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Background/aim: Hypertensive nephropathy (HN) is a common complication of
hypertension. Traditional Chinese medicine has long been used in the clinical
treatment of Hypertensive nephropathy. However, botanical drug prescriptions
have not been summarized. The purpose of this study is to develop a prescription
for improving hypertensive nephropathy, explore the evidence related to clinical
application of the prescription, and verify its molecular mechanism of action.

Methods: In this study, based on the electronic medical record data on
Hypertensive nephropathy, the core botanical drugs and patients’ symptoms
were mined using the hierarchical network extraction and fast unfolding
algorithm, and the protein interaction network between botanical drugs and
Hypertensive nephropathy was established. The K-nearest neighbors (KNN)
model was used to analyze the clinical and biological characteristics of
botanical drug compounds to determine the effective compounds.
Hierarchical clustering was used to screen for effective botanical drugs. The
clinical efficacy of botanical drugs was verified by a retrospective cohort.
Animal experiments were performed at the target and pathway levels to
analyze the mechanism.

Results: A total of 14 botanical drugs and five symptom communities were
obtained from real-world clinical data. In total, 76 effective compounds were
obtained using the K-nearest neighbors model, and seven botanical drugs were
identified as Gao Shen Formula by hierarchical clustering. Compared with the
classical model, the Area under the curve (AUC) value of the K-nearest neighbors
model was the best; retrospective cohort verification showed that Gao Shen
Formula reduced serum creatinine levels and Chronic kidney disease (CKD) stage
[OR = 2.561, 95% CI (1.025–6.406), p < 0.05]. With respect to target and pathway
enrichment, Gao Shen Formula acts on inflammatory factors such as TNF-α, IL-1β,
and IL-6 and regulates the NF-κB signaling pathway and downstream glucose and
lipid metabolic pathways.
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Conclusion: In the retrospective cohort, we observed that the clinical application
of Gao Shen Formula alleviates the decrease in renal function in patients with
hypertensive nephropathy. It is speculated that Gao Shen Formula acts by reducing
inflammatory reactions, inhibiting renal damage caused by excessive activation of
the renin-angiotensin-aldosterone system, and regulating energy metabolism.

KEYWORDS

hypertensive nephropathy, real-world data, machine learning, NF-κB signal pathway,
clinical decision support

1 Introduction

Hypertensive nephropathy (HN) is one of the common
complications of hypertension and can significantly increase the
prevalence of chronic kidney disease (CKD) (Ene-Iordache et al.,
2016; Williams et al., 2018). According to the current guidelines
(Hart and Bakris, 2010; Ene-Iordache et al., 2016; Carey et al., 2018;
Williams et al., 2018), patients with HN should not only manage
their blood pressure but should also consider renal protection to
obtain long-term benefits. Glomerulosclerosis is the most common
renal pathological change caused by hypertension. Long-term
hypertension leads to renal arteriosclerosis, transparent changes
in glomerular arterioles, increased renal vascular resistance,
inflammatory reactions, and renal tubulointerstitial fibrosis
(Seccia et al., 2017). Patients typically first present with
microalbuminuria and glomerular ischemia aggravated to
decompensation, followed by albuminuria, elevated serum
creatinine levels, polyuria, increased nocturia, and other
symptoms (Bakris, 2004; Ibsen et al., 2005; Hart and Bakris,
2010). Data from randomized controlled trials show that
lowering blood pressure while inhibiting the renin-angiotensin-
aldosterone system (RAAS) yields additional benefits for patients
with urinary albumin/creatinine ratios greater than 33.9 mg/mmol
(Bakris et al., 2010; Schmieder et al., 2011).

Botanical drugs have advantages in improving HN symptoms.
In the theory of traditional Chinese medicine (TCM), the use of
botanical drugs emphasizes the symptom characteristics of the
population. According to existing research (Owoicho Orgah
et al., 2018; Wu et al., 2018; Yan et al., 2018; Li et al., 2020),
compared with the use of antihypertensive drugs alone, the
combined use of chemical drugs and traditional Chinese
medicine prescriptions can more effectively reduce the
uncomfortable symptoms of patients, such as vertigo, poor
appetite, fatigue, drowsiness, frequent nocturnal urination, and
lower limb edema. However, most of these conclusions are based
on observational case‒control studies, and evidence from well-
designed randomized controlled trials is lacking.

Botanical drugs are rich in compounds that act on multiple
targets of the disease and improve the imbalance of the disease
biological networks (Zhao et al., 2010). HN involves a number of
complex pathological changes and is associated with a large number
of combinations of symptoms and signs. Using a complex network
based on real-world data (RWD), it is possible to collect relevant
information about diseases from electronic medical records (EMRs)
and biological databases and to analyze the prescription network of
botanical drugs in RWD, thereby decreasing the difficulties caused
by the diversity of the clinical manifestations of diseases (Wang et al.,

2019; Yang et al., 2021). Existing studies (Wang et al., 2021) show
that small molecules present in botanical drugs can not only act on
disease-related genes but also play a role in interfering with the
disease process through biological networks. TCM prescriptions
need to aim at a variety of symptoms and signs. Using network
pharmacology combined with a machine learning algorithm, we can
further explore the potential relationship between botanical drugs
and diseases, analyze network integration of botanical drugs and
disease phenotypes at the level of protein interactions to show the
effect of botanical drugs on disease-related molecular networks, and
explain the relevant mechanisms of action (Liu, 2013; Yang et al.,
2020).

This study was based on data derived from the EMRs of patients
with HN. The hierarchical network extraction algorithm and the fast
unfolding algorithm were used to summarize the network
information on patients’ prescriptions and disease symptoms. A
machine learning model was used to comprehensively analyze the
clinical information and biological characteristics and obtain the
core prescription Gao Shen Formula (GSF). Spontaneously
hypertensive rats were used to establish a model for the
verification of the mechanism of action of GSF (Figure 1).

