, flow cytometry,
Elisa, and qPCR assays to detect the concentration and the expression of several
immune factors.
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1 Introduction

Sepsis is a common life-threatening syndrome that is a major cause of morbidity and
mortality worldwide (Islam et al., 2019). Sepsis is a condition in which the patient’s ability to
control infection is compromised and the infection continues to spread, leading to multiple
organ failure and even life-threatening disease (Napolitano, 2018). Due to the lack of
effective means to control sepsis, patients with sepsis rapidly deteriorate and die. Even with
the rapid development and use of antibiotics today, the prevalence of sepsis patients is still
slowly increasing with the rise of drug-resistant strains. Sepsis has become a major global
health burden due to rising treatment costs and a significant increase in the length and
number of hospitalizations (Islam et al., 2019). Rapid assessment of sepsis severity and
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mortality risk and timely adjustment of treatment strategies will play
an important role in reducing the overall mortality and cost burden
of sepsis.

Once sepsis occurs, a variety of inflammatory factors, bacterial
products, and other into the bloodstream through various organs.
The basic pathogenesis and mechanism of sepsis are complicated,
especially the immune mechanism plays an important role in the
onset and development of sepsis. For example, apoptosis of immune
cells (T and B lymphocytes) and myeloid-derived suppressor cells
(MDSCs) is a major contributor to the development of
immunosuppression in patients with sepsis (Schrijver et al., 2019;
Cheng et al., 2020). The expression of the chemokine CX3CL1 is
increased in patients with septic shock, while the decrease of its
receptor CX3CR1 is directly associated with poor prognosis (Chen
et al., 2020a). In addition, regulation of immune checkpoints also
plays an important role in sepsis-induced immunosuppression. For
example, increased expression of programmed cell death protein-1
(PD-1) leads to T-cell apoptosis, lymphocytopenia, and impaired
phagocytosis of leukocytes to varying degrees (van der Poll et al.,
2021). Therefore, the role of immune cells and the immune
microenvironment in the development of sepsis. In the
development of sepsis.

During sepsis-induced organ damage, the lung is the first organ
to be affected (Sadowitz et al., 2011). The alveolar epithelium of the
lung tissue is the primary target of harmful substances in the process
of acute lung injury caused by sepsis. Immune factors play a pivotal
role in the development of acute lung injury (Kumar, 2020). Studies
indicate that the primary inflammatory factors involved in acute
lung injury are tumor necrosis factor and interleukin 6. Additionally,
neutrophils are also known to have a crucial function in the initial
stages of the injury. The interaction between different cells and
factors triggers a cascade of inflammatory responses through a
positive feedback mechanism, leading to a waterfall effect that
damages and destroys the lung tissue. Consequently, the ability
to resist microbial attack is compromised, rendering this the most
critical aspect of acute lung injury.

The human immune system constantly faces the challenge of
combatting diverse pathogenic invaders. Infection is the outcome of
complex interactions between pathogenic microorganisms and
human immune cells. The transmission rate of pathogenic
microorganisms is influenced by multiple factors, including
environmental conditions, pathogen-host interactions, and the
host immune cell response mechanism (Chen et al., 2020b). The
application of single-cell sequencing (scRNA-seq) technology to
analyze blood, sputum and other infected tissues of patients has
demonstrated its efficacy in elucidating the immune landscape and
corresponding signaling pathways during infection. Moreover, this
technology enables the discovery of novel immune cell subsets and
biomarkers connected to infectious diseases (Cho et al., 2020;
Darden et al., 2021; Wang et al., 2021). Immune cells play a
crucial role in initiating host defenses against pathogenic
infections. The immune cell atlas provides an overview of
immune cell structure under specific conditions, either
physiological or infectious, and crucial insights into the
pathogenesis of infectious diseases. Single-cell sequencing
technology has simplified and standardized the construction of
immune cell maps, enabling the identification of global immune

cell changes that occur during infections (Han et al., 2020; Wilk
et al., 2020; Zhang et al., 2020; Li et al., 2021; Ren et al., 2021).

