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Methotrexate is an immunosuppressant and chemotherapeutic agent used in the
treatment of a range of autoimmune disorders and cancers. Its main serious
adverse effects, bone marrow suppression and gastrointestinal complications,
arise from its antimetabolite effect. Nevertheless, hepatotoxicity and
nephrotoxicity are two widely described adverse effects of methotrexate. Its
hepatotoxicity has been studied mainly in the low-dose, chronic setting, where
patients are at risk of fibrosis/cirrhosis. Studies of acute hepatoxicity of high dose
methotrexate, such as during chemotherapy, are scarce. We present the case of a
14-year-old patient who received high-dose methotrexate and subsequently
developed acute fulminant liver failure and acute kidney injury. Genotyping of
MTHFR (Methylene tetrahydrofolate reductase gene), ABCB1 (codes for
P-glycoprotein, intestinal transport and biliary excretion), ABCG2 (codes for
BCRP, intestinal transporter and renal excretion) and SLCO1B1 (codes for
OATP1B1, hepatic transporter) identified variants in all the genes analysed that
predicted a reduced rate of methotrexate elimination and thus may have
contributed to the clinical situation of the patient. Precision medicine involving
pharmacogenomic testing could potentially avoid such adverse drug effects.
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Introduction

Methotrexate, a competitive inhibitor of dihydrofolate reductase, is used for the
treatment of an array of auto-immune disorders and cancers (osteosarcoma, acute
lymphoblastic leukaemia, Hodgkin’s lymphoma). It enters cells via different
transporters according to the cell type, notably OATP1B1 (Mikkelsen et al., 2011), an
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organo-anion transporter that mainly transports organic anions
across cell membranes in hepatocytes (encoded for by the
SLCO1B1 gene). Although fecal excretion of methotrexate is
minor, reduced OATP1B1 activity increases methotrexate
plasma concentration, suggesting that methotrexate is
characterized by a highly efficient enterohepatic circulation.
Reduced OATP1B1 activity simultaneously reduces the liver
uptake of methotrexate and increases its plasma concentration
(van de Steeg et al., 2013). An association between
SLCO1B1 mutations and methotrexate clearance/toxicity is now
established in clinical practice (Treviño et al., 2009; Lopez-Lopez
et al., 2011; Mikkelsen et al., 2011; Ramsey et al., 2012; Ramsey
et al., 2013; van de Steeg et al., 2013). When bound to
methotrexate, dihydrofolate reductase (DHFR) no longer
converts dihydrofolate (DHF) to tetrahydrofolate (THF)
(Howard et al., 2016). DHF and THF are essential for the
formation of thymidine and purines, which are needed for the
synthesis of DNA (Howard et al., 2016; Swissmedic). Methotrexate
also interacts with other intracellular enzymes involved in the
folate cycle, particularly 5,10-methylenetetrahydrofolate reductase
(MTHFR). Eventually, methotrexate is eliminated by ABC
transporters, mainly Breast Cancer Resistance Protein (BCRP)
and P-glycoprotein (P-gp) (Mikkelsen et al., 2011). BCRP
transports polyglutamate derivatives of methotrexate as well as
methotrexate, and therefore a reduced BCRP functional capacity
could lead to higher concentrations of intracellular polyglutamate
derivatives of methotrexate and thus increase its toxicity (Volk and
Schneider, 2003).

Folates and antifolates are mostly bivalent anions, meaning
they diffuse poorly into the tissues and are actively transported
between different organ systems using many transporters.
Monoglutamate derivatives of folate are actively absorbed from
the intestine using the proton coupled folate transporter (PCFT)
which is expressed by different cell lineages but requires an acidic
environment to function. In the liver, they are either converted to
polyglutamate derivatives via folylpolyglutamate synthetase
(FPGS) or eliminated in the bile. When needed, they are
converted back to monoglutamate folate derivatives and
transported in the systemic circulation and into normal cells via
the reduced folate transported (RFC). Folates and antifolates are
both substrates of RFC and PCFT, transporters which function
bidirectionally. However, their efflux capacity is suppressed by
organic phosphates and a neutral intracellular pH respectively.
This can explain, at least partially, why their dysfunctional states
are not implicated in antifolate toxicity. Folate receptors are
another way into cells for folates/antifolates, however, with a
much lower affinity to antifolates, this is less relevant to the
case of an antifolate toxicity (Zhao et al., 2011; Visentin et al.,
2012).

