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Increasing evidences suggest that miRNAs play a key role in the occurrence and
progression of many complex human diseases. Therefore, targeting dysregulated
miRNAs with small molecule drugs in the clinical has become a new treatment.
Nevertheless, it is high cost and time-consuming for identifying miRNAs-targeted
with drugs by biological experiments. Thus, more reliable computational method for
identification associations of drugs with miRNAs urgently need to be developed. In
this study, we proposed an efficient method, called GNMFDMA, to predict potential
associations of drug with miRNA by combining graph Laplacian regularization with
non-negative matrix factorization. We first calculated the overall similarity matrices
of drugs and miRNAs according to the collected different biological information.
Subsequently, the new drug-miRNA association adjacency matrix was reformulated
based on the K nearest neighbor profiles so as to put right the false negative
associations. Finally, graph Laplacian regularization collaborative non-negative
matrix factorization was used to calculate the association scores of drugs with
miRNAs. In the cross validation, GNMFDMA obtains AUC of 0.9193, which
outperformed the existing methods. In addition, case studies on three common
drugs (i.e., 5-Aza-CdR, 5-FU and Gemcitabine), 30, 31 and 34 of the top-50
associations inferred by GNMFDMA were verified. These results reveal that
GNMFDMA is a reliable and efficient computational approach for identifying the
potential drug-miRNA associations.
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1 Introduction

Most of the human genes can be transcribed, but more than 98% of genes cannot encode
proteins (only about 1.5% can encode proteins) (Carninci et al., 2005). In human tissues, some
non-coding RNAs (ncRNAs) can regulate life activities by affecting genes and epigenetics.
According to whether the length of ncRNA exceeds 200 nucleotides (nts), ncRNAs can be
divided into long non-coding RNA (lncRNA) and short non-coding RNA (sncRNA) (Batista
and Chang, 2013). MicroRNA (miRNA) is a type of small ncRNAs with about 22nts that is
widely discovered in human beings, animals and plants (Wheeler et al., 2013). miRNAs perform
post-transcriptional gene regulation by silencing gene expression (He andHannon, 2004). Since
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the discovery of the first miRNA in 1993 in the Caenorhabditis
elegans, more and more miRNAs have been discovered in various
organisms (Wightman et al., 1993). Up to now, based on the recently
updated miRBase (v22), there are 2,656 miRNAs reported and
annotated in human beings (Kozomara et al., 2018). MiRNAs are
not only highly conserved among different species, but also have
temporal and tissue specificity in expression (Berezikov et al., 2006). In
human tissues, More than 30% of human genes can be up-regulated or
down-regulated by miRNA, and the number of target genes regulated
by one miRNA even exceeds 200 (Sui et al., 2013). Research evidences
suggest that miRNAs are widely participated in physiological
processes and pathological, such as cell development,
differentiation, proliferation and apoptosis, etc., (Bartel, 2004; You
et al., 2017; Wang et al., 2019a). Clinical studies have confirmed that
the occurrence and development of many complex diseases are closely
related to the abnormal expression of some specific miRNAs,
including tumor, neurological disorders, immune-related and
cardiovascular (Rupaimoole and Slack, 2017; You et al., 2017; Peng
et al., 2022). For example, the expression levels of miR-210, miR-221
and let-7d are up-regulated in invasive carcinoma and down-regulated
in ductal carcinoma in situ (Di Leva et al., 2015). The expression of
miR-21 is obviously up-regulated in liver cancer, breast cancer and
other malignant tumors. MiR-21 negatively regulates the expression of
the tumor suppressor gene PTEN to enhance the invasion and
proliferation of liver cancer cells. Therefore, miRNAs have
attracted increasing attention of researchers as diagnostic
biomarkers and potential therapeutic targets for complex human
diseases.

Small molecule drug is an organic compound with a small
molecular weight (less than 1,000 Daltons) (Dougherty and Pucci,
2011). Most drugs are small molecule, among commonly used drugs,
the number of small molecule drugs accounts for about 98% of the
total (Krzyzosiak et al., 2018). Because of good drug-forming
properties and drug metabolism, small molecule drugs are helpful
to regulate biological processes (Krzyzosiak et al., 2018). Currently,
proteins are as the main targets of drug in clinical medical treatment
(Hopkins and Groom, 2002; Huang et al., 2018). However, only 10%–
15% of human proteins with expression functions are thought to be
associated with diseases (Dixon and Stockwell, 2009). In addition,
among these disease-associated proteins, many molecules cannot be
combined with drugs due to the lack of unique structures, which
means that they cannot be targeted (Dixon and Stockwell, 2009; Wang
et al., 2018). In other words, the number of protein-targeted of drugs is
still very limited. Existing drugs actually only target about 0.05% of the
human genome (Santos et al., 2017). In recent years, scientists have
begun to look for new drug targets, such as lncRNA and miRNA. The
number of targets will become very plentiful if lncRNAs and miRNAs
can be as targets for drugs. Nowadays, studies have discovered that
miRNAs can be targeted by drugs and have received increasing
attentions (Jiang et al., 2012; Huang et al., 2021). Jiang et al.
constructed a correlation diagram between drugs and miRNAs in
human cancers, and confirmed that some of miRNAs can be inhibited
by drugs (Jiang et al., 2012). For example, clinical trials have confirmed
that SPC349 can inhibit miR-122 in hepatitis C viruses (Lanford et al.,
2010). Additionally, in the breast cancerMCF-7 cells, the expression of
miR-21 can be reduced by the use of Matrine (Li et al., 2012).
Therefore, in-depth study of drug-miRNA associations is not only
conducive to the discovery of new drugs, but also to the repositioning
and resistance researches of existing drugs (Huang et al., 2020; Shen