2 Materials and methods

2.1 Data download and data preprocessing

We used GEOquery package of R software (version 4.0.0,
http://rproject.org/) (Davis and Meltzer, 2007) to download the
expression profile of reliable sample source for patients with
sepsis-induced lung injury (SILI) from GSE28750 dataset from
GEO database (https://www.ncbi.nlm.nih.gov/geo/) (Sutherland
et al., 2011). The chip platform was based on the GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array,
and the samples in the dataset were all derived from Homo
sapiens. There was a total of 10 sepsis samples and 20 normal
samples in GSE28750 dataset. We read the original data of
GSE28750 by “affy” package (Gautier et al., 2004), obtained
the gene expression matrix of the data set, and normalized the
data by “limma” package. Setting species as H. sapiens, the single
cell sequencing (scRNA-seq) of sepsis was downloaded from
Single Cell Portal database (https://singlecell.broadinstitute.
org/single_cell). The Seurat R package (Version 4.0) was used
to process single-cell data, and 29 samples were included to create
Seurat objects for our analysis (Butler et al., 2018; Stuart et al.,
2019; Hao et al., 2021; Stuart et al., 2021). We used the
doubletFinder_v3 function to remove the two-cell effect and
the LogNormalize method to normalize the data. After
controlling for the relationship between average expression
and dispersion, highly variable genes were identified in
individual cells. Whereafter, variable genes were identified as
inputs, Principal Component Analysis (PCA) were carried out
and significant principal components based on the ElbowPlot
function were finally identified (Supplementary Figure S1).
According, the “elbow criterion,” the first 15 principal
components were selected as statistically significant inputs of
the t-Distributed Neighbor Embedding (t-SNE).

2.2 Differentially expressed genes screening

We selected differentially expressed genes (DEGs) of
GSE28750 through the limma package (Ritchie et al., 2015). The
ggplot2 package was used to map the volcano of DEGs (Ito and
Murphy, 2013) and the pheatmap package was used to map the
heatmap of DEGs (Ito andMurphy, 2013) to display the distribution
of DEGs. In addition, we used the removeBatchEffect function in the
limma package to remove the batch effect and DEGs met the
requirements of the adj.p.value < 0.05 and |log2FC|>1. We
downloaded and collated lists of immune-related genes from
Pubmed and MSigDB databases, and then manually searched the
original literature and reviews containing these genes (Reyes et al.,
2020). Finally, after excluding extraneous genes and adding other
reported genes, DEGs of sepsis were screened out and intersected
with immune-related genes to obtain immune-related differentially
expressed genes (IRDEGs).
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2.3 Analysis of single cell clustering and
annotation

First, we used the FindClusters function to cluster the cells and
identify the cell types of the clusters.In order to verify the annotation
of single cell, HumanPrimaryCellAtlasData was used to annotate the
cell types through SingleR (Version 1.8.1) (Aran et al., 2019). In
order to annotate cells more accurately, we sorted out marker genes
of all kinds of cells according to previously published literature to
identify cell types, and further searched for differential marker genes
among cell subsets.

2.4 Trajectory analysis for cell subsets

Cell differentiation was inferred using the Monocle package of R
(version 2.22.0) (Trapnell et al., 2014). An integrated gene
expression matrix from each cell type was first exported from the
Seurat object to Monocle to construct the cell data set. We used the
variable genes defined by dispersionTable function and then
sequenced the cells using the setOrderingFilter function. Finally,
the Darter method was used for dimensionality reduction, and the
orderCells function was used to estimate the arrangement of cells
along the trajectory. Based on the clustering characteristics and
marker gene analysis, the differentiation time locus of cell subsets in
single cell data set was obtained.

2.5 Gene set variation analysis

Gene set variation analysis (GSVA) is a non-parametric,
unsupervised algorithm (Hänzelmann et al., 2013). We analyzed
the data based on the GSVA package (version 1.42.0) of R. GSVA

algorithm transformed gene expression data from the expression
matrix of a single gene as a feature to the expression matrix of a
specific gene set as a feature (Hänzelmann et al., 2013). The gene set
corresponding to each feature was calculated using rank statistics
similar to K-S test, and the expression matrix was converted into
Enrichment Score (ES) matrix for feature (Hänzelmann et al., 2013).
GSVA enrichment score corresponding to each sample for each
feature could be obtained, which would facilitate further statistical
analysis (Hänzelmann et al., 2013).