The most common adverse drug reactions associated with the
use of high-dose methotrexate, defined as a dose greater than
500 mg/m2, are mucositis, myelosuppression, gastrointestinal
toxicity, neurological toxicity, and less commonly hepatotoxicity,
for which no preventative measures can be taken. Acute renal failure,
a less common adverse drug reaction, is seen with high-dose
methotrexate, caused by precipitation of the methotrexate in the
renal tubules (Howard et al., 2016). Chemotherapy protocols include
preventive measures to avoid this complication, such as a regular

monitoring of methotrexate plasma levels, hyperhydration to allow
alkalinisation of the urine, and administration of leucovorin
(folinate) according to the plasma levels of methotrexate as well
as administration of the antidote (carboxypeptidase) (Howard et al.,
2016; Boelens et al., 2018).

Methotrexate-induced toxicity varies greatly between
individuals, even with similar doses and timelines of
administration. Several studies (Lopez-Lopez et al., 2011; D’Cruz
et al., 2020; Zhang et al., 2022; Erdilyi et al., 2008) have investigated a
possible link between genetic variability of different transporters/
enzymes and methotrexate toxicity, potentially explaining its
toxicity by the inter-individual variability in methotrexate
pharmacokinetic parameters. Various genetic polymorphisms are
thought to have an impact on the clearance of methotrexate and thus
its toxicity. To date, multiple variants of enzymes and transporters
involved in the elimination of methotrexate have been identified that
may reduce their activity.

Here we describe the case of a paediatric patient who
developed fulminant toxic hepatitis and acute kidney injury
following a single high dose of methotrexate. Pharmacogenetic
testing revealed reduced activity of the P-gp, BCRP and
OATP1B1 transporters as well as the MTHFR enzyme,
predisposing the patient to develop toxicities associated with
reduced methotrexate clearance.

Case

A 14-year-old female patient with a high-grade osteosarcoma
of the right tibia was treated according to the EURASMOS
protocol. On day 23 of the protocol, a first dose of intravenous
methotrexate (12 g/m2) was administered. Prior to administration
of the high dose methotrexate (HDMTX), the patient’s renal
function was in the normal range (creatininemia 46 umol/L,
GFR 130 ml/min/1.73 m2 (van de Steeg et al., 2013) according
to the Schwartz equation. Liver enzymes were slightly elevated
(AST 25 U/L (N < 20 U/L), ALT 31 U/L (N < 22 U/L) with no sign
of cholestasis (total bilirubin 4 umol/L). Synthetic liver function
was not tested at this stage. Prior to administration of the high
dose methotrexate, the patient received hyperhydration as per
protocol (200 ml/m2/h with 40 mEq/L sodium bicarbonate for 6 h
prior to HDMTX). Hyperhydration was continued (125 ml/m2/h)
during the methotrexate administration. Methotrexate plasma
levels measured (using LC-MS) at H4 and H24 were 1,356 and
937 μmol/L(Graph 1), respectively [expected methotrexate
plasma levels at H24: <10 μmol/L (Pignon et al., 1994;
Holmboe et al., 2012)]. At around 24 h, the patient began to
show altered state of consciousness and haemodynamic instability
(treated with noradrenaline and adrenaline) and was intubated
(propofol, rocuronium, midazolam and fentanyl were
administrated). As a prevention for infection, meropenem was
also administered.

The laboratory showed severe renal failure with an increased
creatininemia to 268 μmol/L and hyperkaliemia up to 6.1 mmol/L.
She also suffered from severe hepatic impairment with a significant
elevation of the liver enzymes (AST 10,121 U/L, ALT > 6,000 U/L),
cholestasis (total bilirubin 39 μmol/L) and an impaired hepatic
synthetic function (factor V 6.9%, Quick 29%, INR 2.28).
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Suspecting acute renal failure secondary to methotrexate use,
the patient received leucovorin (100 mg/m2 QDS) for the
competitive inhibition of the activity of methotrexate,
glucarpidase (50 U/kg) to eliminate methotrexate faster,
cholestyramine to decrease enterohepatic circulation and
N-acetylcysteine to reduce the oxidative damage on the liver.
Hyperhydration was increased up to 4,500 ml/m2/24 h to
maintain urine alkalinisation.

