
Enrichment analysis of phenotypic
data for drug repurposing in rare
diseases

Alberto Ambesi-Impiombato*, Kimberly Cox, Sylvie Ramboz,
Daniela Brunner, Mukesh Bansal† and Emer Leahy

PsychoGenics, Paramus, NJ, United States

Drug-induced Behavioral Signature Analysis (DBSA), is a machine learning (ML)
method for in silico screening of compounds, inspired by analytical methods
quantifying gene enrichment in genomic analyses. When applied to behavioral
data it can identify drugs that can potentially reverse in vivo behavioral symptoms
in animal models of human disease and suggest new hypotheses for drug
discovery and repurposing. We present a proof-of-concept study aiming to
assess Drug-induced Behavioral Signature Analysis (DBSA) as a systematic
approach for drug discovery for rare disorders. We applied Drug-induced
Behavioral Signature Analysis to high-content behavioral data obtained with
SmartCube

®
, an automated in vivo phenotyping platform. The therapeutic

potential of several dozen approved drugs was assessed for phenotypic
reversal of the behavioral profile of a Huntington’s Disease (HD) murine model,
the Q175 heterozygous knock-in mice. The in silico Drug-induced Behavioral
Signature Analysis predictions were enriched for drugs known to be effective in
the symptomatic treatment of Huntington’s Disease, including bupropion,
modafinil, methylphenidate, and several SSRIs, as well as the atypical
antidepressant tianeptine. To validate the method, we tested acute and chronic
effects of tianeptine (20 mg/kg, i. p.) in vivo, using Q175 mice and wild type
controls. In both experiments, tianeptine significantly rescued the behavioral
phenotype assessed with the SmartCube

®
platform. Our target-agnostic

method thus showed promise for identification of symptomatic relief
treatments for rare disorders, providing an alternative method for hypothesis
generation and drug discovery for disorders with huge disease burden and unmet
medical needs.
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Introduction

Applying advanced analytical methods and machine learning to biological data has great
promise for drug discovery and development. An area that would benefit greatly is the
repurposing of drugs for rare disorders that lack effective therapeutic treatments. Partly due
to the lack of understanding of the key biological underpinnings driving disease presentation
and progression, drug discovery for rare disorders lags behind other drug discovery efforts.
With this in mind, we developed a method to repurpose approved drugs (or, alternatively,
identify novel treatments) for behavioral symptom relief: Drug-induced Behavioral
Signature Analysis (DBSA).
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From gene expression to behavior

DBSA was inspired by gene expression enrichment analysis
(GSEA), used in the genomic and bioinformatic areas of
research, to identify genes or pathways significantly affected by a
disease (Subramanian et al., 2005). GSEA has been used to identify
drugs or compounds based on their potential to reverse the disease
signatures (Lamb et al., 2006). Similarly, DBSA defines behavioral
symptoms that are exacerbated in an animal model of disease and
finds putative treatments with the potential to normalize such
disease-driven phenotypes. The application to behavioral data,
involving the identification of behavioral symptoms affected by a
disease, requires both a good animal model of the target disease, and
a large dataset of drug phenotypic signatures using the same species.
Hypotheses regarding possible treatments can then be followed by
direct in vivo testing of the novel ideas in the target animal model, as
a first-tier validation.

This study explores the utility of DBSA, using phenotypic
behavioral drug effect profiles, compared against phenotypic data
of a target animal model of Huntington’s Disease (HD). The target
behavioral signature derived from an animal model consists of
increased or decreased behavioral features relative to the wild
type (WT) control (Figure 1). This target signature is then
systematically compared to drug signatures from the library,
consisting of drug-induced effects on the full set of measured
behavioral features relative to vehicle-treated controls, in WT
mice. Compounds with robust significant reversal of the model

signature are identified as those with the greatest potential for
repurposing. Candidate compounds can be further validated in
follow-up studies where the target model is treated to test
whether the phenotype is rescued.