2.6 Mice for in vivo animal experiments

In an animal experiment, 40 male C57BL6 mice aged
6–8 weeks were employed (Purchased from Guangdong
Medical Laboratory Animal Center). After 7-day adaptive
feeding, these rats were divided into four groups: sham group
(n = 10), sham + anti-IL-7 group (n = 10), sepsis group and sepsis
+ anti-IL-7 group (n = 10). The rats in sepsis group were
anesthetized by isoflurane, and a 1-cm midline incision was
made along the abdominal line. The abdominal cavity was
then opened layer by layer to find the ileum. A tight ligature
was made at 1 cm from the distal end of ileum, and two punctures
were made 0.5 cm away from the distal end with a 7-gauge needle.
A small amount of feces was squeezed into the abdominal cavity.
The ileum was placed back to its normal position in the
abdominal cavity and the abdomen was then closed in two
layers. After the operation, 1 mL of pre-heated physiological
saline was injected subcutaneously to each mouse for fluid
supplementation, and 10 mg/kg of tramadol hydrochloride was
injected subcutaneously as an analgesic. It was injected once
every 12 h within 48 h after the operation. Except for the blind
intestinal ligation and perforation, the other operations were the

FIGURE 1
The overall technical route of this study.
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same as those of the surgical group in the sham operation
group. 48 h later, the septic rats showed symptoms of
depression, decreased activity, and decreased appetite. After
the modelling was completed, IL-7 (2.5 μg/day) was
administered i.p. daily for 5 days, and death was performed on
the sixth day. The spleen tissues were collected after the mice
were sacrificed. Recombinant human IL-7 was purchased from
Abcam Company and diluted with sterile distilled water. The
animal experiments were performed following the National

Institutes of Health Guide for the Care and Use of Laboratory
Animals and approved by the Animals Care and Use Committee
of Sun Yat-sen University (Guangzhou, China).

2.7 Western blotting assays

We extracted proteins from the spleen of mice. Tissue samples
were lysed in RIPA buffer adding protease and phosphatase

FIGURE 2
Data standardization and immune-related gene screening. (A) Heat map for GSE28750. Blue represents the control group and red represents the
sepsis-induced lung injury (SILI) group. (B)Volcano map for GSE10474. Red represents upregulated differential genes, blue downregulated differential
genes, and black represents undifferentiated genes. (C)Venn diagram showing intersection for differential genes of sepsis and immune-related genes. (D)
tSNE diagram for single cell samples of sepsis. 0–15 representing different cell clusters. (E) tSNE diagram for single cell samples with different colors
representing T cells, B cells, Mono cells, Megakaryocyte cells, NK cells, and DC cells respectively. (F) Single cell heat map of differentially expressed genes,
with red representing highly expressed genes and blue representing low-expressed genes.
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inhibitors. Protein concentrations of the supernatants were
determined after centrifugation using BCA Protein Assay Kit
(Beyotime). We performed Western blotting assays according to
the following steps: 1) Proteins were separated by electrophoresis on
NuPAGE® 4%–12% Bis-Tris Gel (Invitrogen, Life Technologies) for
40 min at 200 V and transferred onto polyvinylidene difluoride
(PVDF) membranes (Invitrogen, Thermo Fisher; 30 V, 1 h); 2)
The membranes were blocked with Blocking Solution of the
Western Breeze® Chromogenic Western blot Immunodetection
Kit (Invitrogen, Thermo Fisher) for 30 min on a rotary shaker at
room temperature; 3) The membranes were then incubated
overnight at 4°C with the following primary antibodies: GAPDH
(ProteinTech, Wuhan, China, 1:5000), IL-7R (Abcam, 1:1000), and
CD4 (Abcam, 1:1000). Goat anti-rabbit IgG or goat anti-mouse IgG
(Invitrogen) were used as the secondary antibodies; 4)Target
proteins were visualized by Molecular Imager ChemiDoc XRS
System (Bio-Rad) with super Electro-Chemi-Luminescence (ECL)
plus kits (Beyotime); 5) The protein bands were analyzed with
Image-Pro Plus 6.0 software (Media Cybernetics); 6) Relative
protein expression levels were expressed as the ratio of the band
intensity of the target protein to that of GAPDH.