et al., 2022). Since the identification of drug-miRNA associations
through biological experiments is time-consuming and costly, more
accurate and efficient computational approaches for revealing their
associations are imperative.

Based on the assumption that similar drugs tend to be related with
similar miRNAs, some computational methods have been proposed to
identify drug-miRNA associations, including Random Walk with
Restart algorithm, Rotation Forest, and Graph Representation
Learning, etc., Lv et al. developed a novel computational model to
comprehensively infer the unknown associations of drug with miRNA
by using Random Walk with Restart algorithm on the bipartite
network (Lv et al., 2015). Guan et al. proposed a computational
method of Graphlet Interaction based inference for drug-MiRNA
association (GISMMA) (Guan et al., 2018). This method used
Graphlet Interaction consisting of 28 isomers to describe the
complex associations between two drugs or two miRNAs. The
drug-miRNA association score is calculated by counting the
numbers of graphlet interaction in miRNA similarity network and
drug similarity network. Li et al. developed a new computational
model based on network framework to infer miRNAs as potential
biomarkers of anticancer drugs (SMiR-NBI) (Li et al., 2016a). This
method implemented a network-based algorithm by constructing a
heterogeneous network that connected genes, miRNAs and drugs. Yin
et al. developed a computational approach using heterogeneous graph
inference and sparse learning to discover associations of drug with
miRNA (SLHGISMMA) (Yin et al., 2019). SLHGISMMA decomposes
the adjacency matrix of drug-miRNA using sparse learning, and
reconstructs heterogeneous graph for predicting. Qu et al.
developed a triple layer heterogeneous graph method to discover
drug-miRNA potential relationships (TLHNSMMA) (Qu et al.,
2018). This method used an iterative update algorithm to transmit
information through the constructed heterogeneous network. Wang
et al. proposed a new computational model based on random forest
(RFSMMA) (Wang et al., 2019b). The model of RFSMMA uses
machine learning algorithms to infer drug-miRNA associations by
integrating multiple similarities between drugs and miRNAs.
Although many calculation methods have been proposed, as of
now, these existing methods are still unsatisfactory for predicting
drug-miRNA associations. In fact, drug-miRNA associations
inference can be regarded as a recommender task (Huang et al.,
2017; Wang et al., 2022a). Recent studies suggest that non-negative
matrix factorization (NMF) has been effectively used for data
representation in recommendation systems (Lee and Seung, 1999;
Jiang et al., 2015), especially in the field of bioinformatics (Wang et al.,
2021a; Wang et al., 2021b). Therefore, we turn the drug-miRNA
association prediction into recommender system task and utilize NMF
to discover potential associations between them.

In this work, we propose a new approach, GNMFDMA, to infer
drug-miRNA potential associations by combining graph Laplacian
regularization with non-negative matrix factorization. In our method,
the similarity of drug needs to be measured by combining drug
chemical structure similarity, drug side effect similarity, disease-
phenotype similarity and gene-functional consistency similarity.
The similarity of miRNA was measured by merging disease-
phenotype and gene-functional consistency. In addition, we
constructed the graph space of drug and miRNA using K-nearest
neighbors, which guides the matrix factorization process so that
similar drugs (miRNAs) are sufficiently close in the graph
space (Cai et al., 2010; Huang et al., 2016). We performed five-fold
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cross-validation to assess the performance of GNMFDMA, and
compared it with SMiR-NBI (Li et al., 2016a), SLHGISMMA (Yin
et al., 2019), TLHNSMMA (Qu et al., 2018) and RFSMMA (Wang
et al., 2019b). The experiment results demonstrated that the proposed
method of GNMFDMA outperformed other methods of comparison.
In the case studies for three common drugs, 5-Aza-CdR, 5-FU and
Gemcitabine, 30, 31 and 34 out of the top 50 associations inferred were
verified by experimental literatures, respectively. These results further
suggest that GNMFDMA is an efficient model in revealing drug-
miRNA potential associations.

