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Major depressive disorder (MDD) is a psychiatric disorder with increasing
prevalence worldwide. It is a leading cause of disability and suicide, severely
affecting physical and mental health. However, the study of depression remains at
an exploratory stage in terms of diagnostics and treatment due to the complexity
of its pathogenesis. MicroRNAs are endogenous short-stranded non-coding RNAs
capable of binding to the 3’untranslated region of mRNAs. Because of their ability
to repress translation process of genes and are found at high levels in brain tissues,
investigation of their role in depression has gradually increased recently. This
article summarizes recent research progress on the relationship between
microRNAs and depression. The microRNAs play a regulatory role in the
pathophysiology of depression, involving dysregulation of monoamines,
abnormalities in neuroplasticity and neurogenesis, hyperactivity of the HPA
axis, and dysregulation of inflammatory responses. These microRNAs might
provide new clue for the diagnosis and treatment of MDD, and the
development of antidepressant drugs.
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1 Introduction

1.1 MicroRNAs

MicroRNAs (miRNAs) are short-stranded endogenous non-coding RNAmolecules with
a length of 19–25 nucleotides. A single microRNA can target hundreds of mRNAs and
influence the expression of many genes (Friedman et al., 2009; Lu and Rothenberg, 2018). It
is now established that about 70% of the known microRNAs are expressed in the brain and
play critical roles in brain development through key signaling pathways involving synapse
formation, neuronal plasticity, nerve growth, etc. MicroRNAs are endogenously encoded in
the mammalian genome and are transcribed in the nucleus as primary transcripts (pri-
miRNAs) which are hundreds of nucleotides in length. Pri-miRNAs are then trimmed into
precursor microRNAs (pre-miRNAs) within the nucleus by DiGeorge syndrome critical
region 8 (DGCR8) and Drosha. After processing in the nucleus, pre-miRNA transcripts are
transported to the cytoplasm via the transporter Exportin-5 (XPO5). Pre-miRNAs are
further processed in the cytoplasm by the enzyme Dicer into approximately 22 nucleotide-
long RNA duplexes. The RNA duplexes are incorporated into the RNA-induced gene
silencing complex (RISC), and further processed to form mature microRNAs (Zurawek and
Turecki, 2021). RISC binds to the 3’untranslated region (3′UTR) of target mRNAs to induce
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targeted mRNA degradation or translational repression, thereby
controlling gene expression at the post-transcriptional level.

1.2 Molecular pathophysiology of
depression

Major depressive disorder (MDD) is a common illness that
severely limits psychosocial functioning and diminishes quality of
life (Malhi and Mann, 2018). MDD causes emotional changes in
patients, as well as depressed mood and anhedonia, and it can lead to
several psychiatric symptoms, including cognitive impairment (Hu
et al., 2017). Although, there has been considerable research looking
at the pathophysiology of major depressive disorder (MDD), no
single mechanism can satisfactorily and completely explain all
aspects of the disorder. There are several hypotheses regarding
the molecular mechanisms involved in depression, including the
monoamine hypothesis, hypothalamic-pituitary-adrenal (HPA)
axis, neuroplasticity and neurogenesis, epigenetics, and
inflammation. The monoamine hypothesis reveals that the
pathophysiological basis leading to depression is due mostly to a
decrease in monoamine neurotransmitters (e.g., serotonin).
Evidence from clinical trials of some tricyclic antidepressants and
monoamine oxidase inhibitors (MAOIs) have provided the basis for
this hypothesis (Segal et al., 1974; Delgado et al., 1990; Willner et al.,
2013). Hyperactivity of the HPA axis can lead to the stimulation of
glucocorticoids and cortisol secretion, which may contribute to the
development of depression (Goodyer et al., 2000; Harris et al., 2000).
Notably, alterations of the HPA axis have also been associated with
impairment of cognitive function (Keller et al., 2017). Stress-
mediated inflammation and HPA axis dysfunction can lead to an
alteration in neuroplasticity at the cellular level (Egeland et al.,
2015). The neurogenesis process is controlled by regulatory proteins,
such as brain-derived neurotrophic factor (BDNF), and peripheral
BDNF has been found to be downregulated in patients with MDD
(Molendijk et al., 2014). Epigenetics, the interaction of genes and the
environment, plays a role in the alteration of brain neurobiology,
and the effect of epigenetics can set the stage for the development of
MDD (Penner-Goeke and Binder, 2019). In addition, peripheral
cytokines can directly act on neurons and support cells and
subsequently contribute to the development of depression (Miller
and Raison, 2016). This hypothesis is supported by a role for some
non-steroidal anti-inflammatory drugs in the treatment of
depression (Leonard, 2018). Patients with autoimmune diseases
and severe infections both have persistent activation of the
immune system, causing high levels of cytokine production in
the periphery. Such changes will cause changes in the patient’s
central nervous system function, which in turn will lead to the
occurrence and development of depression. This mechanism may
explain why individuals with autoimmune diseases and severe
infections are more likely to become depressed.