2.8 Apoptosis quantifying

Apoptosis was quantified by flow cytometry using the TUNEL
assay. Flow cytometric analysis (50,000–100,000 events/sample) was
per_x0002_formed on FACScan. Tissues were then rinsed with PBS
and treated with a TUNEL reaction mixture according to the kit
instructions. After rinsing in PBS, the converter-POD was added to
the tissue, covered with a glass slide or sealing film, and reacted in a
dark wet box for 30 min.

2.9 Elisa assays

The procedure Elisa (Invitrogen, Thermo Fisher) assays
procedure were roughly as follows: dilute the corresponding
protein with a coated solution, seal the enzymic label plate with
plastic film, and place overnight in a 4°C refrigerator. The enzymic
label plate was evenly wrapped at room temperature, washed with
PBST lotion for 3 times, added BSA sealer, sealed with plastic film,
and placed in a 37°C water bath for 1 h. They were incubated with
primary and secondary antibodies successively, washed with PBST
lotion for 3 times, and added TMB and 3% H2O2 at 37°C for 10 min

of dark color development. Add H2SO4 to terminate the color
rendering. Then, the optical density (OD) of each well was measured
at the wavelength of 450 nm by enzyme-labeled instrument.

3 Results

3.1 Flow chart for our study

We first drew up the overall technical route of this study, which
was shown in Figure 1.

3.2 Data standardization and immune-
related gene screening

The data of DEGs were summarized and sorted out according to
GEO data platform, and the data of the analyzed sepsis samples and
normal samples were compared. We removed the probes
corresponding to multiple molecules from one probe, and when
the probes corresponding to the same molecule were encountered,
only the probe with the largest signal value was retained. After data
preprocessing for GSE28750, a total of 21,655 molecules were
filtered, of which 1198 molecules met |log2(FC) |>1 and
p.adj<0.05. Under the above threshold (|log2(FC) |>1 and
p.adj<0.05), compared with the control group, 599 genes were
upregulated, and 599 genes were downregulated in the sepsis
group. We used R software to extract the mutual differentially
expressed genes from the gene expression matrix, as shown in
the heat map (Figure 2A) and volcano map (Figure 2B). We
manually searched the original literature and reviews containing
immune-related genes, excluded irrelevant genes and added other
reported genes, and intersected them with the list of differentially
expressed genes with p-value less than 0.05, thus obtaining a total of
64 genes, as shown in the Venn diagram (Figure 2C). For the
unsupervised analysis, we plotted the single-cell transcriptome on
t-distributed Stochastic Neighbour Embedding (tSNE) diagram
(Figures 2D, E). T cells, NK cells, Mono cells, Megakaryocyte
cells, DC cells, and B formed six separate clusters on the tSNE
diagram (Figure 2E). Single-cell differential expression analysis
(SCDE) identified the genes that are differentially expressed
between different cell types (Figure 2F).

3.3 GSEA enrichment analysis of
GSE28750 dataset

To identify differences in biological processes between sepsis
samples and normal samples, based on gene expression profile data
from the GSE28750 dataset, we carried out gene set enrichment
analysis (GSEA) using R packages (Table 1; Figures 3A–F). GESA
results showed that sepsis samples and normal samples were related
to the biological phenomena as below: Neutrophil Degranulation
(Figure 3A), Modulators of Tcr Signaling and T Cell Activation
(Figure 3B), IL 17 Pathway (Figure 3C), T Cell Receptor Signaling
Pathway (Figure 3D), Ctl Pathway (Figure 3E), Immunoregulatory
Interactions Between A Lymphoid and A Non-Lymphoid Cell
(Figure 3F).