2 Materials and methods

2.1 Methods overview

In this work, a new computational model called GNMFDMA is
developed to predict associations of drug with miRNA. The
GNMFDMA approach can be summarized into the following three
steps (See Figure 1). First, the similarity matrix of drugs is constructed
according to the drug chemical structure similarity, indication
phenotype similarity of drug, drug side effect similarity and gene
functional consistency similarity of drug. The similarity matrix of
miRNAs is constructed based on gene functional consistency and
disease indication phenotype similarity of miRNA. Second, to extend
GNMFDMA to novel drugs and miRNAs, we use weighted K nearest
neighbor profiles to re-construct the drug-miRNA association
adjacency matrix. Finally, graph Laplacian regularization
collaborative standard non-negative matrix factorization is utilized
to discover drug-miRNA potential associations.

2.2 Construct the similarity networks of drug
and miRNA

In order to infer potential associations of drug with miRNA using
non-negative matrix factorization, we construct the drug-drug
interaction network and miRNA-miRNA interaction network by
integrating the four categories of drug-drug similarities and two
categories of miRNA-miRNA similarities, respectively. Besides,
drug-miRNA association network is constructed using the known
drug-miRNA association pairs.

In this work, the verified 664 drug-miRNA associations were
obtained from the SM2miR database, which can be accessible at
http://bioinfo.hrbmu.edu.cn/SM2miR/ (Liu et al., 2012). In the
664 known associations, 831 drugs obtain from PubChem (Wang
et al., 2009), DrugBank (Knox et al., 2010), and SM2miR; 541 miRNAs
collect from PhenomiR (Ruepp et al., 2010), HMDD (Lu et al., 2008),
miR2Disisease (Jiang et al., 2008), and SM2miR databases. However,
there are some drugs and miRNAs without any known association
information. For this reason, these drugs andmiRNAs are deleted, and
the duplicated entries are also removed. After screening, the drug-
miRNA association network with 664 different associations is
constructed for prediction, including 39 drugs and 286 miRNAs
(See Table 1). Based on the drug-miRNA association network, the
original association adjacency matrix Y ∈ Rn×m is defined, where m

FIGURE 1
Overall framework of GNMFDMA for inferring potential drug-miRNA associations.

TABLE 1 The dataset used in GNMFDMA for prediction.

Dataset Drugs MiRNAs Associations Sparsity (%)

39 286 664 5.59
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and n represent the number of miRNAs and drugs, respectively. The
element value Y(i, j) is set to one if drug d(i) is confirmed to be
associated with miRNA m(j), otherwise it is 0.

Previous studies have shown that similarities based on chemical
structure (Hattori et al., 2003), indication phenotype (Gottlieb et al.,
2011), side effect (Gottlieb et al., 2011) and gene functional
consistency (Lv et al., 2011) are effectively tools to infer the
relationships between drugs. In this work, to avoid the bias of
single similarity measurement and contribute the discovery of new
interactions, four types of drug similarity were integrated according to
the model of Lv et al. (2015). The four types of drug similarity are drug
chemical structure similarity, disease indication phenotype similarity
of drug, drug side effect similarity and gene functional consistency
similarity of drug, respectively (Lv et al., 2015). We use matrix Sdg to
represent the drug similarity information based on gene functional
consistency. The element Sdg(i, j) of matrix Sdg is the functional
consistency similarity of drug d(i) and drug d(j). At the same
time, Sdc , S

d
s and S

d
d denote the similarity matrices based on chemical

structure, side effect and disease indication phenotype,
respectively. For each pair of drugs, four types of similarity are
combined to calculate the overall similarity as follows:

SD � ω1S
d
c + ω2Sdd + ω3Sdg + ω4Sds
ω1 + ω2 + ω3 + ω4

(1)

where the weight value ω1,ω2,ω3 and ω4 are assigned as 1,
respectively. The size of SD is n × n, The element SD(i, j) denotes
the similarity of drug d(i) with drug d(j).

The similarity of miRNA is constructed in this work using the
model proposed by Lv et al. (2015), which is based on disease
indication phenotype similarity of miRNA and gene functional
consistency similarity of miRNA, respectively (Gottlieb et al., 2011;
Lv et al., 2011). Smd and Smg denote disease indication phenotype
similarity of miRNA and gene functional consistency similarity of
miRNA. Then, we calculate the overall similarity of miRNA by
integrating the two types of similarity Smg and Smd as follows:

SM � σ1Smd + σ2Smg
σ1 + σ2

(2)

where the weight value σ1 and σ2 are assigned as 1, respectively. The
size of SM is m × m, the element SM(i, j) is the similarity of miRNA
m(i) with miRNA m(j).

2.3 Weighted K nearest known neighbors
(WKNKN)

Let D � d1, d2,/, dn{ } and M � m1, m2,/, mm{ } are the set of n
drugs and m miRNAs. The ith row vector Y(di) � (Yi1, Yi2,/, Yim)
and the jth column vector Y(mj) � (Y1j, Y2j,/, Ynj) of matrix Y
denote the interaction profiles of drug di and miRNAmj, respectively.
For a novel drug without any known associated miRNAs or a novel
miRNA without any known associated drugs, there are no interactions
in their profiles. In fact, many of unknown drug-miRNA association
pairs (or 0’s) in Y could be potential true associations, which may
result in a higher false positive rate and reduce prediction
performance. In order to address this problem, a preprocessing
step (WKNKN) is performed to construct new interaction profiles
based on their known neighbors.