Up to now, first-line antidepressant drugs and other selected
drugs in the clinic have low effectiveness, variable tolerance, adverse
effects, and other disadvantages. Furthermore, large variations in
therapeutic effects exist among individual drugs (Malhi and Mann,
2018). Our current understanding of microRNAs is continuing to
increase partly, because of their high expression levels in the brain
and their role in the regulation of neuronal plasticity and other

functions. Recently, researchers focused on a role for microRNAs in
the etiology of MDD. In this review, we have summarized the roles
and mechanisms of microRNAs-mediated gene expression in the
pathophysiological process of MDD. The role of each microRNA
implicated in depression will be described as it relates to the different
hypotheses of depression. In addition, this review could provide an
attractive clue and potential targets to help diagnose and treat
depression, as well as to assist in antidepressant drug development.

2 Expression and regulation of
microRNAs in clinical samples of
depression

Many studies have confirmed that the level of microRNAs
expression is associated with the onset of depression. These
studies include both human and animal experiments.
Postmortem human experiments were carried out to examine the
expression levels of microRNAs in the prefrontal cortex, amygdala
and other regions, as well as the levels and identity of their
downstream target genes and protein products (As shown in
Table 1). These human studies also looked at peripheral whole
blood, serum, exosomes, and other tissues. The animal experiments
were performed to detect microRNAs, and their downstream target
genes and protein expression in the hippocampus and other tissues
in rodents with depression-like symptoms (Table 2). The
depression-like symptoms were induced by chronic unpredictable
mild stress (CUMS) and this successful animal model was confirmed
using behavioral tests, including sucrose preference test, forced swim
test, and elevated plus maze test. According to the literature,
microRNAs such as miR-124-3p, miR-128-3p, miR-139-5p, and
miR-144-5p have been shown to play a significant role in different
pathophysiological mechanisms of depression, which will be
described in the corresponding sections of the text according to
their different roles.

3 Involvement of microRNAs in the
pathophysiology of depression

3.1 MicroRNAs are involved in the
pathophysiology of depression induced by
the dysregulation of monoamines

Monoamine neurotransmitter (serotonin, noradrenaline, and
dopamine) dysregulation is considered the most likely cause of
MDD, and most of the drugs used in the clinic for the treatment
of MDD are based on this principle. Monoamine-based
antidepressants were the first drugs developed for the treatment
of MDD (Elias et al., 2022). The monoamine hypothesis of
depression has been applied for nearly six decades ago (Coppen
et al., 1965) and the classical doctrine holds that monoamines are
depleted and chronically below normal levels in the brains of
patients with MDD (Shaw et al., 1967). This hypothesis is
corroborated by the pharmacological mechanism of action of
monoamine oxidase (MAO) inhibitors, tricyclic antidepressants,
and selective serotonin reuptake inhibitors in MDD patients
(Hillhouse and Porter, 2015). In 1996, Heninger et al. (1996)
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TABLE 1 Summary of researches on the changes in the levels of microRNAs and their target genes in MDD patients.

References Sample sources microRNA Regulation
MDD vs. HC

Targeted gene Expression of
target gene

Gorinski et al.
(2019)

Brodmann Area 9(BA9) miR-30a, miR-30e Up ZDHHC21 Down

miR-200a Down

Wingo et al. (2020) Brodmann Area 9(BA9)/
Brodmann Area
46(BA46)

miR-484, miR-26b-5p, miR-30d-5p, miR-197-3 Down

Smalheiser et al.
(2012)

Brodmann Area 9(BA9) miR-20b, miR-20a, miR-34a, miR-34b Down VEGFA

miR-34a Down Bcl-2 Down

miR-148b Down DNMT3B Up

Maussion et al.
(2012)

Brodmann Area
10(BA10)

miR-185 Up TrkB-T1 Down

Smalheiser et al.
(2014)

Dorsolateral Prefrontal
Cortex (BA10)

miR-508-3p, miR-152 Down

Wang et al. (2018a) Dorsolateral Prefrontal
Cortex (BA10)

miR-19a-3p Up Tumor Necrosis Factor-
α(TNF-α)

Up

miR-20a-5p, miR-92a-1-3p Down

Peripheral Blood
Mononuclear Cells
(PBMC)

miR-19a-3p Up Tumor Necrosis Factor-
α(TNF-α)

Up

Fiori et al. (2021) Brodmann Area
24(BA24)

miR-323a-3p (miR-204-5p, miR-331-3p) Up ERBB4 Down

Cerebral lateral habenula miR-323a-3p (miR-320b-3p, miR-331-3p) Up ERBB4 Down

Wang et al. (2018b) Brodmann Area
44(BA44)

miR-124-3p Down DDIT4 Up

SP1 Up

Torres-Berrio et al.
(2017)