Behavioral data

A requirement for the application of DBSA to in vivo phenotypic
data, is that the behavioral assessment should be done in a
standardized manner and should be comprehensive.
Standardization ensures that drug datasets can be compared to
animal model datasets, whereas the comprehensive scope of the
phenotype assessment facilitates translation to the clinic. To satisfy
both requirements we collected behavioral data with the
SmartCube® platform using a standard protocol to characterize in
vivo drug signatures of the HD model relative to their WT controls,
as well as the library compounds relative to their vehicle controls.
We finally tested the top drug candidate resulting from the
screening, again using the same standard protocol, after
administering the drug candidate to the HD model mice. This
platform employs computer vision and mechanical actuators to
detect spontaneous and evoked behavior eliciting responses through
anxiogenic, startling, and other stimuli. Behavioral readouts include
locomotion, trajectory complexity, body posture and shape, simple
behaviors, behavioral sequences, and other features describing
minute body shape and movement (Roberds et al., 2011;

FIGURE 1
Overview of the DBSA method. Target Phenotype of the Disease Model: Animal models of a rare disease and their wild type controls are tested
through a high throughput standardized behavioral phenotyping platform. Target Phenotype Disease Signature: Identify top features and the direction of
the change. A theoretical example shows increased (blue) and decreased (red) features, relative toWT controls.Drug Library Screen: Testing in vivo, inWT
mice, compounds are assessed for their phenotypic effects on behavior (using the same standardized phenotyping platform). Behavioral feature
profiles are generated for theWTmouse groups treated with each compound, comparing their effects with a vehicle group (increased in blue, decreased
in red). Ranking of Library Compounds. The compound profiles are analyzed against the target disease signature to rank compounds according to their
potential to reverse or worsen the disease phenotype.
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Alexandrov et al., 2016; Kabitzke et al., 2020). These key features
enable use of drug signatures from several dozen drugs at many
doses (see Supplementary Table S1), which have been collected
using the same protocol (including mouse strain, vehicle, and
administration route).

Huntington’s disease (HD)

Another key aspect of the method is the choice of a suitable
animal model of the targeted disease. In this study, we applied
DBSA to identify novel therapeutics for HD, a devastating rare

FIGURE 2
Differential behavioral features for female Q175 HD mice at 6 months. (A) Overall discrimination between HD and WT groups in the decorrelated
feature space of DRFA, corresponding to a Discrimination Index of 80.2% (p < 0.02). (B) T-scores for the top features differentiating the two groups that
are entered in the DBSA computational model. Left- and right-most features are those more robustly increased or decreased in the Q175 model as
compared to the WT group. Features noted with the (−) symbol represent latencies. Numerical suffixes indicate variants of the same behavior,
observed at different times in the experimental session.

TABLE 1 Summarized results of the DBSA screening: doses (mg/kg) of reference compounds predicted to reverse the HD phenotype in both males and female
Q175, at any of the three different ages.

Male Female

Age (months) 2 6 10 2 6 10

Modafinil 30, 60, 120 30, 60, 120 15, 30, 60, 120

Bupropion 8, 32 8 8, 16, 32

Methylphenidate 5 5 2.5, 5, 10

Escitalopram 60 12 3, 6, 12

Tianeptine 60 20, 60 60

Amphetamine 4 0.5, 2 4

Caffeine 10 5, 10

Chlordiazepoxide 24 4 4
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neurodegenerative disorder with a prevalence of 5–7 cases per 100,000
(Walker, 2007). HD is caused by the autosomal dominant inheritance
of a CAG trinucleotide repeat expansion within the huntingtin gene
(HTT). Expanded CAG repeat results in an abnormal form of the
huntingtin protein (mHtt) affecting the polyglutamine region of the
protein.While the pathogenesis of HD is well described and its genetic
causes were established decades ago, there are still no available cures,
and its progressive nature results in a huge unmet medical need.

Animal model of HD

Many transgenic and knock-in (KI) mouse, rat, pig, and sheep
models of HD exist, and several mouse models have been characterized
using the SmartCube® technology, making them particularly interesting
for the present work. Behavioral features of HDmodels captured by this
platform seem to correlate to, and are predictive of, the underlying
pathology, as machine learning models trained on behavioral data can
be used accurately predict the size of the CAG expansion (Alexandrov
et al., 2016). Longer CAG repeats result in both early manifestation and
increased severity of symptoms, mimicking the progression of HD,
despite important differences between the mouse and human
huntingtin mutations. We chose the heterozygous KI Q175 model,
which has been extensively characterized (Menalled et al., 2012;
Alexandrov et al., 2016). The Q175 models show changes in striatal
genes expression starting around 3 months of age (Menalled et al.,
2012), and behavioral changes soon thereafter with clear cognitive and
motor deficits between 6 and 7 months of age, in both the original and a
derived Q175 model (Curtin et al., 2016; Wu et al., 2022). Although
cognitive aspects of HD are extremely important and can be studied in
the lab (Farrar et al., 2014), the present work only focuses on motor
function, exploratory behavior, response to aversive stimuli, and simple

aspects of learning as adaptation to a novel environment, which can be
captured in a high-throughput manner.