For each drug dl, all other drugs are ranked in descending order on
the basis of their similarity to dl. Then, the new interaction profile for
drug dl is obtained based on their corresponding interaction profiles of
the K known drugs nearest to dl (Ezzat et al., 2017):

Yd dl( ) � 1
∑1≤ i≤KS

D di, dl( )∑
K

i�1θiY di( ) (3)

where θi � αi−1*SD(di, dl) is the weight coefficient, a larger θi
represents that di and dl are more similar. α ∈ [0, 1] is a decay
term. The same procedure for miRNA, for each miRNA mp, the
new interaction profile can be defined as follows:

Ym mp( ) � 1

∑1≤ j≤KS
M mj,mp( )∑

K

j�1θjY mj( ) (4)

Similarly, all other miRNAs are ranked in descending order according
to their similarity to mp. θj � αj−1*SM(mj,mp) is the weight
coefficient.

Then, we merge the two matrices of Yd and Ym, and replace Yij �
0 with the associated likelihood score. Finally, the novel drug-miRNA
association adjacency matrix is obtained:

Y � max Y, Ydm( ) (5)
where

Ydm � Yd + Ym

2
(6)

2.4 Sparse similarity matrices

Based on the spectral graph and manifold learning theories that
the nearest neighbor graph can maintain the local geometry of the
original data points, and the sparseness technique of similarity
matrix has been successfully applied in graph regularization (Cai
et al., 2010; You et al., 2010; Li et al., 2016b). At the same time, the
drugs and miRNAs located in the same cluster often have more

FIGURE 2
The ROC curves of GNMFDMA for drug-miRNA association
prediction under 5-CV.
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similar functions. Thus, we calculate the affinity graphs (SD*; SM*)
for drug space and miRNA space using p-nearest neighbor. Then,
the weight matrix of drug is defined according to the drug similarity
matrix SD as follows:

GD
ij �

1 i ∈ Np dj( )&j ∈ Np di( )
0 i ∉ Np dj( )&j ∉ Np di( )
0.5 otherwise

⎧⎪⎪⎨⎪⎪⎩ (7)

where Np(di) and Np(dj) are the sets of p-nearest neighbors of drug
di and drug dj, respectively. Finally, the sparse similarity matrix SD*

for drugs is calculated as:

∀i, j, SD*
ij � SDijG

D
ij (8)

Similarly, the sparse similarity matrix SM* for miRNAs is
calculated as follows:

∀i, j, SM*
ij � SMij G

M
ij (9)

2.5 The model of GNMFDMA

Non-negative matrix factorization (NMF) method has been
effectively applied for data representation. NMF decomposes
an original matrix into two non-negative matrices whose
product is as equal to the original matrix as possible. At the
same time, it can also achieve the purpose of dimensionality
reduction. In this work, NMF is used to decompose the drug-
miRNA association adjacency matrix Yn×m into Wk×n; Hk×m

(k<min (m, n)), and Y � WTH. The problem of drug-miRNA
association prediction can be expressed by the following objective
function:

min
W,H

Y −WTH




 



2F s, t. W≥ 0, H≥ 0 (10)

where ‖ · ‖2F is the Frobenius norm and k is the subspace
dimensionality. However, in the Euclidean space, the intrinsic
geometrical of the drug or miRNA space cannot be discovered by
standard NMF (Wang et al., 2022b). To prevent overfitting and

TABLE 2 The AUC values of GNMFDMA and four compared methods in 5-CV.

Methods GNMFDMA SMiR-NBI SLHGISMMA TLHNSMMA RFSMMA

AUC 0.9193 0.7104 0.7724 0.8168 0.8389

TABLE 3 The average sensitivity, precision, accuracy and F1-Score obtained by GNMFDMA.

Fold Sen.(%) Pre.(%) Acc.(%) F1-score(%) AUC

1 77.44 83.74 81.20 80.46 0.9155

2 78.20 83.87 81.58 80.93 0.9117

3 81.95 84.50 83.46 83.21 0.9252

4 77.44 83.74 81.20 80.46 0.9123

5 79.54 84.00 82.20 81.71 0.9230

Average 78.91 ± 1.90 83.97 ± 0.32 81.93 ± 0.95 81.35 ± 1.16 0.9193 ± 0.0089

The bold values represent the average and standard deviation for each column.

FIGURE 3
The comparison of original association adjacency matrix (left) and the prediction association matrix (right).
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enhance generalization capability of the model, the graph
Laplacian regularization terms and Frobenius norm
regularization terms (Tikhonov L2) are introduced to the
standard NMF. The graph Laplacian regularization can ensure
local invariance for data space (Cai et al., 2010). Here, we use
graph Laplacian regularization to ensure close miRNAs or drugs
to be adequately close to each other in miRNA or drug
corresponding space. In addition, the Frobenius norm
regularization terms are utilized to guarantee the smoothness
of W andH. Therefore, the objective function of GNMFDMA can
be transformed into:

min
W,H

Y −WTH




 



2F + λ ∑n

i≤ j�1 wi − wj





 



2SD*
ij +∑m

i≤ j�1 hi − hj




 



2SM*

ij( )
+ β W‖ ‖2F + H‖ ‖2F( ) s, t. W≥ 0, H≥ 0

(11)
where β and λ represent the sparseness constraint coefficient and
regularization coefficient, respectively. wi and hj are the ith and jth
columns of W and H, respectively.