Brodmann Area
44(BA44)

miR-218 Down DCC Up

Lopez et al. (2014a) Brodmann Area
44(BA44)

miR-320c, miR-34c-5p Up SAT1 Down

miR-320c, miR-139-5p Up SMOX Down

miR-195 Up

Roy et al. (2017a) Brodmann Area
46(BA46)

miR-124-3p Up GRIA3, GRIA4, NR3C1 Down

Serum miR-124-3p Up GRIA3, GRIA4, NR3C1 Down

Lopez et al. (2017) Ventrolateral Prefrontal
Cortex (BA47)

miR-146a-5p, miR-146b-5p, miR-425-3p, miR-
24-3p

Up

Lopez et al. (2014b) Ventrolateral Prefrontal
Cortex (BA47)

miR-1202 Down GRM4 Up

Yoshino et al. (2020) Anterior Cingulate
Cortex (ACC)

117 microRNAs (4.16%) Up

54 microRNAs (2.13%) Down

Azevedo et al.
(2016)

Anterior Cingulate
Cortex (ACC)

miR-34a Down NCOA1 Up

miR-184 Down NCOR2 Down

miR-34a, miR-184 Down PDE4B

Maheu et al. (2015) Basolateral Amygdala miR-511 Up GFRA1 Down

Roy et al. (2020) Cerebral Amygdala miR-128-3p Up DVL1, LEF1, WNT5b Down

(Continued on following page)
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TABLE 1 (Continued) Summary of researches on the changes in the levels of microRNAs and their target genes in MDD patients.

References Sample sources microRNA Regulation
MDD vs. HC

Targeted gene Expression of
target gene

Roy et al. (2017b) Locus Coeruleus miR-17-5p, miR-20b-5p, miR-106a-5p, miR-
330-3p, miR-541-3p, miR-582-5p, miR-890,
miR-99-3p, miR-550-5p, miR-1179

Up GRIK1 Up

miR-409-5p, let-7g-3p, miR-1197 Down RELN, GSK-3β, MAOA,
CHRM1, PLCB1

Down

Aschrafi et al. (2016) Midbrain miR-326 Down Urocortin 1 (Ucn1) Up

Issler et al. (2014) Raphe Nuclei (RN)/
Whole Blood

miR-135a Down Htr1a, Slc6A4 Up

Morgunova and
Flores (2021)

Prefrontal Cortex (PFC) miR-218-5p Down DCC Up

Liu et al. (2021c) Peripheral Blood
Mononuclear Cells
(PBMC)

miR-374b, miR-10a Down

Hung et al. (2019) Peripheral Blood
Mononuclear Cells
(PBMC)

let-7e, miR-21-5p, miR-146a, miR-155 Down IL-6 Up

Monocytes miR-146a, miR-155 Down

Sun et al. (2016) Peripheral Blood
Mononuclear Cells
(PBMC)

miR-34b-5p, miR-34c-5p Up NOTCH1 Down

He et al. (2016) Peripheral Blood
Mononuclear Cells
(PBMC)

miR-124 Up

Vaisvaser et al.
(2016)

Peripheral Blood
Mononuclear Cells
(PBMC)

miR-29c Up

Gecys et al. (2022) Plasma let-7e-5p, miR-125a-5p Up

Roumans et al.
(2021)

Plasma let-7b-5p Down ERK1/2 Down

Sundquist et al.
(2021)

Plasma miR-144-5p Down 21 Inflammatory
Proteins

Up

15 Inflammatory
Proteins

Down

Chen et al. (2020) Plasma miR-19b-3p Down

Zhang et al. (2020a) Plasma miR-134 Down

Mendes-Silva et al.
(2019)

Plasma miR-184 Down

Van der Auwera
et al. (2019)

Plasma let-7g-5p, miR-103a-3p, miR-107, miR-142-3p Down

Fang et al. (2018) Plasma miR-132, miR-124 Up

Camkurt et al.
(2015)

Plasma miR-451a Up SLC17A7 Down

miR-320a Down GRIN2A, DISC1 Up

miR-17-5p, miR-223-3p Up

Al-Rawaf et al.
(2021)

Serum miR-34a-5p, miR-124 Up iNOS, Cortisol Up

miR-135, miR-451-a Down SOD2, CAT,5-HT Down

Liu et al. (2021d) Serum/Cerebrospinal
Fluid

miR-199a-5p Up WNT2 Down

(Continued on following page)
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revised the monoamine doctrine to suggest that monoamine
depletion may play more of a role, thereby affecting nervous
system functions, or it must be present in the environment of a
stressor to cause MDD. They provided a theoretical basis for
investigating the role of microRNAs in MDD.