TABLE 1 The primer sequences in PCR analysis.

Symbol Sequences (59-39)

IL-7R-F TTGGACTTCCTCCCCTGATCC

IL-7R-R TCGATGCTGACCATTAGAACAC

CD4-F TGCCTCAGTATGCTGGCTCT

CD4-R GAGACCTTTGCCTCCTTGTTC

GAPDH-F GGAGCGAGATCCCTCCAAAAT

GAPDH-R GGCTGTTGTCATACTTCTCATGG
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3.4 Enrichment analysis for immune-related
genes and single cell

We performed GO analysis of immune-related genes, the results
showed that intersection genes were mainly associated with T cell
receptor binding, immune receptor activity, SH2 domain binding,
signaling receptor complex adaptor activity, chemokine activity and
other biological phenomena (Figure 4A). The results showed that
intersection genes were mainly associated with T cell receptor
binding, immune receptor activity, SH2 domain binding,

signaling receptor complex adaptor activity, chemokine activity
and other biological phenomena. The results of KEGG analysis
showed that intersection genes were enriched in Primary
immunodeficiency, Hematopoietic cell lineage, PD-L1 expression
and PD-1 checkpoint pathway in cancer, T cell receptor signaling
pathway, PD-L1 expression and PD-1 checkpoint pathway in
cancer, T cell receptor signaling pathway, and Cytokine-cytokine
receptor interaction pathways (Figures 4B, C). Single-cell GSVA
analysis showed that the function of immunorelated cells in sepsis
was mainly enriched in ABC transporters, Acute myeloid leukemia,

FIGURE 3
GSEA enrichment analysis of GSE28750 dataset. (A) GSEA enrichment analysis of data sets in Neutrophil Degranulation. (B) GSEA enrichment
analysis of data sets in Modulators of Tcr Signaling and T Cell Activation. (C)GSEA enrichment analysis of data sets in IL 17 Pathway. (D)GSEA enrichment
analysis of data sets in T Cell Receptor Signaling Pathway. (E) GSEA enrichment analysis of data sets in Ctl Pathway. (F) GSEA enrichment analysis of data
sets in Immunoregulatory Interactions Between A Lymphoid and A Non-Lymphoid Cell.
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Adherens Junction, Adipocytokine Signaling Pathway, Alanine
Aspartate and Glutamate Metabolism (Figure 4D). Finally, we
identified the key genes to be mainly concentrated in T cells after
Aucell scoring, Ucell scoring, ssgsea scoring and singscoring
(Supplementary Figure S2).

3.5 Hub genes screening based on PPI
network of immune-related genes

We used STRING tool to conduct protein-protein interaction
(PPI) analysis for immune-related genes and visualized the number
of interactions between each immune-related gene. The larger the
genes involved, the larger the degree of nodes, and the thicker the
lines, the larger the number of betweenness (Figure 5A).
Subsequently, we utilized the Maximal Clique Centrality (MCC),
Maximum neighborhood component (MNC), and Density of
Maximum Neighborhood Component (DMNC) algorithms based
on cytoHubba plug-in of Cytoscape software to screened seven hub
genes (Figures 5B–E). Intersection of hub genes screened by the
above three algorithms was selected and the screening results
described the seven hub genes as CD28, CD3D, CD2, CD4, IL7R,
LCK and CD3E (Figures 5B–E).

3.6 Differential analysis of hub gene

We visualized the expression values of the other six hub genes
except CD2 in the dataset GSE28750 and showed the differences
(Figures 6A–F). The results showed the expression level of CD3D
(Figure 6A), CD3E (Figure 6B), CD4 (Figure 6C), CD28 (Figure 6D),
IL7R (Figure 6E), and LCK (Figure 6F) was statistically different
between sepsis and normal groups. The lower expression of the hub
genes was observed in sepsis samples, which was consistent in all the
six hub genes (Figures 6A–F).