Rd � ∑n

i≤ j�1 wi − wj





 



2SD*
ij

� ∑n

j�1w
T
j wj∑n

i,j�1S
D*
ij −∑n

i,j�1w
T
i wjS

D*
ij

� ∑r

j�1w
T
j wjDjj −∑r

i,j�1w
T
i wjS

D*
ij

� Tr WDdW
T( ) − Tr WSD*WT( ) � Tr WLdW

T( ) (12)
and

Rm � ∑m

i≤ j�1 hi − hj




 



2SM*

ij � Tr HLmH
T( ) (13)

here, Tr(·) denotes the trace of matrix. Rd and Rm are the graph
Laplacian regularization terms. Ld � Dd − SD* is graph Laplacian
matrix of SD*, Lm � Dm − SM* is graph Laplacian matrix of SM*,
respectively (Liu et al., 2014). Dd and Dm are the diagonal
matrices, Dd(i, i) � ∑n

l�1SD *
il and Dm(j, j) � ∑m

p�1SM*
jp . Eq. 11 can

be expressed as follows:

min
W,H

Y −WTH




 



2F + β W‖ ‖2F + H‖ ‖2F( )
+ λTr WLdW

T( ) + λTr(HLmH
T)

� Tr(YYT) + Tr(WTHHTW) − 2Tr(YHTW)
+ βTr WTW( ) + βTr HTH( ) + λTr WLdW

T( ) + λTr HLmH
T( )
(14)

2.6 Optimization of GNMFDMA

To minimize Eq. 14, we introduce Lagrange multipliers method to
solve this problem. Let Lagrange multipliers ψ � φki{ } and Φ � ϕkj{ }
to ensure wki ≥ 0 and hkj ≥ 0. The corresponding optimization
function F of Eq. 14 is formularized as:

F � Tr(YYT) + Tr(WTHHTW) − 2Tr(YHTW) + βTr(WTW)
+ βTr HTH( ) + λTr WLdW

T( ) + λTr HLmH
T( ) + ψTr WT( )

+ ΦTr HT( )
(15)

The partial derivatives of F for W and H are:

zF
zW

� 2HHTW − 2HYT + 2βW + 2λWLs + ψ (16)
zF
zH

� 2WWTH − 2WY + 2βH + 2λHLm + Φ (17)

Then, the Karush–Kuhn–Tucker (KKT) condition φkiwki � 0;
ϕkjhkj � 0 are used in Eq. 16 and Eq. 17 (Facchinei et al., 2014).
We can obtain the following Equations:

HHTW( )kiwki − HYT( )kiwki + βW( )kiwki

+ λW Dd − SD*( )[ ]kiwki � 0
(18)

WWTH( )kjhkj − WY( )kjhkj + βH( )kjhkj + λH Dm − SM*( )[ ]kjhkj � 0

(19)
Thus, the updating rules for wki and hkj can be obtained as

follows:

wki ← wki
HYT + λWSD*( )ki

HHTW + βW + λWDd( )ki (20)

hkj ← hkj
WY + λHSM*( )kj

WWTH + βH + λHDm( )kj (21)

Updating wki and hkj with Eq. 20 and Eq. 21 untilW andH reach
the following convergence conditions:

∀i, w l+1( )
i − w l( )

i





 



2F ≤ 10−4 (22)
∀j, h l+1( )

j − h l( )
j





 



2
F
≤ 10−4 (23)

Ultimately, the predicted drug-miRNA associations adjacency
matrix Y* is calculated by Y* � WTH. The elements of matrix Y*
are regarded as the drug-miRNA association predicted scores. For
each drug-miRNA pair, all the miRNAs are sorted in descending order
based on the predicted scores. In theory, the top ranked miRNAs in
predicted matrix Y* are more possible to be related to the
corresponding drug.

FIGURE 4
The ROC curves of GNMFDMA* for drug-miRNA association
prediction under 5-CV.
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3 Results

3.1 Experimental settings

To systematical evaluate the performance of GNMFDMA, we
carry out five-fold cross-validation (5-CV) experiments on SM2miR
database and compare it with four state-of-the-art predictors: SMiR-
NBI (Li et al., 2016a), SLHGISMMA (Yin et al., 2019), TLHNSMMA
(Qu et al., 2018) and RFSMMA (Wang et al., 2019b). Specifically, in
the framework of five-fold cross-validation, 664 known drug-miRNA
association pairs are randomly divided into five equal subsets. Four
subsets of them are taken in turn as the training samples to train the
prediction model, and the remaining one subset is regarded as the test
sample. In this work, the AUC values (the area under the ROC curve)
are used to assess the prediction performance of various models.
AUC = 0.5 represents randomly prediction, whereas AUC =
1 represents that the prediction performance of the method is perfect.