Drug library screen

The drug library used for this work comprises 77 reference drugs,
including antidepressants (e.g., bupropion, citalopram, fluoxetine,
imipramine, tianeptine), antipsychotics (e.g., aripiprazole,
chlorpromazine, clozapine, haloperidol, olanzapine), analgesics
(e.g., acetylsalicylic acid, codeine, morphine, naproxen, oxycodone),
anxiolytics (e.g., alprazolam, buspirone, chlordiazepoxide, MPEP,
oxazepam), psychostimulants (e.g., D-amphetamine, caffeine,
cocaine, methylphenidate), anticonvulsants/mood stabilizers
(carbamazepine, gabapentin, lamotrigine, lithium, tiagabine,
valproate), hallucinogens (DOI, MK801, phencyclidine), and other
CNS drugs. We only considered drugs profiled using a wide dose
range to characterize low and medium therapeutic effects, and to
capture side effects at higher doses (Supplementary Table S1).

Results

The Q175 phenotype

Data from a previous large phenotyping study (Alexandrov
et al., 2016) was used for the present report. Three cohorts of
Q175 mice, screened at 2, 6, and 10 months of age, were
compared with the corresponding WT mice to generate a
phenotypic signature, and extract the top features that drive the
phenotype at each age using the Decorrelated Ranked Feature
Analysis (DRFA) (Alexandrov et al., 2016). This machine

FIGURE 3
DBSA results. Enrichment Score showing reversal prediction of the phenotype of (A) 6-month-old male Q175 mice by 20 mg/kg of tianeptine, and
(B) 6-month-old female Q175 mice by 60 mg/kg tianeptine. The red and blue solid lines represent the running enrichment scores for the increased and
decreased features, respectively. The corresponding dashed lines present the theoretical maximum running enrichment scores. (C,D) Line graphs
depicting the t-score for the full set of behavioral features when comparing Tianeptine treatment vs. vehicle in normal mice. Red and blue vertical
bars mark the position of the features that were increased (blue) or decreased (red) in the Q175 mice as compared with the WT group.
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learning approach quantifies the phenotypic separation of two
experimental groups (Q175 mice and WT control, in this case),
in terms of a Discrimination Index (which measures the ability of a
machine learning algorithm to correctly classify random subsets of
the behavioral data). A useful feature of the DRFA analysis is that it
also allows quantification of the phenotypic treatment rescue of the
target model phenotype (Recovery Index; see Methods). DRFA is
accompanied by 2D visualization of the groups’ statistical estimates
(mean, standard error, and standard deviation) and their separation
in the discriminant space, and a p-value calculation derived from
repeated subsampling of the datasets (see Methods). Our screening
platform could identify behavioral changes that are consistent with
the expected HD phenotype in animal models and that can be
broadly mapped to expected traditional behavioral domains.

The Discrimination Index for the Q175 model (Figure 2 and
Supplementary Figure S1) showed a small difference at 2 months of
age (Males: 63.7%, p < 0.08; Females: 67.2%, p < 0.03), which
progressed to significant differences at 6 months (Males: 72.7%,
p = 0.01; Females: 80.2%, p < 0.02) and 10 months of age (Males:
89.6%, p = 0.006; Females: 99.4%, p < 0.001). The top HD features
that were consistently affected in Q175mice relate tomotor function
and exploration (Figure 2 and Supplementary Figure S2).
Specifically, exploration, locomotion, digging, and startle
amplitude were decreased, and immobility and freezing were
increased.

DBSA screening of drug library

The 77 drugs screened in WT mice comprised a total of more
than 200 doses (Supplementary Table S1). The different doses were
independently ranked by their potential to reverse the HD
phenotype, according to DBSA, and the top predictions were

identified for each gender and each age group tested. To decrease
the false positive rate, we considered only drugs predicted in both
male and female. Table 1 shows the results for the top 8 drugs and
their best doses, for males and females at different ages, separately.
We considered the 6 months of age the most relevant age, as model
mice show clear symptoms (as compared to the 2 months old
subjects) but still present with good general health (in contrast to
the 10-month-old mice). Sex-consistent results in the 6-month-old
mice were modafinil, bupropion, methylphenidate and tianeptine.