2 Materials and methods

2.1 Data preparation

A total of 30,695 electronic medical records of patients
diagnosed with hypertension were collected from the Affiliated
Hospital of Shandong University of Traditional Chinese
Medicine from 1 July 2014 to 31 May 2017. A total of
2,055 patients with HN were extracted. The diagnosis,
demographic information (such as age and sex), chief
complaint, medication prescriptions, and results of auxiliary
examinations were collected from the patients’ EMRs. The
patients’ symptoms were described using standard
terminology, and the database was standardized with reference
to the Medical Subject Headings (MeSH) and the Chinese
Pharmacopoeia.

2.2 Botanical drug combination for the
treatment of HN

In this study, prescriptions were extracted from the EMRs of HN
patients. Setting botanical drugs as the node and the frequency of
occurrence of two botanical drugs in different prescriptions as
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weights, a weighted prescription network was established. The
hierarchical network extraction algorithm (Zhou et al., 2010) was
used to find the core botanical drugs in the network. At the same
time, relative risk (RR) was used to identify the botanical drugs that
were specifically used to treat patients with HN. The prescription
used to treat HN was set as the exposure group, the remaining cases
comprised the non-exposure group, and the single botanical drug
used in the exposure group was the final event. The botanical drugs
extracted by the hierarchical network and RR were combined and
regarded as the botanical drug combination for treating HN.

2.3 Module division of HN symptoms

The fast unfolding algorithm (Blondel et al., 2008) has been
widely used in data mining. In this study, a symptom network of
patients with HNwas extracted and established from EMRs. The fast
unfolding algorithm was used to find various combinations of
symptoms. Gephi (0.9.4) was used to implement the fast
unfolding algorithm.

2.4 Interaction network of botanical drugs
and symptoms

2.4.1 Compounds and targets of botanical drugs
The compounds and targets of core botanical drugs were

collected from public databases, including the Traditional
Chinese Medicine Systems Pharmacology Database and Analysis
Platform (TCMSP) (Ru et al., 2014), SymMap (Wu et al., 2019), the
Encyclopedia of Traditional Chinese Medicine (ETCM) (Xu et al.,
2019), PubMed, and CNKI databases. The PubChem and UniProt
databases were used to unify the information on compounds and
targets.

2.4.2 HN-related genes
HN-related genes were collected from the GEO database. The

data were analyzed online using the GEO2R tool and supplemented
using data from several mature databases, including Online
Mendelian Inheritance in Man (OMIM) (Amberger et al., 2015),
DisGeNET (Amberger et al., 2015), andMalacards (Rappaport et al.,
2017). Symptom-related genes were obtained in the SymMap
database.

2.4.3 Protein–protein interaction network
STRING (Szklarczyk et al., 2021) is a network-weighted

protein‒protein interaction database that integrates a variety
of data sources, including experimental data, algorithm
prediction, and literature mining. The regulatory targets of
botanical drugs and genes related to HN were input into the
Homo sapiens database to establish the protein‒protein
interaction network (PPIN). In this study, shortest path
analysis was used to identify the botanical drugs that are
closely related to HN in the PPIN. The Dijkstra algorithm is a
classical network node shortest-distance algorithm that is used to
calculate the shortest distance between nodes in the PPIN. Nodes
with a shortest distance of less than three were defined as strongly
connected nodes (Yang et al., 2020).

2.5 Biological characteristics of botanical
drugs

Information on the biological characteristics of the botanical
drug compounds was used to analyze their effectiveness. The degree
of regulation of HN was evaluated using information such as
bioavailability and target importance.

2.5.1 Evaluation of symptom community
To evaluate the regulation of each HN symptom by different

compounds, this study summarized the number of genes regulated
by different compounds in different symptom communities and
established a frequency matrix. The Manhattan distance (Man)
implemented in the proxy package (version 0.4-26) in R
3.6.3 was used to evaluate the compactness of compounds in
each module in the matrix.

2.5.2 Oral bioavailability
Oral availability reflects the extent to which compounds are

absorbed by the gastrointestinal tract and metabolized by the liver
and is used as an important indicator of a compound’s effectiveness
(Xu et al., 2012). The OB values of compounds were collected from
the TCMSP and SymMap databases.

2.5.3 Target similarity
The Jaccard similarity coefficient (Jac) is used to measure the

similarity between datasets. In this study, a Jac value was calculated
for each compound target. The average Jac value was used to
quantify the similarity of the botanical drug targets.

2.5.4 Similarity of biological processes
The semantic similarity of Gene Ontology (GO) provides a

method for calculating similarities among genes. In this study, GO
biological process semantic similarity (GoSim) was used to measure
the similarity between regulatory genes affected by compounds and
biological processes related to HN. BioConductor, implemented in
the GOSemSim package (version 2.12.1) in R 3.6.3, was used to
provide annotation data (Wang et al., 2007).

2.6 Model analysis of botanical drug
characteristics

K-nearest neighbors (KNN) is a supervised machine learning
algorithm that can generate a variety of feature information about
compounds, match the input features with the expected output to
create a learning function, and complete the classifier after cross-
learning to adjust the parameters. The KNN model is sensitive to
local information on interactions. KNN can be used to reflect the
connection characteristics of input compounds and is more reliable
for analysis of the targets of botanical drugs (Wang et al., 2019). In
this study, the biological characteristics of the compounds were
input into the KNN model and used to predict their relevance
to HN.

To determine the screening criteria to be used in the model, the
random walk with restart (RWR) algorithm was used to find the key
compounds. The HN-related gene was set in the PPIN as the seed
node, and the restart probability was 0.75 (Yang et al., 2020). The
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lower quartile of the correlation score calculated by RWR was set as
the screening threshold for important compounds, and screening
was implemented in the pyrwr package (version 1.0.0) in
Python 3.7.5.

The bioinformatics characteristics of botanical drug compounds
(including OB, Jac, GoSim, and Man) were used as the input
information for the KNN model and implemented in the kknn
package (version 1.3.1) in R 3.6.3. To avoid data waste, the training
uses 10 cross-validations to complete the model performance
evaluation (Wang et al., 2019).