3.7 Immunoinfiltration analysis of sepsis
using GSE28750 dataset

Based on CIBERSORT algorithm, the immune cell infiltration
analysis was conducted on the sepsis samples and control samples in
the GSE28750 data, and the proportion of immune cells in each
sample was analyzed to obtain the proportion of 22 kinds of immune
cells in the sepsis samples and control samples (Figure 7A). Further,
we carried out an intergroup comparison of 22 types of immune cells
between sepsis samples and control samples (Figure 7B). We
observed the significant difference of B cells naïve, plasma cells,

FIGURE 4
Enrichment analysis for immune-related genes and Single cell. (A) Chord plot for enrichment analysis of GO biological function. Blue, yellow and
green respectively represent different enrichment functions, while red represents p-value. The darker the color, the smaller the p-value. (B) Bar graph for
KEGG pathway enrichment analysis. The x-horizontal axis represents the proportion of enriched genes, and the color of the bar represents the p-value:
the redder the color, the smaller the p-value, and the bluer the color, the larger the p-value. (C)Dot plot for KEGG pathway enrichment analysis. The
X-axis represents the proportion of enriched genes, and the darker the color, the smaller the p-value. (D) Visualization of GSVA pathway for Single cell.
Red squares represent negative correlation, blue squares represent positive correlation.
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T cells CD8, T cells CD4 naïve, T cells CD4 memory resting, T cells
CD4 memory activated, T cells gamma delta, NK cells resting,
Monocytes, Macrophages M0, Eosinophils, Neutrophils cells
between sepsis samples and control samples (Figure 7B). Further,
the correlation between hub genes and immune cells were analyzed
according to gene expression and the abundance of corresponding
immune cells, and the interaction relationship was visualized. It
could be seen that IL7R was negatively correlated with T cells
CD4 memory activated (Figure 7C), while positively correlated
with T cells CD4 memory resting (Figure 7D) and T cells CD8
(Figure 7E). LCK was negatively correlated with T cells
CD4 memory activated (Figure 7F), while positively correlated

with T cells CD4 memory resting (Figure 7G) and T cells CD8
(Figure 7H).

3.8 Trajectory analysis for T cells

According to 3.4 analysis results showed that the differential
gene score in T cells was higher. Next, we were able to capture the
differentiation of T cells into Memory T cells, NK T cells, CD4+

T cells, CD8+ T cells, Th T cells and Treg T cells (Figure 8A) in the
Trajectory analysis for T cells. The results of pseudotime analysis
were displayed in Figures 8B–E.

FIGURE 5
Hub genes screening based on PPI network of immune-related genes. (A) Protein-protein interaction (PPI) analysis based on STRING tool.
Cytoscape software was used for visualization. The larger the genes involved, the larger the degree of nodes, and the thicker the lines, the larger the
number of betweenness. (B) Top ten hub genes (LCK, CD3E, CD4, CD3D, CD274, IL7R, ZAP70, CD2, CCL5, and CD28) screened based onMNC algorithm.
(C) Top ten hub genes (CD4, ZAP70, CD2, FYN, CD28, GZMA, LCK, CD3E, IL7R, and CD3D) screened based onMCC algorithm. (D) Top ten hub genes
(CD79A, CD7, GPR29, ZAP70, TCF7, TRAT1, FYN, MAP4K1, SKAP1, LAT) screened based onDMNC algorithm. (E) Intersection of hub genes screened by the
above three algorithms.
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3.9 In vivo animal experiments

We found that the cell counts of CD4 T cells were highest in
sham group while lowest in sepsis group (Figure 9A). IL-7

antibody treatment could increase the counts of CD4 T cells
(Figure 9A), which may be the cause of increased apoptosis
(Figure 9B). The concentration of IFN-γ in peripheral blood
were lowest in sepsis group and IL-7 antibody treatment could