Figure 3 depicts the detailed DBSA results for tianeptine,
showing reversal of the phenotype of the 6-month-old male and
female Q175 mice by tianeptine treatment (20 and 60 mg/kg,
respectively). While tianeptine was predicted to reverse the HD
phenotype in both males and females, the male mice showed a more
robust effect, with reversal seen at both 2 months and 6 months with
60 mg/kg, and with the lower dosage of 20 mg/kg at 6 months.
Female data suggested that at 6 months only the higher dose of
60 mg/kg would be potentially useful. At this dosage the DBSA
predicted that reversal would be robust with many HD differential
features showing opposite changes with tianeptine treatment
(Figure 3D).

As the previous analysis consisted of in silico predictions of
drug effects for the target HD model, and tianeptine was
administered in normal mice only, we followed up with an in
vivo study directly treating HD mice with tianeptine, to validate its
therapeutic potential, and therefore the utility of DBSA for drug
discovery.

Tianeptine test in Q175 mice

To validate the prediction that tianeptine can reverse, to some
extent, the phenotype of HD model mice, we tested tianeptine in an

FIGURE 4
Effect of Tianeptine treatment on the Q175 HDmodel. Q175mice were treated (A) acutely or (B) chronically with tianeptine (20 mg/kg) or saline. WT
mice were treated with saline. A DRFA method was used to analyze all phenotypic data in toto. DRFA showed significant differences between Q175 and
WT groups, as expected (98.2% and 98.0% for the males and females, respectively; ps < 0.0005). The tianeptine-treated group was used as a test set, to
assess if they weremore similar to the vehicle-treated Q175 group or to theWT controls. DRFA showed significant rescue of the Q175 phenotype by
tianeptine (66.8% and 55.8% for males and females, respectively).
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independent cohort of Q175 mice and WT controls of the same
genetic background. As the DBSA predicted a relatively weaker
response in female mice, with only the higher dose of 60 mg/kg
predicted to be effective at 6 months, we hypothesized that a dose of
20 mg/kg would be able to ameliorate HD symptoms if given
chronically. Female Q175 mice were therefore treated with daily
i. p. injections, with either tianeptine (20 mg/kg) or vehicle for
4 weeks. Female WT controls were also chronically treated with
vehicle. Male Q175 received one injection of tianeptine (20 mg/kg)
or vehicle. Male WT controls were acutely treated with vehicle.

Analysis of behavioral results using the DRFA method showed,
as expected, that male and female Q175 mice were significantly
different from their corresponding WT control mice (with
Discrimination Indices of 98%; ps< 0.001, Figure 4). Tianeptine
significantly rescued the behavioral phenotype in both acute and
chronic experiments, with 66.8% (p < 0.001) and 55.8% (p = 0.002)
reduction of the disease phenotype, respectively (Figure 4). Results
in the male Q175 group were tighter, with many of the predicted
effects being realized (Supplementary Figure S3). Tianeptine mainly
reversed decreased mobility and digging, and normalized rearing, in
the Q175 male mice. Reversal in female Q175 was not so robust,
although still significant, with effects on specific features not being as
consistent as with the male group. The top features rescued by
tianeptine in the Q175 female mice were decreased mobility and
exploration.

Discussion

The DBSA method

The DBSA method is an in silico phenotypic screen of
compound libraries that identifies those compounds with
potential to reverse a behavioral phenotype for a particular
disease. In contrast to a gene expression enrichment analysis,
which may be a more direct assessment of the etiopathology of
disease, behavioral enrichment analysis only assesses downstream
behavioral manifestations in animal models of disease. DBSA is
therefore based on the simple idea that a drug affecting behaviors in
normal mice in the opposite direction than is observed in disease
model animals, may have the potential to restore those behaviors if
the model animals were treated with such drug. Many factors may
help to disprove this hypothesis. First, drug effects in WT mice may
engage different mechanisms of action than in animal models of
disease. In the case presented here, however, tianeptine effects inWT
mice closely resembled the effects in Q175 mice (Supplementary
Figure S4). Second, disease-modifying and symptomatic treatment
may require chronic treatment, not possible for a quick in silico
screen. (Compound libraries in our system are administered acutely
to healthy mice: chronic treatments will be prohibitively expensive.)
Despite these valid concerns, DBSA is attractive because there are no
quick and efficient ways to systematically generate hypothesis
regarding novel mechanisms of action or drug repurposing for
relief of disease burden. For most rare diseases, even for those
disorders where the gene defect is known, no treatment exists due to
either lack of knowledge or the complexity of the underlying biology.
Small markets and reduced profitability results in low investment in
R&D for these diseases. Thus, the ability to screen large libraries of