To evaluate the performance of the KNN model, three other
KNN control models were designed; they included input only OB
(Comparison 2), input only Jac (Comparison 3), and input only gene
regulatory information including GoSim and Man (Comparison 4).

Receiver operating characteristic (ROC) curves of the four
models were drawn, and the area under the curve (AUC) values
were calculated to determine the effectiveness of the original model.
After determining the best model, the point closest to the upper left
corner of the ROC curve was used as the threshold point. Machine
learning models such as support vector machines (SVMs), gradient
boosting decision trees (GBDTs), and Bayesian networks (BNs),
which are widely used in botanical drug bioinformation network
analysis (Wang et al., 2007; Blondel et al., 2008; Yu et al., 2010; Zhou
et al., 2010; Xu et al., 2012; Liu, 2013; Ru et al., 2014; Sinwar and
Kaushik, 2014; Amberger et al., 2015; Piñero et al., 2016; Rappaport
et al., 2017; Wang et al., 2019; Wu et al., 2019; Xu et al., 2019; Yang
et al., 2020; Szklarczyk et al., 2021; Wang et al., 2021; Huan et al.,
2022), were compared with the KNN model to determine the
effectiveness of each model.

2.7 Botanical drug screening

The KNN model can perform the screening of effective
compounds. To effectively evaluate the effectiveness of botanical
drugs, this study calculated the number of effective compounds
contained in each botanical drug and used the hierarchical clustering
algorithm (HCT) to classify and screen botanical drugs. In this
study, Euclidean distance is used, and the clustering method of the
Ward (1963) rule is used. Based on the results obtained in this way,
the effective part of the core combination of botanical drugs was
determined and used as an effective prescription, GSF, for the
treatment of HN.

2.8 Pathway enrichment

In this study, the org.Hs.e.g.db package (version 3.10.0) in R
3.6.3 was used to annotate the regulatory genes affected by GSF, the
clusterProfiler package (version 3.14.3) (Yu et al., 2012) in R
3.6.3 was used for Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis, Q < 0.05 was used to define significant
enrichment pathways, and GO enrichment analysis was performed
using the same method. Metascape (Zhou et al., 2019) was used to
summarize the genetic information for each symptom module. The
molecular complex detection (MCODE) algorithm, implemented in
the MCODE package (version 2.0.2) in Cytoscape 3.9.1, was used to
analyze the interaction sets of the core targets of GSF in the PPIN, to

analyze the degree of closeness of each HN symptom, and to identify
the regulatory mechanism through which GSF acts.

2.9 Clinical efficacy of GSF

To evaluate the reliability of the KNN model and the HCT
screening results, a retrospective cohort study was designed and used
to evaluate the efficacy of GSF treatment based on real-world data.
The retrospective cohort was established by analyzing the EMRs of
2,055 HN patients, screening both patients whose prescriptions
included botanical drugs composed of GSF and patients who
were not treated with botanical drugs, and evaluating changes in
their clinical indices after six months of treatment. To ensure a
balance among the selected patients, the tendency score was used to
comprehensively quantify baseline factors such as age, sex,
hospitalization time, and renal function, and the inverse
probability processing weighted model was used. Inverse
propensity of treatment weighting (IPTW) (Austin and Stuart,
2015), implemented in the Matching package (version 4.911) in
R 3.6.3, was used to screen for matching patients, stabilize the
tendency score between groups, and achieve a baseline balance
among the patients.

The inclusion criteria were as follows: 1) a history of
hypertension for more than five years; 2) persistent
microalbuminuria or mild to moderate albuminuria during the
course of the disease; 3) renal dysfunction caused by primary
renal disease with hypertension and exposure to nephrotoxic
substances, congenital or hereditary kidney disease, or other
diseases; 4) a clear diagnosis in the medical record; and 5) the
patient’s data in the medical record are complete.

The exclusion criteria were as follows: 1) secondary
hypertension; 2) severe cardiovascular or cerebrovascular disease,
malignant tumors, severe hematopoietic system, respiratory system,
digestive system, or infectious disease; 3) incomplete auxiliary
examination of renal function during hospitalization; and 4)
hospitalization time less than 1 week.

The data of each eligible patient began with the electronic
medical record recorded during hospitalization. The items
collected include 1) the patient’s demographic characteristics
(name, sex, and age); 2) clinical features including length of
hospital stay, serum creatinine, uric acid, urinary protein, blood
lipids, and other parameters; and 3) details of the patient’s
treatment, including the composition of any traditional
Chinese medicine prescriptions used. The estimated
glomerular filtration rate (eGFR) was estimated using the
CKD-EPI formula (Levey et al., 2009). The CKD staging of
the patients was based on the Clinical Practice Guideline for
the Evaluation and Management of Chronic Kidney Disease that
appear in Kidney Disease: Improving Global Outcomes (KDIGO)
(Kidney Disease: Improving Global Outcomes (KDIGO) CKD
Work Group, 2012).

The sample size was estimated based on reports in the clinical
literature and on the previous research performed by the research
group. The effective rate of modern medicine for symptomatic
treatment is approximately 71% and that of combined traditional
Chinese medicine is approximately 88%. The formula used to
calculate the sample size is as follows:
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n �
Zα

���������
2�p 1 − �p( )√

+ Zβ

��������������������
p1 1 − p1( ) + p0 1 − p0( )√[ ]2

p1 − p0( )2 ,

where p0 is the effective rate of the control group and is set to 71%
and p1 is the effective rate of the exposure group and is set to 88%.
�p is the average value of p0 and p1. Zα and Zβ are the quantiles of
the standard normal distributions of α and β, respectively. This
study is a one-sided test, α � 0.05 and β � 0.1, then Zα = 1.65 and
Zβ = 1.28. The required sample size for each group was calculated
to be 95.