Nevertheless, presenting with a severe refractory metabolic
acidosis and hyperkalaemia, haemodialysis was initiated and a
transfer to the intensive care unit of the University Hospital of
Geneva was organised for liver organ support and liver dialysis.

The doses of methotrexate administered were controlled several
times by the pharmacy, and the patient was not taking any other
medications that could interact with methotrexate.

Methotrexate plasma levels were measured regularly from H0 to
H273. The maximum level was measured at H4 (1,356 μmol/L).
After 8 days of renal dialysis and 11 days of hepatic dialysis
(Molecular adsorbent recirculating system (MARS), an
extracorporeal hepatic support system that allows dialysis and
ultrafiltration), renal and hepatic function improved significantly.
There was a rebound in the methotrexate levels noted after a couple
of sessions of haemodialysis which can be attributed to the
redistribution of methotrexate from other compartments not
initially accessible for removal. Therefore, multiple sessions of
high flux haemodialysis are usually necessary in similar cases
(Bleyer, 1977).

Regarding the patient’s future chemotherapy, it was decided not
to re-administer high-dose methotrexate. The methotrexate blocks
were replaced by a course of ifosfamide/etoposide and carboplatin/
etoposide. Given that the changes in the treatment plan were made
very recently, we do not as of yet have any information on the
treatment outcome.

Results of the genotyping of the
germline DNA

Discussion

High-dose methotrexate is commonly used as an anticancer
agent in the paediatric population, and although the most common
toxicities are reversible, the mortality and morbidity associated with
such a therapy remains important. Discontinuation of treatment due
to an adverse effect is also associated with a poorer cancer prognosis
(Song et al., 2021).

TABLE 1 The pharmacogenetics panel revealed mutations of the
4 pharmacogenes ABCB1, MTHFR, ABCG2 and SLCO1B1 that predict a reduced
activity of P-gp, MTHFR, BCRP, and OATP1B1 respectively.

Gene Variants
detected

Genotype* Interpretation/
predicted phenotype

ABCB1
(P-gp)

c.3435C>T T/T Reduced activity

c.1236T>C T/C

c.2677G>T G/T

c.210A>G A/G

MTHFR c.1298A>C A/C Reduced activity

c.677C>T C/T

ABCG2 c.421C>A C/A Reduced activity

SLCO1B1 c.388A>G G/G Reduced activity

c.521T>C T/C (*1/*15 or
*1/*17)

GRAPH 1
Evolution of the concentrations of methotrexate over 11 days.
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In our case, the patient developed severe renal and hepatic
failure secondary to a high dose of methotrexate.
Pharmacogenetic testing was subsequently performed and
showed multiple polymorphisms increasing her risk of
developing adverse effects (Table 1). Pre-emptive genotyping
could have prevented the adverse effects, either with an
unguided dose adjustment, a pre-emptive renal protection
therapy, or with the use of an alternative chemotherapeutic
agent. In the absence of guidelines for adjusting the dose of
methotrexate according to the genetic profile, the use of
different therapies as first line agents could be considered.

In two pharmacokinetic studies of patients who received
high dose methotrexate (mean dose around 13.2 and 12 g/m2,
similar to our patient’s), the mean plasma concentration of
methotrexate was well below 100 μmol/L after 24 h of the
infusion and below 10 μmol/L at 48 h (Pignon et al., 1994;
Holmboe et al., 2012). Our patient had more than 10-fold
increase in the plasma level of methotrexate at 24 h post-
infusion, which could be explained by the genetic
polymorphisms detected. The rescue therapy provided had
quickly rectified the levels, with a 48-h level similar to that of
other patients in both studies.

The most important physiological factor impacting
methotrexate elimination is renal function. It is directly affected
by the level of hydration, as volume depletion due to diarrhea and
vomiting results in renal hypoperfusion. This creates a vicious
cycle between methotrexate accumulation in renal tubules and
direct toxic damage to the renal tubules, from prolonged contact,
which in turn further worsens renal function (Perazella and
Moeckel, 2010).