test compounds in disease models for drug repurposing has been
recognized as a game changer (Bellomo et al., 2017; Wu et al., 2022).
Our method extends phenotypic drug-repurposing from cell assays
and small animal (worms, flies, fish) screens to whole rodent in silico
screen as a first step. In the context of large library screening, it is of
sufficient value to rank potential compounds to generate hypotheses
in silico. These hypotheses can then be assessed with regards to their
mechanism of action, or, in amore agnostic manner, tested in vivo in
the appropriate disease model.

Drug library

The compound library used in this study consisted of a large
compendium of reference CNS drugs (Supplementary Table S1), at
2 or more doses. Screening this library against the behavioral
profiles of an animal model of HD identified several drugs that are
used clinically to treat neuropsychiatric symptoms of HD,
including modafinil, bupropion, and methylphenidate
(McColgan and Tabrizi, 2018), and the atypical antidepressant
tianeptine, as a novel potential treatment for HD. We further
showed empirical support for the DBSA method following acute
and chronic treatments of Q175 mice with tianeptine.

The Q175 model of HD

The DBSA method relies on the suitability of available animal
models of disease. The Q175 model has been characterized in
different laboratories and shown to recapitulate at least some of
the phenotypic, molecular, and neuronal pathology of HD
(Menalled et al., 2012; Smith et al., 2014; Heikkinen et al., 2020),
despite having a CAG expansion rarely seen in humans. Moreover,
using tools similar to those used in this study, we previously showed
that phenotypic characteristics can be used to predict or “diagnose”
the number of CAG repeats (Alexandrov et al., 2016). Thus, as
measured behavioral features show correlation with the molecular,
cellular, and network changes driven by the CAG repeat expansion,
we hope that our results have a degree of translatability. The focus of
this study, however, is to present a novel method to screen, in a high
throughput manner, library compounds and identify those with
potential therapeutic effects to relieve symptoms, at a minimum, in
animal models of rare diseases. Thus, the interpretability of the
phenotypic measures is not a requirement for this purpose, although
the motor and grip strength abnormalities identified in HD
Q175 mice (Menalled et al., 2012), are likely related to the
behavioral motor features captured by SmartCube® (Figure 2;
Supplementary Figure S2).

Tianeptine

As we selected the top drug predictions from DBSA, we
considered possible phenotypic differences between male and
female HD model mice, and therefore analyzed predictions
separately for each sex. There is consistent evidence that sex-
driven neurophysiological differences affect preclinical drug
development outcomes (Williams and Trainor, 2018). For
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instance, Nestler’s group (Monteggia et al., 2007) showed that KO
models of BDNF, a neurotrophin thought to play a crucial role in
depression and anti-depressant responses, display significant sex
differences in locomotion and depression-like behaviors, even as
both sexes show reduced response to antidepressant desipramine.
Hence, the weaker response predicted in female Q175 mice by our in
silico screening compared to male (phenotypic reversal predicted at
higher doses in female, see Table 1), is consistent with the above-
mentioned sex-specific phenotypic differences. This differential
predicted response by tianeptine in the two sexes, led us to opt
for a chronic tianeptine treatment regimen in the follow-up
validation experiment for female Q175 mice as opposed to the
acute treatment administered to mice in the male Q175 validation
experiment. As the main focus of the present study was testing the
viability of high-throughput behavioral screening for drug
discovery, further studies are needed to extend our results
aimed at investigating the biological mechanisms involved in
the potential therapeutic mechanisms of tianeptine in HD. An
independent study (Zhang et al., 2018) supporting our results
showed that chronic tianeptine ameliorated anxiety and
depression-like behavior in animal models of HD (including
the R6/1 transgenic, Q111 homozygous knock-in, and
Q140 Het knock-in models). It was hypothesized that
tianeptine restored impaired hippocampal synaptic plasticity
through augmentation of brain-derived neurotrophic factor-
tyrosine receptor kinase B signaling pathway, and subsequent
normalization of AMPAR trafficking. Another proposed
mechanism by which tianeptine may improve symptoms of HD
is by restoring neuronal calcium signaling via store-operated Ca++
channels (Czeredys, 2020). While the underlying mechanism of
tianeptine in preclinical HD models is not yet understood, several
other antidepressants (e.g., SSRIs and bupropion) are already used
in clinical settings (McLauchlan et al., 2022), supporting the
conclusion that tianeptine may be a viable treatment in HD
patients. Tianeptine is considered safe and efficacious in
another neurodegenerative disease, Parkinson’s Disease
(Agüera-Ortiz et al., 2021). However, as tianeptine presents an
atypical pharmacology (Alamo et al., 2019), only direct tests in
clinical trials can determine if these preclinical results will translate
into clinical results for HD.