The traditional Chinese medicine prescriptions taken by
patients in the GSF group included the constituent drugs of
GSF. During the 6-month study period, all patients had records of
traditional Chinese medicine prescriptions during outpatient
visits or hospitalization in the Affiliated Hospital of Shandong
University of Traditional Chinese Medicine and blood or urine
test results related to their treatment with traditional Chinese
medicine. During this period, all patients took antihypertensive
drugs and patients with a GFR greater than 60 ml/(min · 1.73 m2)
were treated with angiotensin receptor blocker drugs,
including irbesartan 75–150 mg/d. Patients with a GFR less
than 60 ml/(min · 1.73 m2) were treated with calcium
channel blockers drugs, including nifedipine control tablets
30–60 mg/d.

2.10 Experimental model verification of GSF

2.10.1 Experimental design
Thirty 14-week-old male spontaneously hypertensive (SHR)

rats with body weights of 280–300 g were purchased from SPF
(Beijing) Biotechnology Co., Ltd., China [specific pathogen-free
level, certificate No. SCXK (Beijing) 2019-0010]. Ten age-
matched Wistar Kyoto (WKY) rats with body weights of
280–300 g were purchased from Beijing Vital River
Laboratory Animal Technology Co., Ltd., China [specific
pathogen-free level, certificate No. SCXK (Beijing) 2021-0006].
Chinese granule herbal extracts of GSF were purchased
from Tiangjiang Pharmaceutical Co., Ltd, China. Irbesartan
tablets [lot No. 0000009987] were purchased from Zhejiang
Huahai Pharmaceutical Co., Ltd. China. The SHR and WKY
rats were housed in standard plastic cages with a 12-h light/dark
cycle at 23°C ± 1 °C and given free access to food and water.
After a 10-week acclimation period, the 24-week-old SHR rats
were randomly divided into three groups: 1) a GSF group in
which each animal was treated with Chinese granule herbal
extract at 4.5 g/kg body weight per day (i.g.); 2) a positive
group in which each animal received irbesartan tablets
13.5 mg/kg body weight per day (i.g.); and 3) an SHR group in
which each animal received 2 mL of saline per day (i.g.). The
WKY group consisted of 10 rats, each of which received 2 mL of
saline per day (i.g.). The intervention lasted for 8 weeks. The
study was approved by the Animal Ethics Committee of the
Affiliated Hospital of Shandong University of Traditional
Chinese Medicine and the Institutional Animal Care and Use
Committee (IACUC) of Shandong University of Traditional
Chinese Medicine.

2.10.2 Histological observations
To evaluate histological changes in the kidney, the animals

were euthanized, and their kidneys were removed and quickly
immersed in 4% paraformaldehyde for 24 h. The kidney tissue
was dehydrated, embedded in paraffin, and sectioned at a
thickness of 3 μm. Finally, hematoxylin-eosin staining was
performed, and the pathological changes in the animals’
kidney tissue were observed under a light microscope at 400-
fold magnification.

2.10.3 Western blot analysis
The kidney tissue was ground in liquid nitrogen and cleaved

with a strong RIPA buffer (EA0002, Sparkjade). The protein
concentration was determined using a bicinchoninic acid (BCA)
protein quantitation kit (EA0002, Sparkjade). Primary antibodies
targeting NF-κB p65 (ab19870, Abcam), NF-κB p65 (phospho-
S536) (ab76302, Abcam), and beta-actin (20536-I-AP,
Proteintech) were incubated overnight with the target protein at
4 °C. The samples were then incubated with HRP-conjugated
secondary antibodies (EF0002, Sparkjade). Protein expression was
measured using an enhanced chemiluminescence reagent (ECL) kit
(ED0015, Sparkjade).

3 Results

3.1 Botanical drugs for the treatment of HN

Information on 2,055 patients with HN was collected; the
information included 1,499 prescriptions, including
425 botanical drugs that were used 35,734 times. The
hierarchical network extraction algorithm identified the core
botanical drugs, they included Astragalus mongholicus Bunge
[Fabaceae; Astragalus mongholicus radix et rhizoma] (huanqi)
15–25 g/d, Salvia miltiorrhiza Bunge [Lamiaceae; Salviae
miltiorrhizae radix et rhizoma] (danshen) 10–20 g/d,
Codonopsis pilosula (Franch.) Nannf. [Campanulaceae;
Codonopsis pilosula (Franch.) Nannf. radix et rhizome]
(dangshen) 10–30 g/d, Poria cocos [Polyporaceae; Poria cocos
dry sclerotia] (fuling) 15–30 g/d, Atractylodes macrocephala
Koidz. [Asteraceae; Atractylodes macrocephala Koidz. radix et
rhizome] (baizhu) 10–20 g/d, Angelica sinensis (Oliv.) Diels
[Apiaceae; Angelica sinensis(Oliv.)Diels radix et rhizome]
(danggui) 15–30 g/d, Citrus × aurantium f. deliciosa
Pericarpium [Rutaceae; Citrus × aurantium f. deliciosa dry
pericarpium] (chenpi) 10–20 g/d, Pinellia ternata (Thunb.)
Makino [Araceae; Pinellia ternata (Thunb.) Makino radix et
rhizome] (banxia) 3–6 g/d, and Glycyrrhiza uralensis Fisch.
[Fabaceae; Glycyrrhiza uralensis Fisch. radix et rhizome]
(gancao) 3–10 g/d. Five traditional Chinese medicines with the
highest RR values and p < 0.05 were retained as highly specific
botanical drugs, they were Dianthus superbus L.
[Caryophyllaceae; Dianthus superbus L. radix et rhizome]
(qumai) 3–10 g/d, Plantago asiatica L. [Plantaginaceae;
Plantago asiatica L. mature seeds] (cheqianzi) 10–20 g/d,
Curcuma phaeocaulis Valeton [Zingiberaceae; Curcuma
phaeocaulis Valeton radix et rhizome] (ezhu) 10–20 g/d,
Euryale ferox Salisb. [Nymphaeaceae; Euryale ferox Salisb.
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FIGURE 1
Workflow of botanical drugs screening and efficacy verification. (A) Establishing symptom–botanical drug relationships. Based on the symptom
network and protein–protein interaction network, we quantified the biological characteristics of botanical drugs. (B) Analysis of botanical drug
characteristics. The KNN model was used to comprehensively analyze the biological characteristics of botanical drugs to form a correlation heatmap of
the interaction between botanical drugs. After hierarchical clustering algorithm screening, the composition of the Gao Shen Formula is determined.
(C) Regression cohort validation. We screened patients based on the inclusion and exclusion criteria. After propensity scorematching, the exposed group
and the non-exposed group each included 91 patients. (D) Experimental model verification. We used Gao Shen Formula, irbesartan, and saline to receive
SHR or WKY for 8 weeks, and observed the differences of blood pressure, echocardiography, kidney, and blood indexes in rats.
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mature seeds] (qianshi) 10–20 g/d, and Achyranthes bidentata
Blume [Amaranthaceae; Achyranthes bidentata Blume radix et
rhizome] (niuxi) 15–30 g/d. The botanical drugs in the EMR data
were boiled for 30 min and filtered. The combination of two parts
with a total of 14 botanical drugs produced 961 compounds and
1,328 regulatory targets from public databases.