Gorinski et al. (2019) found that a decrease in miR-200a
expression or an increase in miR-30a and miR-30e expression led
to a decrease of ZDHHC21 expression in humans and animal
models. ZDHHC21, a palmitoyl acyltransferase, was identified as
the major enzyme involved in the palmitoylation of the 5HT1AR
and the decrease in the palmitoylation of 5HT1AR resulted in
inhibition of adenylate cyclase and subsequent decrease of cAMP
levels resulting in the occurrence of MDD. The downregulated miR-
135a was shown to promote the translation of the Htr1a and Slc6a4
genes in MDD patients (Issler et al., 2014) and the upregulation of
the inhibitory 5HT1a receptor (5HT1AR), encoded by the Htr1a
gene, and 5HT transporter (SERT), encoded by the Slc6a4 gene,
contributed to aberrant monoamine neurotransmitters in patients
with depression (Issler et al., 2014). DCC (Deleted in Colorectal
Cancer) drives prefrontal cortex maturity by determining DA targets
early in life, for example, in rats, signaling within dopamine neurons
in the juvenile VTA determines the extent of innervation of the PFC
(Torres-Berrio et al., 2017). Whereas miR-218 was shown to be
upregulated in BA44 in MDD patients and led to a significant
decrease in DCC expression levels. In rats, who had experienced
chronic social defeat stress paradigms also showed the same changes
(Torres-Berrio et al., 2017). MiR-1202 was found to be differentially

expressed in MDD patient ventrolateral prefrontal cortices, with
upregulated GRM4 expression (Lopez et al., 2014b). GRM4 is
expressed throughout the brain, with predominant expression
sites at presynaptic and postsynaptic membranes, where it
regulates glutamatergic, dopaminergic, GABAergic, and
serotonergic neurotransmission (Lopez et al., 2014b). The
increased expression of miR-329 and miR-362 in the PFC of
MDD patients caused downregulation of Baiap3 (brain specific
angiogenesis inhibitor 1-associated protein 3), which
subsequently induced defective dense core vesicles (DCVs)
transport and reduced serotonin exocytosis (Kim et al., 2022). In
both the central nervous system and endocrine systems, DCVs are
essential for peptidergic and aminergic signaling (Persoon et al.,
2018) (Figure 1).

3.2 MicroRNAs are involved in the
pathophysiological processes of depression
related to neuroplasticity and neurogenesis
abnormalities

Neuroplasticity is a fundamental process by which the brain
acquires information and produces appropriately adaptive
responses in relevant environments. Thus, dysfunction in
neuroplasticity and neurogenesis may contribute to the
pathophysiology of MDD (Duman, 2002). Multiple signaling
pathways are involved in this process. For example, Wnt

TABLE 1 (Continued) Summary of researches on the changes in the levels of microRNAs and their target genes in MDD patients.

References Sample sources microRNA Regulation
MDD vs. HC

Targeted gene Expression of
target gene

Hippocampus miR-199a-5p Up WNT2 Down

Feng et al. (2019) Serum miR-221-3p Up IRF2 Down

Gheysarzadeh et al.
(2018)

Serum miR-16, miR-135a, miR-1202 Down

Kuang et al. (2018) Serum miR-451a Down

miR-34a-5p, miR-221-3p Up

He et al. (2021) Peripheral Blood miR-9 Up

Sun et al. (2020) Peripheral Blood miR-34c-5p Up

Zhao et al. (2019) Peripheral Blood pmiR-chr11 Up BRPF1 Down

Qi et al. (2018) Peripheral Blood miR-132 Up

Wang et al. (2018c) Peripheral Blood miR-155 Up SIRT1 Down

Liu et al. (2016) Peripheral Blood miR-132 Up

Li et al. (2021a) Plasma Exosome miR-335-5p Up

miR-1292-3p Down

Liang et al. (2020) Serum Exosome miR-139-5p Up

Xian et al. (2022) Serum Exosome miR-9-5p Up

Wei et al. (2020) Blood Exosome miR-139-5p Up

Mizohata et al.
(2021)

Neural Extracellular
Vesicles (NEVs) in Blood

miR-17-5p Up
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TABLE 2 Summary of researches on the changes in the levels of microRNAs and their target genes in experimental animals induced to develop depression.

References Sample sources microRNA Regulation
MDD vs. HC

Targeted gene Expression of
target gene

Kavuran Buran et al.
(2022)

Hippocampus miR-135a-5p, miR-135b-5p,
miR-6334, miR-203a-3p,
miR-296-5p, miR-6320

Up

Prefrontal Cortex (PFC) miR-135a-5p, miR-135b-5p Up

miR-484, miR-501-3p, miR-
296-5p, miR-361-3p

Down

Kim et al. (2022) Prefrontal Cortex (PFC) miR-329, miR-362 Up Baiap3 Down

Yoshino et al. (2022) Prefrontal Cortex (PFC) miR-218a-5p Up DTWD1, BNIP1, METTL22,
SNAPC1, HDAC6

Down

Huang et al. (2021a) Prefrontal Cortex (PFC)/
Hippocampus

miR-23a-5p Up

miR-98-5p, miR-3968 Down

Gorinski et al. (2019) Brodmann Area 9(BA9) miR-30a, miR-30e Up ZDHHC21 Down

miR-200a Down

Torres-Berrio et al.
(2017)