Conclusion

This study is presented as an exploration and proof-of-
concept of the DBSA method. We aimed at exploring the
feasibility of in silico drug repurposing, using a combination of
machine learning, high-throughput behavioral phenotyping, and
animal models of disease. We tentatively showed that the method
can identify drugs with therapeutic potential for neuropsychiatric
symptoms of neurodegenerative disorders such as HD. Indeed, as
an extension of the application of machine learning methods to
drug discovery, the DBSA method exemplifies the power of
combining machine learning-based in vivo phenotyping and in
silico modeling. To the extent that the model of disease presents
robust construct and etiological validity, this method promises to
uncover further potential drugs for repurposing in other diseases
with great unmet needs. Moreover, as the system is target-

agnostic, potential novel polypharmacology could be
discovered simply based on phenotypic reversal of the models’
feature signatures. Applying this method to a large selection of
reference compounds led us to the identification of tianeptine as a
putative drug for the treatment of HD patients, which we
validated with additional assays, and is supported by
independent studies. As a target-agnostic approach, our
method can complement standard drug discovery approaches,
especially for those cases in which the underlying molecular and
neuronal mechanisms are not well understood. For rare diseases,
DBSA presents a unique hypothesis-generating platform with
actionable outcomes.

Materials and methods

SmartCube®

The SmartCube® system is designed to measure numerous
spontaneous behaviors and response to challenges in the same
testing environment over a 45 min session. The proprietary
hardware includes force sensors under the floor to capture fast
movements such as a startle response. Several aversive stimuli are
presented every 8–10 min to elicit reactive behavior, with resting
periods interlaced to capture spontaneous behaviors. The
aversive experimental challenges constitute a fixed standard
protocol including: a change from a smooth floor to a floor
constituted of small columns spaced such that the subject can
place a limb in between (a misstep), but not the whole body;
presentation of a small probe that delivers a mild aversive current
when contacted; and a tactile air puff startling stimulus. Three
orthogonally positioned video cameras provide constant 3D
view. Digital videos of the subjects are processed using
computer vision machine learning background segmentation
followed by a standard elliptical model fit to each mouse
frame image. The resulting fitted parameters describing body
shape and dimensions, x-y-z coordinates of different body parts,
form time series with about ½ million point each per mouse per
session. A final dimensionality reduction step uses hardcoded
rules and machine learning to detect and quantify over
2,000 behavioral features, such as rearing, grooming,
locomotion, digging, and immobility, and their transition
probabilities. Actions in the platform such as assignment of
subjects to the different experimental chambers, running the
standard session, starting and stopping camera recording,
transferring videos, extracting behavioral features, and storing
in a database occur automatically with minimal human
intervention.

Animals and experimental method

WT mice for reference drug screening: C57BL/6NTac male mice
were received at 7 weeks of age from Taconic Farms (B6-M). Most
doses were tested in groups of more than 15 (most groups were close
to 20 mice). Only triazolam was tested with 9–11 mice. HD Model
DBSAModeling Data.Cohorts of female andmaleWT andQ175 het
mice were received from Jax Laboratories and tested at 2 (N =
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12–16), 6 (N = 9–15), and 10 months of age (N = 6–16). Such
behavioral data and associated molecular biomarkers are publicly
available as part of the Mouse Htt Allelic Series Project (Preclinical
informatics: HDinHD | CHDI Foundation). HD Model Acute
Cohort: WT male mice (C57BL6/J, Stock 000664; Jackson
Laboratories; N = 15) were received at about 6 months of age.
Q175 heterozygous (Het) male mice (N = 15) were generated at
PsychoGenics and enrolled in the study at 6 months of age. HD
Model Chronic Cohort: WT female mice (C57BL6/J, Stock 000664;
N = 18) were ordered from Jackson Laboratories at 5 months of age.
Q175 Het female mice (N = 26) were generated at PGI and enrolled
at 5 months of age.