3.2 Symptom community

A total of 244 symptoms were extracted from EMRs. The fast
unfolding algorithm was used to divide the symptoms into
14 network communities, as shown in Figure 2A; M2, M1, M0,
M7, and M6 were the main symptom communities. The M2 core
symptoms were elevated serum creatinine, urgent urination, and
elevated blood pressure; M1 was wheezing, M0 was a loss of appetite,
M6 was a cough, and M7 was a headache.

3.3 PPIN and core targets

As shown in Figure 2B, 1,017 botanical drug-related
compounds, 1,414 regulatory targets, 42 HN-related genes,
and M0-, M1-, M2-, M6-, and M7-related genes were collected
from the public database, and STING was used in the online
analysis to retain high-confidence targets to establish the PPIN.
The Dijkstra algorithm was used to identify the core nodes in the
PPIN. A total of 61 core targets were retained in 14 botanical
drugs, 43 genes related to HN, and 179 genes related to the
symptoms.

3.4 KNN model

The biometric information on the quantized compound was
taken as the input information. The ROC curve of HN and its
symptom community (Figure 3A) shows that the training model
based on the overall biometric information of compounds was the
best; the AUC of each module was greater than 0.90.

3.5 Botanical drug composition of GSF

According to the statistics on the optimal number of
compounds in each module of 14 core traditional Chinese
medicines, a distance matrix was established, and HCT was
used to classify the combinations of botanical drugs
(Figure 3B). Salvia miltiorrhiza Bunge, Angelica sinensis
(Oliv.) Diels, Atractylodes macrocephala Koidz, Codonopsis
pilosula (Franch.) Nannf, Pinellia ternata (Thunb.) Makino,
Curcuma phaeocaulis Valeton, and Glycyrrhiza uralensis
Fisch. were comprehensively regulated and closely related in a
manner that was statistically significant (p < 0.05). This
combination of botanical drugs was used as an effective
prescription, Gao Shen Formula (GSF), for HN.

3.6 Model verification

Based on the ROC curves obtained for each model (Figure 3C),
the KNN model (AUC = 0.913) was better than the classical models
(AUCSVM = 0.845, AUCGBDT = 0.868, and AUCBN = 0.530). This
shows that the training setting of the KNN model was reasonable
and had a stable prediction performance.

3.7 GSF target

GSF contains 57 core targets. To show its biological
characteristics, a 7 × 57 matrix was established for the heatmap
(Figure 4A). Among the targets, AKR1B1, CHRM2, CHRM3, DPP4,
ADRB2, CD40LG, TNF, IL6, PON1, IL10, and IL1B, most of which
are related to inflammation, are the most common targets of
botanical drugs. Salvia miltiorrhiza Bunge, Codonopsis pilosula
(Franch.) Nannf., Pinellia ternata (Thunb.) Makino, and
Glycyrrhiza uralensis Fisch. had the most extensive enrichment
targets. The MCODE algorithm was used to classify GSF and
each symptom module in the PPIN (Figure 4B), the results show
that these GSF targets can regulate HN and its symptoms.

3.8 GSF pathway

GSF was enriched in 46 KEGG pathways and 24 GO terms.
Combinedwith the enrichment results for each symptom community,
13 × 46 and 13 × 24matrices were established based on the number of
enriched genes. The enrichment pathways are presented as heatmaps
(Figures 4C, D). The KEGG pathways and the GO entries were
divided into five groups and three groups, respectively.

Among the enriched KEGG pathways, Salvia miltiorrhiza Bunge,
Codonopsis pilosula (Franch.) Nannf., Pinellia ternata (Thunb.)
Makino, and Glycyrrhiza uralensis Fisch. were significantly
enriched in inflammation-related pathways such as the NF-κB
signaling pathway, the HIF-1 signaling pathway, the TNF signaling
pathway, and the NOD-like receptor signaling pathway and can
regulate vascular endothelial proliferation pathways such as the
MAPK signaling pathway, the PI3K-Akt signaling pathway, and
the VEGF signaling pathway. In addition, Salvia miltiorrhiza
Bunge can regulate the cGMP-PKG signaling pathway, act on
vascular smooth muscle, and regulate blood pressure. At the same
time, Salvia miltiorrhiza Bunge can regulate the renin secretion
pathway and the PI3K-Akt signaling pathway, regulate
downstream inflammatory factors after renin activation, inhibit
renal interstitial fibrosis, and antagonize the renin-angiotensin-
aldosterone system. Glycyrrhiza uralensis Fisch. not only inhibits
inflammation but also regulates the endocrine system, regulating
protein, fatty acid, and glycogen metabolism by acting on the
AMPK signaling pathway. Codonopsis pilosula (Franch.) Nannf.
can also regulate fat and carbohydrate metabolism by affecting the
PPAR signaling pathway. Angelica sinensis (Oliv.) Diels can regulate
the cAMP pathway and affect the cytoskeleton. Euryale ferox Salisb.
and Atractylodes macrocephala Koidz. can also act on cholinergic
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synapses and on the calcium signaling pathway, affect smoothmuscle,
and regulate blood pressure.