FIGURE 6
Differential analysis of hub gene. (A) Expression difference of CD3D in GSE28750 between sepsis group and control group. (B) Expression difference
of CD3E in GSE28750 between sepsis group and control group. (C) Expression difference of CD4 in GSE28750 between sepsis group and control
group. (D) Expression difference of CD28 in GSE28750 between sepsis group and control group. (E) Expression difference of IL7R in GSE28750 between
sepsis group and control group. (F) Expression difference of LCK in GSE28750 between sepsis group and control group. *p < 0.05; ppp < 0.01; pppp <
0.001.
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increase the concentration of IFN-γ (Figure 9C). The
concentration of IL-6 in peripheral blood were highest in
sepsis group and IL-7 antibody treatment could decrease the
concentration of IL-6 (Figure 9D). IL-7 antibody treatment could
increase the concentration of IL-10 (Figure 9E). The
concentration of TNF-γ in peripheral blood were highest in
sepsis group and IL-7 antibody treatment could decrease the
concentration of TNF-α (Figure 9F). The concentration of IL-7R
in peripheral blood were highest in sepsis group and IL-7
antibody treatment could decrease the concentration of IL-7R
(Figure 9G). IL-7 antibody treatment could also decrease the
expression of IL-7R and CD4 (Figures 9H–J).

4 Discussion

The imbalance of inflammatory response is the basis of sepsis,
which runs through the whole process of sepsis. Pathogens that
cause inflammation include bacteria, fungi, parasites, etc. The initial
acute host response to an invasive pathogen usually manifests as
macrophages engulfing the pathogen and producing a series of
cytokines that trigger a cytokine storm and activate the innate
immune 255 system (Hotchkiss et al., 2013; Rimmelé et al., 2016;
Cai et al., 2020; Nedeva, 2021). Studies have shown that preventing
lymphocyte apoptosis can improve the survival rate of patients with
sepsis (Zhu et al., 2012). The harm of apoptosis is not only related to

FIGURE 7
Analysis and visualization of immune cell infiltration. (A) Proportion of immune cell infiltration in GSE28750 data set. (B) Box diagram of immune cell
infiltration in GSE28750 data set. Red was the sepsis group and blue was the control group. (C–F)Correlation between hub genes and immune cells. IL7R
was negatively correlated with T cells CD4 memory activated (C). IL7R was positively correlated with T cells CD4 memory resting (D). IL7R was positively
correlated with T cells CD8 (E). LCK was negatively correlated with T cells CD4 memory activated (F). LCK was positively correlated with T cells
CD4 memory resting (G). LCK was positively correlated with T cells CD8 (H).
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the serious loss of immune cells, but also related to the effect of
uptake of apoptotic cells on surviving immune cells (Zhu et al.,
2012). Our data showed that the cell counts of CD4 T cells were
highest in sham group while lowest in sepsis group (Figure 9A). IL-7
antibody treatment could increase the counts of CD4 T cells
(Figure 9A), which may be the cause of increased apoptosis
(Figure 9B). However, in sepsis, apoptosis of neutrophils is
delayed in contrast to that of other lymphocytes, where apoptosis
is accelerated (Hazeldine et al., 2017). Dendritic cell showed obvious
apoptosis in sepsis. The number of circulating and spleen dendritic
cell and the percentage of spleen area occupied by dendritic cell were
significantly reduced in postmortem reports of patients with sepsis
(Hotchkiss et al., 2002). However, the loss of dendritic cell was more
serious in the patients with sepsis death than in the survivors, and in
the patients with sepsis in the later stage, not only the number of

dendritic cell decreased, but also the ability of surviving dendritic cell
antigen presentation, the expression level of HLA-DR decreased,
and the secretion of IL-10 increased. Our research showed that IL-7
antibody treatment could increase the concentration of IL-10 in
peripheral blood. Uptake of apoptotic cells by monocytes,
macrophages and DC promotes the production of interleukin-10
(IL-10) by inducing the proliferation of non-functional cells, leading
to immune tolerance (Luan et al., 2014). Our data showed that IL-7
antibody treatment could increase the concentration of IL-10
(Figure 9E). Therefore, immune cells play a key role in immune
response and maintenance of immune balance during sepsis.
Understanding the changes and mechanisms of different immune
cell populations in sepsis may bring new ideas for the treatment of
sepsis. For instance, myeloid-derived suppressor cellsn (MDSC) are
reported to be elevated in patients with sepsis (Ost et al., 2016;