Brodmann Area 44(BA44) miR-218 Down DCC Up

Roy et al. (2017a) Brodmann Area 46(BA46) miR-124-3p Up GRIA3, GRIA4, NR3C1 Down

Serum miR-124-3p Up GRIA3, GRIA4, NR3C1 Down

Lopez et al. (2017) Ventrolateral Prefrontal
Cortex (BA47)

miR-146a-5p, miR-146b-5p,
miR-425-3p, miR-24-3p

Up

Liu et al. (2021a) Hippocampus miR-883b-3p Down Adcy1, Nr4a2 Up

miR-377-3p Down Six4, Stx16, Ube3a Up

Si et al. (2021) Peripheral Samples/
Hippocampus

miR-212 Up Nuclear Factor I-A (NFIA) Down

Huang et al. (2021b) Hippocampus miR-139-5p Down Phosphodiesterase 4D
(PDE4D)

Up

p-CREB, BDNF Down

Lan et al. (2021) Hippocampus miR-204-5p Down RGS12 Up

Liu et al. (2021b) Hippocampus miR-383 Up WNT2 Down

Liu et al. (2021d) Serum/Cerebrospinal Fluid miR-199a-5p Up WNT2 Down

Hippocampus miR-199a-5p Up WNT2 Down

Li et al. (2021c) Hippocampus Dentate Gyrus miR-26a-3p Up PTEN Down

Li et al. (2021b), Shen
et al. (2021)

Hippocampus CA1 Region/
Hippocampus Dentate Gyrus

miR-211-5p Down Dyrk1A Up

Qin and Li (2022) Hippocampus miR-124-3p Up STAT3, Bcl-2 Down

Bax Up

Su et al. (2022) Hippocampus miR-139-5p Up NR3C1 Down

Li et al. (2022) Hippocampus miR-497a-5p Up NR3C1 Down

Mingardi et al. (2021) Hippocampus miR-9-5p Down REST Up

Ding et al. (2021) Peripheral Blood miR-135a Down

Peripheral Blood/
Hippocampus

miR-135a Down TLR4 Up

IL-1β, IL-6, TNF-α Up

Bax Protein Up

Bcl-2 Protein Down

(Continued on following page)

Frontiers in Pharmacology frontiersin.org06

Ding et al. 10.3389/fphar.2023.1129186

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1129186


signaling pathway plays a role in neurogenesis, synapse formation,
synaptic transmission, and dendritic arborization in the
hippocampus (Wayman et al., 2006; Gogolla et al., 2009). The
mTOR signaling pathway is involved in the pathophysiology of
MDD through the P70S6K/eIF4B pathway (Jernigan et al., 2011).
Abnormalities in BDNF, glutamate receptors, VEGF signaling, and
long-term potentiation (LTP) pathways also contribute to the
pathophysiological progression of depression by affecting
neuroplasticity and neurogenesis (Duric et al., 2010; Yoshii and
Constantine-Paton, 2010; Gormanns et al., 2011). MicroRNAs have
an influence on depression by interfering with the stability of these
signaling pathways (Fan et al., 2014).

As shown in Figure 2. Wang et al. (2018b) found that miR-124-
3p was significantly downregulated in Brodmann area 44 (BA44) of
patients with MDD. Downregulation of miR-124-3p abolished its
inhibition of DNA damage inducible transcript 4 protein (DDIT4)
and SP1 expression, and inhibited the mTOR signaling pathway.
Roy et al. (2020) demonstrated that miR-128-3p was upregulated in
the amygdala of MDD patients, leading to a decreased expression of
Wnt5b, LEF1 and DVL1, which are genes related to the Wnt
signaling pathway. Disruption of canonical Wnt/Fz/
GSK3 signaling leads to abnormal neurodevelopment that is
associated with neuropsychiatric disorders (Voleti and Duman,
2012).

Moreover, the downregulation of Gria3 and Gria4 receptors
induced by miR-124-3p had an influence on modulation of AMPA
receptor, and correlated with an impaired synaptic plasticity in
patients with depression (Roy et al., 2017a). In the basolateral
amygdala of depressed patients, upregulated miR-511
downregulated the encoded GFRα1a specific isoform of the
GFRA1 gene of the receptor (Maheu et al., 2015). The subtypes,
GFRα1a and GFRα1b elicited different downstream effects and had
opposing effects in some aspects of neuroplasticity. The promotion
of axonal growth by GFRα1a, was downregulated, while the
inhibition of axonal growth by GFRα1b, was relatively
upregulated, leading to the development of depression (Maheu
et al., 2015). The upregulation of miR-185 in brain BA10 of
MDD patients resulted in a decrease of TrkB-T1 expression.
TrkB-T1, a BDNF receptor lacking the tyrosine kinase domain,

was highly expressed in astrocytes and it regulated BDNF-evoked
calcium transients (Maussion et al., 2012). Importantly,
downregulation of TrkB-T1 in the frontal cortex might be
associated with the neurobiology of suicide (Maussion et al., 2012).