Based on the obtained GO terms, GSF mainly regulates
cytokines, chemokines, and growth factors. Salvia miltiorrhiza

Bunge, Glycyrrhiza uralensis Fisch. and Pinellia ternata (Thunb.)
Makino showed the most extensive regulation of cellular processes,
including the regulation of DNA transcription factors and the
production of a variety of amino acids.

FIGURE 2
Data collation from EMRs. (A) Network map of symptom distribution in patients with HN. (B) Core nodes of the PPIN.
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FIGURE 3
Results obtained using themachine learningmodel. (A)ROC curves obtained using the KNNmodel. (B)Hierarchical clustering of botanical drugs. (C)
ROC curves obtained using each comparison model.
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3.9 Clinical effect

The treatment plans of a total of 286 patients with HN in the
EMRs included GSF, and 279 individuals did not receive TCM
treatment. Based on our calculation of sample size, 91 patients were
needed in each group. To ensure that the baseline levels of the

patients in the groups were consistent, the patients in each group
were excluded according to IPTW, (Table 1) and 91 patients were
included in the GSF group and 91 patients in the control group
(Table 2).

There was no significant difference in age, sex, length of stay,
liver function, glucose metabolism, lipid metabolism, or renal
function among the enrolled patients (p > 0.05). After 6 months
of treatment, the creatinine clearance rate in both groups increased
(p < 0.05), the serum creatinine level in the GSF group was lower
than that in the control group (p < 0.05), and more patients in the
GSF group than in the control group experienced a decrease in the
CKD stage [RR = 1.498, 95% CI (1.034–2.168), p < 0.05]. Based on
this retrospective cohort validation, the addition of GSF to
conventional Western medical treatment improves the renal
function of patients and reduces their serum creatinine levels,
and there are no evident adverse reactions.

3.10 In vivo experiment

The composition of GSF includes Salvia miltiorrhiza Bunge
[Lamiaceae; Salviae miltiorrhizae radix et rhizoma] (15 g),
Angelica sinensis (Oliv.) Diels [Apiaceae; Angelica sinensis
(Oliv.) Diels radix et rhizome] (9 g), Astragalus mongholicus
Bunge [Fabaceae; Astragalus mongholicus radix et rhizoma] (9 g),
Codonopsis pilosula (Franch.) Nannf. [Campanulaceae; Codonopsis
pilosula (Franch.) Nannf. radix et rhizome] (15 g), Pinellia ternata
(Thunb.) Makino [Araceae; Pinellia ternata (Thunb.) Makino radix
et rhizome] (9 g), Curcuma phaeocaulis Valeton [Zingiberaceae;
Curcuma phaeocaulis Valeton radix et rhizome] (9 g), and
Glycyrrhiza uralensis Fisch. [Fabaceae; Glycyrrhiza uralensis
Fisch. radix et rhizome] (6 g). The botanical drugs were boiled in
water for 1 h, filtered, concentrated, dried, and pulverized to make
granules. Granules of botanical drugs were purchased from
Tiangjiang Pharmaceutical Co., Ltd, China.

After 8 weeks of drug treatment of SHR rats, systolic blood
pressure and diastolic blood pressure decreased in the GSF group
and in the irbesartan group (p < 0.05) and were lower than those in
the model group (p < 0.05). There was no difference in blood
pressure between the GSF group and the irbesartan group after
treatment (p > 0.05). It is suggested that both GSF and irbesartan
have hypotensive effects on SHR.

The interventricular septum at the end of diastole, the left
ventricular posterior wall, and the left ventricular posterior wall
at the end of systole were thinner in the GSF group and the
irbesartan group than in the model group (p < 0.05). The left
ventricular ejection fraction of the rats in all four groups was in
the normal range, and there was no significant difference among the
groups (p > 0.05). It is suggested that GSF can antagonize ventricular
hypertrophy caused by hypertension and that its effect is similar to
that of irbesartan. As shown in Figure 5A, HE staining revealed that
the glomerular structure of the GSF group was clear and complete,
without red blood cell aggregation, and there were a few
inflammatory cells in the glomeruli. In the irbesartan group, the
glomerular capillaries were dilated with mild congestion, and there
were a few inflammatory cells in the renal interstitium. In the model
group, glomerular mesangial hyperplasia, inflammatory cells in the
glomeruli, necrosis and abscission of renal tubular epithelial cells,

FIGURE 4
Characteristics of the GSF pathway. (A) Target characteristics of
GSF. (B) GSF and HN interactive network. (C) and (D) are the KEGG
pathway and GO enrichment heatmaps of the GSF and disease
modules. In the map, the average number of enriched genes is 0;
numbers higher than the average are shown in red, and numbers
lower than the average are shown in blue.
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glomerular mesangial hyperplasia, infiltration of the glomeruli by
inflammatory cells, inflammatory cells in the renal interstitium, and
thickening of the renal capsule wall were observed. The structure of
the glomeruli and tubules in the control group was normal. The
serum TNF-α level of the model group was higher than that of the
other groups (p < 0.05), and there were no significant differences in
the serum TNF-α levels of the high kidney formula group, the
irbesartan group and the control group (p > 0.05). As shown in
Figure 5B, the expression of NF-κB p65 and phosphorylated p65 in
the SHR kidney was higher in the model group than in the other
groups. NF-κB p65 expression in the GSF group was similar to that
in the irbesartan group, and phosphorylated p65 showed the lowest
expression in the GSF group.

4 Discussion

GSF mainly targets inflammation-related pathways and their
downstream pathways. Among inflammatory pathways, GSF can
not only inhibit the NF-κB pathway and the MAPK signaling

pathway, which are activated simultaneously, but can also inhibit
TNF-α, IL-1β, and other inflammatory factors and thereby reduce
NF-κB transcription (Figure 5C). In its downstream pathway, GSF
can not only inhibit insulin resistance induced by inflammatory
cytokines but can also regulate glucose and lipid metabolism by
directly or indirectly increasing IRS-1 activity (Figure 5D).