The elimination of methotrexate has been subject of various
studies. The current consensus is that it involves different
pathways, including P-gp, MTHFR, OATP1B1 and BCRP. The
frequency of the polymorphisms associated with a reduced
metabolism/elimination of their substrates varies according to
the population studied and the genetic panel analysed. Given
the degree of heterogeneity of the study designs looking into
the frequency of polymorphisms, the frequency of the variants
vary. For example, SLCO1B1*15 frequency was estimated between
3% in African/Oceanian population to around 15% in the
European population and 24% in the American one (Oshiro
et al., 2010).

The P-gp (encoded by the ABCB1 gene) is located in several
tissues, such as the intestines, kidneys, liver, immune system,
blood-brain barrier and placenta. Its role is to expel drug
substrates (Hodges et al., 2011; PharmGKB, 2023). In a
physiological setting, it removes methotrexate from the
intestinal/renal/hepatic cells into the gut/urine/bile respectively.
Polymorphisms of ABCB1 have been described, the main ones
being associated with reduced transport (Hodges et al., 2011). In
general, available studies indicate that patients with certain allelic
variants (3435TT and/or 2677 T or A genotype) require lower
doses of opioids, which are P-gp substrates, and at greater risk of
central adverse effects such as drowsiness and confusion (Ross
et al., 2008; Sadhasivam and Chidambaran, 2012; Hajj et al., 2013;
Rhodin et al., 2013). These polymorphisms may potentiate the
penetration of active substrates in the cells and increase the risk of

toxicity. The MTHFR enzyme plays a key role in folate
metabolism and is involved in the pharmacodynamics of
several drugs. Data from the literature report that the
c.677C>T variant is associated with an increased risk of
methotrexate toxicity via a decreased MTHFR enzyme activity
(Yang et al., 2012). The OATP1B1 transporter is involved in the
intracellular influx of endogenous and exogenous compounds.
This protein is expressed mainly on the basolateral membrane of
hepatocytes (Oshiro et al., 2010). The OATP1B1 gene is
polymorphic, the most described variant being c.521T>C
(rs4149056), for which the minor C allele is associated with
reduced transport in vitro and reduced elimination of certain
drugs in vivo (Ramsey et al., 2014). BCRP, an ABC family
transporter, is involved in the transport of various xenobiotics,
including MTX (Breedveld et al., 2004; Yu et al., 2021). It is most
highly expressed in the brain, small intestine, cervix and uterus
(Fohner et al., 2017). With the presence of reduced BCRP activity,
less methotrexate is expelled into the small intestine. The two most
common and well-studied variants are rs2231137 (c.34G>A) and
rs2231142 (c.421C>A). The c.421C>A variant (rs2231142) is located
in exon 5 and lies within the nucleotide binding domain of the
transporter (Fohner et al., 2017). A decrease in BCRP expression is
seen due to degradation of the variant protein in the endoplasmic
reticulum. The c.421C>A variant affects the pharmacokinetics,
response and toxicity of BCRP substrate substances, including
chemotherapeutic agents (Stamp et al., 2010).

The accessibility of genotyping is subject to different factors,
starting from the availability of such tests regionally to the local/
national regulations governing their use. In certain countries like
Switzerland, genotyping tests are covered by health insurance and
are being more and more used to either screen the patients pre-
emptively in an effort to reduce their risk of adverse effects or to
identify the cause of the toxicity afterhand. This is in addition to the
phenotyping tests currently available that help guide different
pharmacotherapy with a narrow therapeutic index. There is
ongoing debate regarding which screening test, if any, between
the phenotyping and genotyping is superior depending on the
molecule in question.

In summary, our patient had polymorphisms that put her at an
increased risk of methotrexate toxicity. By identifying these genetic
abnormalities prior to the first dose of methotrexate, it would have
been possible to either to change the chemotherapy regimen or
perform an unguided dose reduction of methotrexate in the absence
of alternatives. Precision medicine, including pharmacogenomics,
makes it possible to individualize the treatment of each patient to
balance its therapeutic/toxic profile in the benefit of the patient. A
prospective randomized study with methotrexate dose adjustments
based on the patients’ polymorphisms would allow us to better
anticipate the dose-dependent complications of methotrexate
toxicity, and minimise the mortality-morbidity burden.
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