In animal models, miR-139-5p regulates the cAMP/PKA/CREB/
BDNF pathway to promote hippocampal neurogenesis by targeting
PDE4D. Huang et al. (2021b) demonstrated that downregulation of
miR-139-5p along with upregulation of its target gene PDE4D and
downregulation of p-CREB and BDNF after inducing depression-
like symptoms in CUMS mice. Such alterations show a bidirectional
role for microRNAs in both protection and impairment of the
neurogenesis pathways. In addition, Mingardi et al. (2021) found
that miR-9-5p expression decreased in the hippocampus of rats
subjected to chronic mild stress and primary hippocampal cultures.
This change would cause overexpression of its downstream target
protein REST, which would negatively affect neuronal dendritic
morphology.

3.3 Role of microRNAs in MDD caused by
changes of hypothalamic-pituitary-adrenal
axis

Chronic stress has long been recognized to be a potential risk
factor for depression, which is often associated with depression
prevalence. The activity of the HPA axis is mediated by arginine
vasopressin (AVP) and hypothalamic secretion of corticotropin
releasing factor (CRF), which in turn activates the pituitary gland
to secrete adrenocorticotropic hormone (ACTH), and finally
stimulates the adrenal cortex to secrete glucocorticoids.
Glucocorticoids then interact with receptors in multiple target
tissues, where they directly exert negative feedback regulation on
ACTH secreted by the pituitary as well as CRF secreted by the
hypothalamus (Pariante and Lightman, 2008). Changes in
glucocorticoid receptor (GR) expression, nuclear translocation,
cofactor binding, and GR mediated gene transcription may play
an important role in glucocorticoid resistance, which will lead to the
development of HPA axis hyperactivity (Colla et al., 2007; Alt et al.,
2010). Impaired GR function occurring in the periphery leads to the

TABLE 2 (Continued) Summary of researches on the changes in the levels of microRNAs and their target genes in experimental animals induced to develop
depression.

References Sample sources microRNA Regulation
MDD vs. HC

Targeted gene Expression of
target gene

Roy et al. (2020) Cerebral Amygdala miR-128-3p Up DVL1, LEF1, WNT5b, Snail1,
Arpp21

Down

Volk et al. (2016) Cerebral Amygdala miR-15a Up FKBP51 Down

Aschrafi et al. (2016) Midbrain miR-326 Down Urocortin 1 (Ucn1) Up

Issler et al. (2014) Raphe Nuclei (RN)/Whole
Blood

miR-135a Down Htr1a, Slc6A4 Up

Fei et al. (2020), Huang
et al. (2022)

Brain Microglia miR-29b-3p Down MMP2 Up

Wang et al. (2021) Neural Stem Cells (NSC) miR-34a-5p Up Tia1 Down

Frontiers in Pharmacology frontiersin.org07

Ding et al. 10.3389/fphar.2023.1129186

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1129186


development of HPA axis hyperactivity. High glucocorticoid levels
resulting from HPA axis hyperactivity may be involved in
glucocorticoid-dependent hippocampal plasticity changes, causing
hippocampal atrophy and reduced hippocampal neurogenesis,
which in turn promotes the development of MDD (Kronenberg
et al., 2009; Schmidt et al., 2009). As observed in depressed patients,
HPA axis activity is the main biochemical change in addition to
monoaminergic neurotransmitter disturbances (Budziszewska,
2002). MicroRNAs can influence the HPA axis activity by
affecting glucocorticoid related receptors or other pathways
(Uchida et al., 2008; Vreugdenhil et al., 2009).

Roy et al. (2017a) confirmed the effect of HPA axis hyperactivity
on depression by examining the changes in miR-124-3p and its
downstream target genes in PFC (BA46) and serum of mice with
depression-like symptom after chronic CORT treatment.
Furthermore, the detection of PFC (BA46) in post-mortem
brains from depressed patients coincides with animal
experiments (Roy et al., 2017a). In addition, upregulation of
miR-124-3p in human and animal models was confirmed to be
associated with downregulation of AMPA receptor family members
Gria3 and Gria4, and glucocorticoid receptor NR3C1. MiR-124-3p
mediated repression of NR3C1 may be central to the associated
neuroendocrine response to stress (Roy et al., 2017a).

The central nervous system responses are of greater concern
regarding hyperactive HPA axis responses. Al-Rawaf et al. (2021)
demonstrated that the excessive cortisol activity induced by HPA
axis hyperfunction was significantly correlated with decreased
serotonin levels. A previous study has confirmed that the
expression level of miR-124 was regulated by serotonin and

demonstrated a significant negative correlation (Rajasethupathy
et al., 2009). MiR-124 could control serotonin to induce synaptic
function by repressing the transcription of cAMP response element
binding protein (CREB), and conversely, CREB could further
regulate miR-124 expression (Rajasethupathy et al., 2009). In
addition, aberrant expression of miR-34a-5p and miR-451-a
significantly reduced BDNF expression, and BDNF affected
serotonin and cortisol expression by producing pro-
neuroprotective signals (Numakawa et al., 2009; Numakawa
et al., 2012; Wibrand et al., 2012).