Arteriosclerosis and hyaline degeneration caused by
hypertension are the main pathological changes that are closely
related to inflammation and renal tubulointerstitial fibrosis (Seccia
et al., 2017). Under physiological conditions, the internal pressure
within the glomerulus is relatively constant. When the blood
pressure increases, the small entering arteries contract
appropriately and reduce the pulse pressure difference, protecting
the glomerulus. When the self-regulation of renal microcirculation
weakens, the small artery entering the glomerulus expands
abnormally, and the internal pressure in the glomerulus
increases. At the same time, the hypertension of the large artery
and the high pulse pressure difference are transmitted to the
glomerulus, causing internal pulsation and stretching and
resulting in endothelial damage (Stompor and Perkowska-

FIGURE 5
Mechanism of action of GSF. (A)HE staining of kidneys at ×200magnification. (B) Expression of NF-κB p65 in the kidney. (C)GSF regulates theNF-κB
signaling pathway; it can interfere with the production of the IKK complex in the NF-κB pathway and inhibit NF-κB protein phosphorylation by regulating
TNF-α, IL-1β, and PKC. At the same time, GSF can also reduce AP1 phosphorylation and reduce the production of inflammatory factors by affecting
MAPK8. (D)GSF regulates the downstream inflammatory reaction, regulates the NF-κB pathway, reduces the secretion of inflammatory factors, and
improves IRS-1 activity, insulin resistance, and lipid metabolism directly or indirectly by inhibiting the IKK-β complex.
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TABLE 1 Results before and after propensity score matching of HN cases.

p value Standardized mean difference

Sex Before matching 0.335 0.152

After matching 0.878 0.045

Age Before matching 0.341 0.131

After matching 0.949 0.01

Hospital stay duration Before matching 0.483 0.096

After matching 0.778 0.056

Glomerular filtration rate Before matching 0.33 0.134

After matching 0.704 0.056

Blood urea nitrogen Before matching 0.027 0.306

After matching 0.943 0.011

Urine protein Before matching 0.505 0.113

After matching 0.744 0.073

CKD stages Before matching 0.336 0.296

After matching 0.427 0.294

TABLE 2 Characteristics of HN cases.

Demographics and clinical characteristics GSF group (n = 91) Non-TCM group (n = 91) p-value

Age 62.35 ± 17.67 62.52 ± 17.16 0.949

Sex (male) 56(61.5%) 58 (63.7%) 0.878

Hospital stay duration (day) 16.62 ± 7.54 16.92 ± 7.15 0.778

Liver function

Alanine transaminase (U/L) 20.36 ± 33.55 22.13 ± 28.01 0.7

Aspartate transaminase (U/L) 21.62 ± 15.37 28.04 ± 18.13 0.137

Glucolipid metabolism

Triglyceride (mmol/L) 2.18 ± 0.78 1.77 ± 0.93 0.145

Cholesterol (mmol/L) 4.42 ± 1.20 4.68 ± 1.81 0.706

Low-density lipoprotein (mmol/L) 2.69 ± 1.27 2.7 ± 1.24 0.961

High-density lipoprotein (mmol/L) 1.1 ± 0.39 1.05 ± 0.41 0.443

Apolipoprotein A1 (g/L) 1.39 ± 0.27 1.36 ± 0.43 0.659

Apolipoprotein B (g/L) 1.08 ± 0.52 1.09 ± 0.52 0.858

Fasting plasma glucose (mmol/L) 5.83 ± 1.81 6.13 ± 2.9 0.408

Kidney function

Uric acid (μmol/L) 424.03 ± 130.14 419.92 ± 131.01 0.832

Blood urea nitrogen (mmol/L) 13.62 ± 9.03 13.52 ± 9.28 0.943

Urine protein (positive) 63 (69.2%) 66 (72.5%) 0.744

Serum creatinine (μmol/L) 263.65 ± 131.28 248.82 ± 148.35 0.704

Glomerular filtration rate [ml/(min*1.73m2)] 44.66 ± 33.34 45.45 ± 33.15 0.873

CKD stages (count) 0.427

Stage 1 14 (15.4%) 14 (15.4%)

Stage 2 28 (30.8%) 20 (22%)

Stage 3 23 (25.3%) 32 (35.2%)

Stage 4 20 (22%) 16 (17.6%)

Stage 5 6 (6.6%) 9(9.9%)

Data are presented as mean ± SD, and n (%). p values were calculated via Student’s t-test or χ2 test as appropriate.
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Ptasińska, 2020). These hemodynamic changes simultaneously
activate the RAAS system, aggravate the inflammatory reaction,
and cause interstitial fiber hyperplasia, arteriolar thickening, and
oxidative stress reaction of the kidney tissue, thereby damaging the
function of the nephron.

After excessive activation of the RAAS, the secretion of
angiotensin II (Ang II) increases, causing upregulation of the
production of inflammatory cytokines such as TNF-α, IL-6, and
IL-8 expression in kidney tissue. The mRNA and protein levels of
type I and IV collagen are increased (Henke et al., 2007; Lu et al.,
2019; Mocker et al., 2019), and excessive expression of Ang II
receptors on podocytes promotes the disappearance of foot
processes (Hoffmann et al., 2004), induces reorganization of the
podocyte cytoskeleton, and causes proteinuria (Li et al., 2019). In
renal tubular epithelial cells, Ang II stimulates fibroblasts to form an
extracellular matrix at the injured site, resulting in fibrosis and renal
tubular epithelial mesenchymal transformation (He et al., 2018; Said
et al., 2018; Cavalcante et al., 2019; Seccia et al., 2019).

According to the pathway enrichment results, the inflammatory
pathway related to hypertensive renal damage that is regulated by
GSF is mainly the NF-κB signaling pathway. GSFmay regulate TNF-
α, IL-1β, IL-6, and other inflammatory factors indirectly or directly,
thereby inhibiting the NF-κB signaling pathway and further
inhibiting the inflammatory response caused by inflammatory
cytokines, the upregulation of the MAPK signaling pathway
caused by MAPK8 and TNF, and the interstitial fibrosis caused
by the increase in serine (Meng et al., 2016; Ni et al., 2020). GSF
treatment can also improve the M6 respiratory tract inflammation
community and theM7 pain community, both of which are also rich
in inflammatory pathways.