In this paper, the parameter values are chosen by 5-CV
experiment on the training dataset. GNMFDMA has the
following five parameters, the neighborhood size K and decay
value α are chosen from 1, 2, 3, 4, 5{ } and
01, 0.2, 0.3,//, 0.9, 1{ } when the adjacency matrix is
reformulated, respectively. For non-negative matrix
factorization, three parameters are subspace dimensionality k,
regularization coefficient λ and sparseness constraint coefficient
β, whose combinations are regarded from the following values:
k ∈ 15, 20, 25, 30, 35{ }, λ ∈ 0.2, 0.6, 1, 2{ } and
β ∈ 0.002, 0.02, 0.2, 0.6{ }. According to previous studies (Cai
et al., 2010), let p � 5 when constructing the graph spaces
for drug and miRNA. In order to more fairly comparison with
previous methods, the parameters in other methods are all taken
the optimal values recommended by authors. Finally, the
parameters optimized values of our model are K � 3, α � 0.9,
k � 35, λ � 1 and β � 0.02.

TABLE 4 The top-50 miRNAs related to 5-Aza-CdR are predicted by GNMFDMA.

Rank MiRNA Evidence Rank MiRNA Evidence

1 hsa-mir-125b-1 26198104 26 hsa-mir-212 26693054

2 hsa-mir-18a unconfirmed 27 hsa-mir-199a-2 30651148

3 hsa-mir-125b-2 26198104 28 hsa-mir-128–2 unconfirmed

4 hsa-mir-181a-2 26198104 29 hsa-mir-197 unconfirmed

5 hsa-mir-203a 26577858 30 hsa-mir-129–2 26081366

6 hsa-mir-19b-1 unconfirmed 31 hsa-mir-345 21665895

7 hsa-mir-19a 26198104 32 hsa-mir-181b-1 unconfirmed

8 hsa-mir-20a 26198104 33 hsa-mir-326 unconfirmed

9 hsa-mir-17 26198104 34 hsa-let-7a-1 unconfirmed

10 hsa-mir-181a-1 26198104 35 hsa-mir-329–1 unconfirmed

11 hsa-mir-324 unconfirmed 36 hsa-mir-133a-1 unconfirmed

12 hsa-mir-342 unconfirmed 37 hsa-mir-132 26675712

13 hsa-mir-320a 26198104 38 hsa-mir-187 unconfirmed

14 hsa-mir-328 23991164 39 hsa-mir-26a-1 unconfirmed

15 hsa-mir-16–1 26198104 40 hsa-mir-145 27364572

16 hsa-mir-155 26198104 41 hsa-mir-181b-2 unconfirmed

17 hsa-mir-27a 26198104 42 hsa-mir-217 24,350,829

18 hsa-mir-24–1 26198104 43 hsa-mir-202 unconfirmed

19 hsa-let-7c 24704393 44 hsa-mir-409 unconfirmed

20 hsa-mir-21 26198104 45 hsa-mir-125a 26198104

21 hsa-mir-27b 26198104 46 hsa-mir-372 unconfirmed

22 hsa-mir-339 unconfirmed 47 hsa-mir-373 21785829

23 hsa-let-7d 26802971 48 hsa-mir-186 30793488

24 hsa-let-7b 26708866 49 hsa-mir-211 unconfirmed

25 hsa-mir-154 26672991 50 hsa-mir-346 unconfirmed

Note: 5-Aza-CdR’s Compound ID (CID) in PubChem is 451668.
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3.2 Performance evaluation

The performance of GNMFDMA is evaluated by comparing
with the previous computational models: SMiR-NBI,
SLHGISMMA, TLHNSMMA and RFSMMA. For the above
methods, we all use 5-CV to evaluate their performance.
Figure 2 draws the ROC curves of GNMFDMA, Table 2 displays
the AUC values of all compared approaches. The AUC values of
GNMFDMA, SMiR-NBI, SLHGISMMA, TLHNSMMA and
RFSMMA are 0.9193, 0.7104, 0.7724, 0.8168 and 0.8389,
respectively. GNMFDMA achieves the best performance, which
are 20.89%, 14.69%, 10.25% and 8.04% higher than the other four
computational methods, respectively.

Additionally, in order to calculate the ratio of exact identifications
in the predicted results, sensitivity (Sen), accuracy (Acc), precision
(Pre) and F1-Score are widely applied to measure the model
performance.

Sen. � TP

TP + FN
(24)

Pre. � TP

TP + Fp
(25)

Acc. � TN + TP

TN + TP + FN + Fp
(26)

F1 − Score � 2 × Pre. × Sen.
Pre. + Sen.

(27)

Here, when given a cutoff value, TP and FP denote the number of
true positive samples and false positive samples, whose prediction
scores higher than cutoff value; TN and FN are the number of true
negative samples and false negative samples, whose prediction scores
lower than cutoff value. In this work, the threshold of specificity is set
85% to calculate sensitivity, accuracy, precision and F1-Score,
respectively. Table 3 exhibits the sensitivity, accuracy, precision,
and F1-Score by GNMFDMA under 5-CV.