3.4 MicroRNAs are involved in depression
caused by abnormal inflammatory response

Depression and inflammation mutually contribute to the
development of each other’s pathophysiology (Kiecolt-Glaser
et al., 2015). Since the study of T and B lymphocytes in
psychiatric patients by Herzog et al. (1979), the exploration of
the relationship between the inflammatory response and
depression has gradually unfolded (Herzog et al., 1979). Over the
past four decades, accumulating evidence has shown that MDD is
associated with systemic immune activation, including
inflammatory markers, and changes in the number of immune
cells (Gibney and Drexhage, 2013). Cytokines are one of the
most important components of the immune system in
depression. In response to peripheral infections, innate immune
cells produce pro-inflammatory cytokines that act on the brain
leading to development of neuropsychiatric disorders. When the
peripheral immune system is continuously activated, immune
signaling to the brain leads to exacerbation of the disease, and
development of depressive symptoms in patients (Dantzer et al.,
2008). The traditional routes of communication between the
periphery and the central involve neural and humoral pathways,
which mainly include: neural pathways (Harrison et al., 2009),
signaling via cerebral endothelial cells (CECs) (Rivest et al., 2000;
Kobayashi, 2010), signaling via circumventricular organs (CVOs)
(Ransohoff et al., 2003) and peripheral immune-cell-to-brain
signaling (Geissmann et al., 2003). TNFα, IL-1β and IL-6 are the
main cytokines involved in the signaling of these pathways (Dantzer
et al., 2008; Capuron and Miller, 2011). Recently, communication
through the gut-microbiota-to-brain rout has gained increasing
attention because of its role in regulating brain function (Jenkins
et al., 2016; Sherwin et al., 2016). MicroRNAs participate in the
pathophysiological process of inflammation in depression by
promoting the production of inflammatory factors, as shown
Figure 3. Changes in cytokine levels in patients with MDD have
been identified to be associated with patient mood and volition
(Beurel et al., 2020).

Wang et al. (2018a) pointed out that the upregulated expression
of miR-19a-3p was detected in dlPFC and PBMC of MDD suicide
completers. Gene analysis demonstrated that the elevated miR-19a-
3p upregulated the expression of TNF-α by affecting the
transcription of TAR-RNA binding protein (TRBP) and HuR
(Wang et al., 2018a). The upregulation of TNF-α in dlPFC and
PBMC was confirmed to be associated with suicidal ideation in
MDD patients (Wang et al., 2018a). Sundquist et al. (2021)
demonstrated that, in 178 patients with depression, anxiety, or

FIGURE 1
Role of microRNAs in serotonin dysregulation. The inhibitory
receptor 5HT1AR is hyperactivity or increased under the influence of
miR-135a, miR-200a, miR-30a, and miR-30e, lead to the occurrence
and development of depression. DCV and SERT undergo
quantitative abnormalities under the influence of miR-329, miR-362
and miR-135a, causing dysregulation of monoamine transmitter
secretion and reuptake. GRM4, whose transcription is increased by
miR-1202 downregulation, can regulate monoamine
neurotransmitter transmission (Created with BioRender.com).
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stress and adjustment disorders, 36 inflammatory proteins with
significantly different expression in peripheral blood of patients at
baseline were seen, including 21 inflammatory proteins with
increased levels and 15 with decreased levels, and all were
associated with changes in miR-144-5p levels. In addition, the
alteration in inflammatory proteins, which occurs after receiving
treatment, was demonstrated to be associated with improvement in

patients’ psychiatric symptoms (Sundquist et al., 2021). CircDYM,
as an endogenous miR-9 sponge, is able to inhibit the activity of
miR-9. Zhang et al. (2020b), by examining peripheral blood samples
from MDD patients, hippocampus and plasma samples from MDD
animal models, found that circDYM levels were significantly
decreased. This would lead to enhanced miR-9 activity, which in
turn would cause polarization of microglia. In a recent research,

FIGURE 2
Role of microRNAs in neuroplasticity and neurogenesis abnormalities. MiR-124, miR-128, miR-139, miR-144 and others are involved in the
regulation of neuroplasticity and neurogenesis through multiple pathways. These pathways mainly include Wnt/β-Catenin signaling pathway, mTOR
signaling pathway, LTP signaling pathway, etc.