FIGURE 8
Trajectory analysis for T cells. (A) tSNE diagram for T cells. T cells differentiate into Memory T cells, NK T cells, CD4+ T cells, CD8+ T cells, Th T cells
and Treg T cells. (B–E) Pseudotime analysis for T cells.
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Mathias et al., 2017). MDSC is produced in response to various
inflammatory and infectious stimuli. The most important feature of
MDSC in sepsis is its immunosuppressive function. MDSC reduces
innate and acquired immune responses by producing
immunosuppressive substances and inhibiting the proliferation

and activation of T cells (Mathias et al., 2017). Currently, the
biomarkers of various infectious diseases are very limited, but the
emerging single cell sequencing (scRNA-seq) technology greatly
facilitates the identification of disease-related biomarkers. For
example, MX2 of naive B cells and CD163 and IFIT1 of

FIGURE 9
In vivo animal experiments. (A) The cell counts of CD4 T cells. (B) The apoptosis of CD4 T cells. (C) The concentration of IFN-γ. (D) The concentration
of IL-6. (E) The concentration of IL -10. (F) The concentration of TNF-α. (G) The concentration of IL-7R. (H) The expression of IL-7R. (I) The expression of
CD4. (J) Western blot assays.
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CD14+CD16+ monocytes in peripheral blood of dengue patients
were significantly upregulated before onset of dengue fever,
indicating that these genes with significantly altered expression
levels have the potential to be biomarkers for predicting dengue
disease (Zanini et al., 2018). Cai et al. found that CD3−CD7+GZMB
+ NK cell subpopulation can be used as a new biomarker to identify
patients with active tuberculosis and monitor treatment response
(Cai et al., 2020). Hence, in current infectious disease research,
single-cell transcriptome sequencing may be used to monitor the
gene expression patterns associated with specific infections, which
can reveal more candidate biomarkers for diagnosis and prognosis
of infectious diseases (including sepsis). In this study, using single-
cell transcriptome sequencing, we carried out hub genes screening
based on PPI network of immune-related genes, and seven hub
genes (including CD28, CD3D, CD2, CD4, IL7R, LCK, and CD3E)
were screened utilizing three algorithms (Maximal Clique
Centrality, Maximum neighborhood component, and Density of
Maximum Neighborhood Component). We also found that the
expression level of CD3D (Figure 6A), CD3E (Figure 6B), CD4
(Figure 6C), CD28 (Figure 6D), IL7R (Figure 6E), and LCK
(Figure 6F) was statistically different between sepsis and normal
groups, indicating their potential role in the development of sepsis.

Sepsis has always been an important clinical problem. Early
identification and timely treatment are of great significance for
sepsis. Currently, there are many sepsis related survival
prediction models. For example, an overexpression of
PD⁃1 based on a single immune checkpoint in regulatory
T cells predicts the prognosis of patients with sepsis, and its
ability to validate 28-day mortality in patients with sepsis
(AUC = 0.792) (Jiang et al., 2020). However, the pathogenesis
of sepsis is complicated, especially the immune mechanism. In
our study, we observed the significant difference of B cells naïve,
plasma cells, T cells CD8, T cells CD4 naïve, T cells CD4 memory
resting, T cells CD4 memory activated, T cells gamma delta, NK
cells resting, Monocytes, Macrophages M0, Eosinophils,
Neutrophils cells between sepsis samples and control samples
(Figure 7B). The lower expression of the hub genes (CD3D,
CD3E, CD4, CD28, IL7R and LCK) was observed in sepsis
samples, which was consistent in all the six hub genes
(Figure 6). This study still has certain limitations.
Bioinformatics methods were used to explore the hub gene
and immune cell infiltration in sepsis, but external cohort
verification was not conducted, so the accuracy of external
cohort verification conclusions could be increased in the
future. In addition, further experiments are needed to verify

the roles and associations of sepsis related genes, signaling
pathways and immune cells discussed in this paper.
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