In the early stage of hypertensive renal damage, glomerular
metabolism increases, especially GTP metabolism, lipid
breakdown, and the production of various amino acids.
Moreover, due to the increase in lipid oxidation, an
inflammatory reaction can be induced (Dennis and Norris,
2015), and this can trigger changes in the cytoskeleton,
leading to foot cell damage (Rinschen et al., 2019).

The drugs contained in GSF can regulate insulin resistance and
the PPAR signaling pathway; improve the utilization of lipids and
sugars by the body through specific effects on INS, PPARG,
ADIPOQ, and other targets (especially fat metabolism regulated
by insulin); and improve the efficiency of utilization of sugars and
lipids (Feige et al., 2006; Frühbeck et al., 2014). GSF can also regulate
and inhibit changes in the cytoskeleton, reduce the migration of glial
cells, improve vascular endothelial function (Bance et al., 2019;
Natale et al., 2019), inhibit processes that damage podocytes, protect
nephrons, and improve the symptoms of kidney damage in the
M2 community by interfering with VEGFA, PRKCB, and JNK in the
focal adhesion pathway.

To verify the anti-inflammatory mechanism of GSF, this
study used SHR rats to establish a disease model. After eight
weeks of intervention with GSF, it was determined that GSF
reduced renal NF-κB p65 and phosphorylated p65 levels,
indicating that NF-κB dimer decreased, signal conduction was
weakened, and NF-κB activation was inhibited, thereby reducing
the production of inflammatory factors similar to serum TNF-α.
Fewer inflammatory cells were present in the pathological
sections obtained from the kidneys of the animals in the GSF

group, and structural changes in the nephrons were not notable,
indicating that GSF alleviates renal inflammation. The animals in
the GSF group also had decreased blood pressure after
intervention. The Color Doppler ultrasound showed that the
left ventricular myocardium was thinner in the animals in the
GSF group than in those in the model group, proving that it
delays myocardial remodeling. No adverse reactions or death
were observed during the experiment, which could preliminarily
indicate its safety.

This research innovatively combines network pharmacology
with real-world data mining and uses the KNN model to process
information on diseases and botanical drugs, closely linking systems
biology with clinical data. To determine the efficacy of the model, it
was compared with other classical machine learning models, and its
efficacy was verified in a retrospective cohort. Finally, animal
experiments were used to verify the core mechanism of action of
GSF. The results show that compared with traditional models, the
KNN model can better handle the heterogeneity and complexity of
the relationship between genome data and TCM clinical
information. GSF obtained using this method was shown to have
a practical effect after verification, and the findings have a certain
reference significance for the analysis of target organ damage after
TCM treatment of hypertension.

At the same time, this study also has limitations. First, although the
symptoms of the patients are included in the evaluation system, this
study still uses the patients as a whole dataset and fails to make full use
of the complex clinical individualized differences reflected by the real-
world data. Second, the sample size used formodel training in this study
was limited. Although we used a variety of models for comparative
verification, further research is needed to improve the model’s
performance. Third, the animal experiments conducted in this study
only verified themost fundamental anti-inflammatorymechanism, and
no experimental analysis of the changes in downstream pathways of the
inflammatory response was performed; thus, further research on the
pathways and mechanisms involved is needed. In terms of clinical
effects, this study features a small sample size, multiple risks of bias,
heterogeneity of GSF among patients, and limited measurement of
results. In addition, randomized trials should be conducted to
determine the efficacy and safety of GSF in the treatment of HN
(Tables 1, 2).

5 Conclusion

This study was based on EMR data for patients with HN
collected at the Affiliated Hospital of Shandong University of
Traditional Chinese Medicine from 2014 to 2017. It identified
core botanical drugs for the treatment of HN. After
establishment of the PPIN, machine learning model training was
used to obtain an effective compound screening model based on
information on the biological characteristics of compounds, and a
hierarchical clustering screening of botanical drugs was conducted
based on the model results, retaining the important botanical drugs
as GSF for treating HN. From the perspective of targets and
pathways, it was found that GSF plays a multilevel biological
regulatory role in which it controls inflammatory reactions that
lead to hypertensive kidney damage and reduces the damage caused
by excessive activation of the RAAS system.
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Glossary

Achyranthis Bidentatae niuxi

Angelicae Sinensis Radix danggui

Angiotensin II Ang II

Astragali Radix huanqi

Atractylodis Macrocephalae Rhizoma baizhu

Bayesian network BN

Chronic kidney disease CKD

Citri Reticulatae Pericarpium chenpi

Codonopsis Radix dangshen

Curcumae Rhizoma ezhu

Dianthi Herba qumai

Electronic medical record EMR

Euryales Semen qianshi

Gao Shen Formula GSF

Gene Ontology GO

Glycyrrhizae Radix Et Rhizoma gancao

GO biological process semantic similarity GoSim

Gradient boosting decision tree GBDT

Hierarchical clustering algorithm HCT

Hypertensive nephropathy HN

K-nearest neighbor KNN

Kyoto Encyclopedia of Genes and Genomes KEGG

Medical Subject Headings MeSH

Online Mendelian Inheritance in Man OMIM

Oral bioavailability OB

Pinelliae Rhizoma banxia

Plantaginis Semen cheqianzi

Poria fuling

Protein–protein interaction network PPIN

Real-world data RWD

Relative risk RR

Renin-angiotensin-aldosterone system RAAS

Restarting the random walk RWR

Salviae Miltiorrhizae Radix Et Rhizoma danshen

Support vector machines SVM

Area under curve (AUC)

The Encyclopedia of Traditional Chinese Medicine ETCM

Inverse propensity of treatment weighting IPTW

Jaccard similarity coefficient Jac

Manhattan distance Man

Molecular complex detection MCODE

Receiver operating characteristic ROC

Traditional Chinese Medicine Systems Pharmacology Database
and Analysis Platform TCMSP

Traditional Chinese medicine TCM.
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