FIGURE 3
Role of microRNAs in inflammatory factors and neurotransmitters in depression. Psychiatric symptoms in humans are influenced by a variety of
neurotransmitters and inflammatory factors. Among these inflammatory factors, IL-1β, IL-6, TNF, and IFNα are influenced by microRNA levels.
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Xian et al. (2022) found miR-9-5p-enriched exosomes derived from
PC12 cells in the serum of MDD patients. After BV2 microglia
phagocytosed miR-9-5p-enriched exosomes, they were polarized to
M1 subtype microglia via the SOCS2-STAT3 axis. Since then,
M1 subtype microglia has produced a large amount of IL-1β, IL-
6 and TNF-α. It leads to and intensifies the damage of neurons and
causes the occurrence and development of MDD. Recent studies on
depression triggered by microbial dysbiosis has shed new light on
the role of abnormal inflammatory responses in the pathophysiology
of depression (Borre et al., 2014; Dubois et al., 2019; Rea et al., 2020).
This perspective explores the link between the gut microbiota and
the regulation of the brain-gut axis, immune and endocrine system
activity, and neurophysiological changes. Communication between
the brain and the gut occurs bidirectionally via neural, endocrine,
and immune pathways. Microbiota dysbiosis and an increased
intestinal permeability with subsequent immune responses seem
to be at the root of chronic mild inflammation associated with
neuropsychiatric disorders (Petra et al., 2015; Rea et al., 2017; Farzi
et al., 2018).

4 Summary and prospect

MicroRNAs are recognized as key epigenetic regulators of multiple
functions in the brain and play a key role in MDD pathogenesis. As
research continues to deepen, the roles of microRNAs in the
pathophysiology of depression are gradually being elucidated. This
review summarized recent research progress focusing on the role of
microRNAs in the pathophysiology of depression, including
dysregulation of monoamines, abnormalities in neuroplasticity and
neurogenesis, hyperactivity of the HPA axis, and dysregulation of
inflammatory responses. This suggests that an indispensable role for
microRNAs occurs in these pathways. Several studies looking at
changes in the levels of microRNAs and their downstream target
genes before and after antidepressant treatment have confirmed a
role for microRNAs in depression. Clearly, there are interactions
between these different pathways and this exhibits the complexity in
the pathogenesis of depression.

Based on the above four pathophysiological mechanisms of
depression, it can be found that MDD, whether caused by
dysregulation of monoamines or hyperactivity of the HPA, have
parts that interact and influence each other. It is difficult to explain
by a single pathophysiological mechanism, either from the clinical
presentation of MDD patients or from changes in laboratory
experiments. For example, high levels of cortisol in patients with
Cushing syndrome resulted in alterations of neurotransmitter
function, such as reduced serotonin synthesis. This can also be
detected in MDD patients with HPA axis hyperactivity induced by
long-term chronic stress (Stokes, 1995). In addition, high levels of
cortisol inducing loss of hippocampal dendrites, and neuronal
plasticity is recognized as one of the causes of depression (Gotlib
et al., 2008). In addition, miR-124 can in turn control serotonin-
induced synaptic facilitation by inhibiting the transcription of CREB
(Rajasethupathy et al., 2009). Taken together, neuroinflammation
could contribute to the pathogenesis of depression by interacting
with the dysregulation of brain monoamines, dysregulation of the
HPA axis, and alterations in hippocampal dentate gyrus neurons
(Troubat et al., 2021).

It is important to note that current studies based on the role of
microRNAs in depression have certain limitations, especially for the
relationship between microRNAs and depression. Whether protective
or injurious during the development of the disease, the levels of
microRNAs in the brain tissue or peripheral tissues of patients do
change when compared to normal individuals. Nevertheless, it is tough
to confirm which of the varied microRNAs are responsible for the
pathogenesis of MDD or that the major depressive disorder causes
changes in certainmicroRNAs. If changes in specificmicroRNAs can be
confirmed to contribute to the development ofMDD, thesemicroRNAs
could be used as biomarkers for the diagnosis of the disease. In the same
way, if it can be confirmed that MDD causes changes in the expression
of microRNAs, and at the same time, alterations in these microRNAs
can cause changes in the expression of downstream mRNAs and then
have favorable or adverse effects on patients, this finding will be very
important for the potential treatment of the disease and in stopping its
development.

Since the discovery of the stable presence of free microRNAs in
serum in 2018 (Chen et al., 2008), studies on the determination of
microRNA levels in the serum of patients with depression have also
gradually increased. However, it is undeniable that such studies have
limitations as microRNAs in blood samples may not accurately
reflect disease pathogenesis in the brain, because blood microRNAs
are a mixture of brain-derived microRNAs and other microRNAs
excreted from various tissues. The identification of microRNA
within exosomes secreted by brain cells into the circulation may
be able to compensate for the limitations that exist.

Finally, it is clear that microRNAs play an integral role in the
pathophysiology of depression and may perhaps be able to provide a
reference for the diagnostics and prognostics in depression by
examining microRNA levels in relevant tissues. Moreover,
promoting or inhibiting the expression of microRNAs might
provide new clues for the development of antidepressant drugs.
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