Animals received from vendors typically spent 1 week
acclimatizing to the colony conditions. C57BL/6NTac mice were
housed in groups of three to four in mouse Opti cages. Q175 and
controls were housed in rat Opti cages with standard enrichment
(play tunnels, plastic bone and enviro-dry). Mice were taken in their
home cage to the experimental room area, where they remained
until they were placed in the SmartCube® apparatus. After the
session, mice were placed back into to their home cage and
returned to the colony room. Mice were body-weighted weekly
during dosing. Tail samples from all het Q175 mice were collected
and sent to Laragen to confirm genotypes and CAG repeats number.

Reference drugs screening in smartCube®

To build the reference data set (Supplementary Table S1), drugs
were injected at different appropriate doses using a common vehicle
consisting of 5% Pharmasolve, 30% premade P3 (1:1:1 PEG200:
PEG400: propylene glycol), 65% Saline. All drugs were injected i. p.
and tested in SmartCube® after a 15-min pretreatment.

Tianeptine testing in Q175 mice

Tianeptine (Tocris) or vehicle was administered i. p. once in the
acute group or daily for 4 weeks in the chronic group. Mice in the
acute group were tested in SmartCube® 15 min after injection.
Animals in the chronic group were tested in SmartCube® 15 min
after the last injection. All drugs were dissolved in saline and injected
with a dose volume of 10 mL/kg.

DRFA

To quantify phenotypic discrimination of HD mice vs. WT, and
percent recovery by acute or chronic tianeptine treatments, we used
DRFA, as previously described (Alexandrov et al., 2015). This
method transforms the original behavioral features into linear
combinations (decorrelated features). Each decorrelated feature is
a statistically independent, weighted combination of all features.
This avoids overfitting and overinterpretation of certain features due
to high correlation among some of the original features and reduces
the dimensionality of the data without loss of relevant information.
In this reduced-dimensionality feature space (DRF space), each
group can be graphically represented as a cloud, which represents
the groups’ mean (the center of the cloud), its standard deviation

(outer ellipse) and the standard error of the mean (inner ellipse).
DRFA quantifies the group separability as a Discrimination Index,
which estimates the degree of overlap between the multi-
dimensional probability distributions of the two groups within
the DRF space. Discrimination ranges between 50% and 100%,
where 50% represents no separation between the two groups and
100% represents complete separability. Once the DRF space is
determined from the HD and WT group data, a test group, the
treated HD mice, is projected onto the DRF space to quantify
recovery or rescue of a phenotype. Recovery is calculated by first
orthogonally projecting the test group onto the segment joining the
centers of HD and WT clouds in the multidimensional DRF space,
then the proximity of the test group mean to the WT mean is
measured relative to the HD mean, along the HD-WT segment. In
one extreme, if the test group overlaps (or extends further) with WT
group Recovery will be 100%, if it overlaps with HD (or extends
further in the opposite direction) the Recovery is 0%. We compute a
p-value on Recovery as a parametric test based on the t-distribution
comparing the test and HET groups (after projection onto the
segment), with the null hypothesis being that there is no
difference between the two.

DBSA method

This method quantifies enrichment of phenotypic measures
increased or decreased by a drug treatment against opposite
changes observed in the animal model (target phenotype). The
enrichment is computed based on an extension of GSEA
(Subramanian et al., 2005), called GSEA2 (Lim et al., 2009),
which tests enrichment of both increased and decreased feature
sets of the target phenotype against the differential changes
induced by the library compound. In GSEA2 this is
accomplished in a single step, as opposed to running two
separate GSEAs, one for the increased feature set and one for
the decreased feature set. By screening the profile of a target
phenotype against the entire database of library profiles, we
obtain enrichment scores for each library compound along
with a p-value, estimated by non-parametric statistics. Thus,
we rank the library compounds by the enrichment scores to
identify candidate compounds with reversed signature and select
them for further validation experiments (see Supplementary
Materials for details.)

Study approval

All animal experiments used humane end points, were approved
by the PsychoGenics Institutional Animal Care and Use Committee
(IACUC), which meets the membership requirements of AAALAC
and OLAW.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Materials, further inquiries can be
directed to the corresponding author.
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