TABLE 5 The top-50 miRNAs related to 5-FU are predicted by GNMFDMA.

Rank MiRNA Evidence Rank MiRNA Evidence

1 hsa-mir-324 30103475 26 hsa-mir-202 unconfirmed

2 hsa-mir-24–1 26198104 27 hsa-mir-132 26198104

3 hsa-mir-500a unconfirmed 28 hsa-mir-299 31786874

4 hsa-mir-501 26198104 29 hsa-mir-326 26239225

5 hsa-mir-24–2 26198104 30 hsa-mir-181a-2 unconfirmed

6 hsa-mir-874 27221209 31 hsa-mir-1-2 unconfirmed

7 hsa-mir-650 unconfirmed 32 hsa-mir-154 unconfirmed

8 hsa-mir-23a 26198104 33 hsa-mir-27a 26198104

9 hsa-let-7b 25,789,066 34 hsa-mir-199a-2 26198104

10 hsa-mir-1226 26198104 35 hsa-mir-217 24255072

11 hsa-let-7c 2,5951903 36 hsa-mir-211 28720546

12 hsa-mir-155 28347920 37 hsa-mir-342 26198104

13 hsa-mir-21 26198104 38 hsa-mir-346 unconfirmed

14 hsa-mir-345 unconfirmed 39 hsa-mir-329–1 unconfirmed

15 hsa-mir-129–2 23744359 40 hsa-mir-149 26198104

16 hsa-let-7a-1 26198104 41 hsa-mir-339 unconfirmed

17 hsa-mir-181b-2 unconfirmed 42 hsa-mir-128–2 26198104

18 hsa-mir-194–1 unconfirmed 43 hsa-mir-133a-1 26198104

19 hsa-mir-409 unconfirmed 44 hsa-let-7d 26198104

20 hsa-mir-212 unconfirmed 45 hsa-mir-187 28347920

21 hsa-mir-26a-1 unconfirmed 46 hsa-mir-455 21743970

22 hsa-mir-197 26198104 47 hsa-mir-330 28521444

23 hsa-mir-205 24396484 48 hsa-mir-181a-1 unconfirmed

24 hsa-mir-337 unconfirmed 49 hsa-mir-128–1 26198104

25 hsa-mir-181b-1 unconfirmed 50 hsa-mir-329–2 unconfirmed

Note: 5-FU’s Compound ID (CID) in PubChem is 3,385.
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In general, the predicted results obtained from top-ranked are
more convincing compared with those obtained from other
portions. The more true association pairs that are correctly
retrieved from the top-ranked, the predictor is more effective.
For this reason, we calculate the correct recovery of association
pairs at different thresholds when all 664 known drug-miRNA
association pairs are used as training samples. The top 10%, 15%
and 20% drug-related miRNAs in prediction result, GNMFDMA
correctly retrieved 429 (64.61%), 532 (80.12%) and 617 (92.92%)
association pairs, respectively. The comparison between the
original association adjacency matrix and the predicted
association matrix is shown in Figure 3. These results show
that GNMFDMA can effectively retrieve the true association
pairs with a lower false negative rate. In summary, the method
of GNMFDMA has powerful ability for identifying drug-
associated miRNAs.

3.3 The effect of WKNKN on model
performance

In order to investigate the effects of preprocessing step (WKNKN)
for GNMFDMA, we compared the performance of GNMFDMA and
GNMFDMA* under 5-CV. For GNMFDMA, we implement a
preprocessing step (WKNKN) to re-construct the drug-miRNA
association adjacency matrix based on their known neighbors
before performing non-negative matrix factorization, which can
supplement more interaction information to give assistance for
predicting new drugs and miRNAs. In addition, the preprocessing
step is also helpful for predicting those drugs or miRNAs with sparse
known associations. For GNMFDMA*, the preprocessing step is
ignored and matrix factorization is directly performed on the
original adjacency matrix for inferring drug-associated miRNAs.
Figure 2 and Figure 4 represent the ROC curves of GNMFDMA

TABLE 6 The top-50 miRNAs related to Gemcitabine are predicted by GNMFDMA.

Rank MiRNA Evidence Rank MiRNA Evidence

1 hsa-mir-24–2 25841339 26 hsa-mir-15a unconfirmed

2 hsa-mir-24–1 26198104 27 hsa-let-7a-2 23335963

3 hsa-mir-23a unconfirmed 28 hsa-let-7a-3 23335963

4 hsa-mir-501 unconfirmed 29 hsa-mir-106b 31374207

5 hsa-mir-1226 unconfirmed 30 hsa-mir-16–2 unconfirmed

6 hsa-mir-500a unconfirmed 31 hsa-let-7e 19654291

7 hsa-mir-324 26198104 32 hsa-mir-342 26198104

8 hsa-mir-650 unconfirmed 33 hsa-mir-210 31713003

9 hsa-mir-27b 25184537 34 hsa-mir-18a 28822990

10 hsa-mir-874 unconfirmed 35 hsa-mir-455 unconfirmed

11 hsa-mir-27a 26198104 36 hsa-mir-125a 26758190

12 hsa-let-7f-1 19948396 37 hsa-mir-93 unconfirmed

13 hsa-let-7d 26198104 38 hsa-mir-133a-1 26198104

14 hsa-mir-17 unconfirmed 39 hsa-mir-128–2 26198104

15 hsa-let-7g 19948396 40 hsa-mir-10a 24040438

16 hsa-mir-320a 26198104 41 hsa-mir-25 24040438

17 hsa-mir-20a 24924176 42 hsa-mir-197 26198104

18 hsa-let-7a-1 26198104 43 hsa-mir-149 26198104

19 hsa-mir-191 unconfirmed 44 hsa-mir-199a-2 26198104

20 hsa-mir-16–1 26198104 45 hsa-mir-31 unconfirmed

21 hsa-mir-638 23293055 46 hsa-mir-128–1 26198104

22 hsa-mir-21 26198104 47 hsa-mir-132 26198104

23 hsa-mir-19a 2,6041879 48 hsa-mir-15b 26166038

24 hsa-mir-203a unconfirmed 49 hsa-mir-133a-2 unconfirmed

25 hsa-mir-23b unconfirmed 50 hsa-mir-106a 25760076

Note: Gemcitabine’s Compound ID (CID) in PubChem is 60750.
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and GNMFDMA* under 5-CV, the AUC values achieved by
GNMFDMA and GNMFDMA* are 0.9193 and 0.8507, respectively.
The results demonstrate that the performance of GNMFDMA is
significantly improved after performing the preprocessing step.

3.4 Case studies

To further demonstrate the availability of GNMFDMA to discover
potential associations of drug with miRNA, case studies are conducted
for three common small molecule drugs, 5-Aza-CdR, 5-FU and
Gemcitabine based on the SM2miR dataset. In each independent
case study, all known 5-Aza-CdR (5-FU or Gemcitabine)-related
miRNAs are removed (all miRNAs are regarded as the potential
candidates of corresponding drug), the remaining known
associations are utilized as the training samples. Next, for each
investigated drug, these miRNAs are sorted in descending order
according to the predicted scores, it means that the top-ranked
miRNAs tend to be related to the corresponding drug.

We use the experimental literature to verify the predicted potential
miRNAs for three corresponding drugs. The top 50 potential
candidate miRNAs associated with 5-Aza-CdR, 5-FU and
Gemcitabine predicted by GNMFDMA are exhibited in Table 4,
Table 5 and Table 6, respectively. 30, 31 and 34 out of the top-50
miRNAs inferred by GNMFDMA are verified to be related to the
corresponding drug by the experimental literature, respectively. For
example, the expression of hsa-let-7d and hsa-let-7e was significantly
down-regulated in gemcitabine-resistant cells (Li et al., 2009). Up-
regulation of has-let-7 by natural agents can lead to the reversal of
epithelial-to-mesenchymal transition in gemcitabine-resistant
pancreatic cancer cells. Hsa-miR-125a promotes chemical resistance
of pancreatic cancer cells to Gemcitabine by targeting A20 (Yao et al.,
2016). In addition, the SM2miR database confirmed that hsa-miR-
125a is also associated with drug 5-Aza-CdR. That is, one miRNAmay
be targeted by multiple small molecule drugs. The above results show
that GNMFDMA can effectively predict new drugs or miRNAs
without any known relationships, which has important reference
significance for related biomedical experiments.

4 Discussion

Identifying the relationships between drugs andmiRNAs is helpful
for the discovery of new miRNA-targeted therapies and accelerate
drug discovery for complex diseases therapy. Compared with
discovering drug-miRNA associations through biological
experiments, predicting their associations using computational
models can save time and reduce cost. In this study, we propose a
new method, GNMFDMA, to infer drug-miRNA potential
associations using graph Laplacian regularization collaborative non-
negative matrix factorization. In GNMFDMA, we use p-nearest
neighbors to construct sparse similarity matrix, and the new drug-
miRNA association adjacency matrix is reconstructed based on the
K-nearest neighbor profiles. Meanwhile, graph Laplacian
regularization non-negative matrix factorization is implemented to
compute the drug-miRNA association scores, which can discover the
intrinsic geometrical structure from data space and extract meaningful
latent features. Rigorous experimental results indicate that the
performance of GNMFDMA outperforms the existing

computational approaches, and can effectively reveal drug-miRNA
potential associations.

Indeed, the prediction performance of GNMFDMA is still
limited by some factors. Firstly, the known drug-miRNA
associations are relatively sparse. With the in-depth study of
drugs and miRNAs, there will be more datasets of drug-miRNA
associations. Secondly, the similarity measurement in our method
may not be optimal. Finally, how to effectively integrate more
relevant biological information to improve prediction performance
is worthy of further research.
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