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Acrylamide (ACR) is formed during food processing by Maillard reaction between
sugars and proteins at high temperatures. It is also used in many industries, from
water waste treatment to manufacture of paper, fabrics, dyes and cosmetics.
Unfortunately, cumulative exposure to acrylamide, either from diet or at the
workplace, may result in neurotoxicity. Such adverse effects arise from
covalent adducts formed between acrylamide and cysteine residues of several
neuronal proteins via a Michael addition reaction. The molecular determinants of
acrylamide reactivity and its impact on protein function are not completely
understood. Here we have compiled a list of acrylamide protein targets
reported so far in the literature in connection with neurotoxicity and
performed a systematic covalent docking study. Our results indicate that
acrylamide binding to cysteine is favored in the presence of nearby positively
charged amino acids, such as lysines and arginines. For proteins with more than
one reactive Cys, docking scores were able to discriminate between the primary
ACR modification site and secondary sites modified only at high ACR
concentrations. Therefore, docking scores emerge as a potential filter to
predict Cys reactivity against acrylamide. Inspection of the ACR-protein
complex structures provides insights into the putative functional consequences
of ACR modification, especially for non-enzyme proteins. Based on our study,
covalent docking is a promising computational tool to predict other potential
protein targets mediating acrylamide neurotoxicity.
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1 Introduction

Acrylamide (CH2 = CH-C(O)NH2, PubChem CID 6579) is used in variety of industrial
processes, including water waste treatment, manufacture of paper, fabrics, dyes or
cosmetics (Swaen et al., 2007; Pennisi et al., 2013; Bušová et al., 2020). In addition, it
is a by-product of the food industry, formed by Maillard reaction of reduced sugars and
amino acids (Mottram et al., 2002) and present in food items processed at high
temperatures (e.g. coffee, french fries and baked and roasted potatoes) (Reynolds,
2002; Guenther et al., 2007; Schouten et al., 2020). Due to the potential toxic effects of
acrylamide in the human body (Semla et al., 2017; Kumar et al., 2018), in 2018 new
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European Union wide regulations entered into force (EU
Commission, 2017) to prevent and/or reduce acrylamide
formation in foodstuffs, e.g. during frying, baking or roasting.

Cumulative exposure to acrylamide, either from diet or at the
workplace, may result in toxicity, especially at the level of the central
nervous system. Animal and clinical studies suggest that acrylamide
neurotoxicity could mimic the symptoms or even contribute to the
etiology of neurodegenerative disorders like Parkinson’s disease
(LoPachin and Gavin, 2012; Erkekoglu and Baydar, 2014; Li
et al., 2015; Murray et al., 2020), as well as result in depression
and anxiety-like behavioral effects (Faria et al., 2018, 2019; Raldúa
et al., 2020). Three possible mechanisms have been proposed for
acrylamide neurotoxicity: (i) inhibition of fast axonal transport, (ii)
alteration of neurotransmitter levels, and (iii) direct inhibition of
neurotransmission (LoPachin et al., 2007, 2008; Pruser and Flynn,
2011; LoPachin and Gavin, 2012; Erkekoglu and Baydar, 2014;
Semla et al., 2017). In addition, acrylamide has been shown to
indirectly increase oxidative stress by depleting the levels of the
antioxidant glutathione (Catalgol et al., 2009; Kopanska et al., 2015;
Raldúa et al., 2020).

Acrylamide (ACR) contains an α, β-unsaturated carbonyl that
acts as an electrophile and thus is able to react with nucleophilic
amino acids (Figure 1). The electron-withdrawing effect of the
carbonyl group on the alkene makes the β-carbon the most
electrophilic site (Figure 1, step 1). Based on the hard and soft
acids and bases (HSAB) theory, a soft electrophile as ACR is
expected to preferentially react with soft nucleophiles, such as the
thiolate group of deprotonated cysteine residues (Koutsidis et al.,
2009) (Figure 1, step 2). Although the intrinsic pKa of the Cys side
chain is 8.6 (and thus it is expected to be present as a thiol at
physiological pH), several factors, such as hydrogen bonding or the
presence of positively charged amino acids in the vicinity, can
decrease its pKa value. Therefore, certain protein
microenviroments can favor the formation of a negatively
charged thiolate (Roos et al., 2013). Michael addition reaction of
such deprotonated Cys with acrylamide results in the formation of a

covalent adduct (Figure 1, step 3). The amide group of the covalent
adduct is able to act both as hydrogen bond acceptor (via the
carbonyl group) and donor (through the amino group). Such
H-bonds with nearby protein residues will help stabilize the
covalent adduct and may result in alterations in protein function.

The molecular determinants of acrylamide reactivity with
cysteines in proteins are not completely understood. Mass
spectrometry-based proteomics analysis has identified proteins
that can be modified upon acrylamide incubation (Barber et al.,
2007; Feng and Lu, 2011; Nagashima et al., 2019; Zhao et al., 2019).
However, such studies are often performed with high ACR
concentrations, resulting in e.g. ACR reaction with N-terminal
residues, whose modification is unlikely to alter significantly
protein function and thus have toxic effects. In vitro and
biochemical studies focusing on individual protein targets have
pinpointed Cys residues whose modification by ACR may have
an impact on protein function. However, such assays are not always
readily available, especially for non-enzyme proteins. Screening of
large protein databases for ACR targets and prediction of the most
likely reactive sites in a given protein could be sped up using
computational approaches. In this regard, the webservers Cy-
preds (Soylu and Marino, 2015), Cpipe (Soylu and Marino, 2017)
and pCysMod (Li et al., 2021) have been successfully used to predict
Cys reactivity for disulfide bridge formation, metal binding,
enzymatic catalysis and/or post-translational modifications.
However, the underlying algorithms are not tailored to predict
cysteines modified by ACR and do not provide information on
the impact of the ACR covalent adduct on protein function. Hence,
here we have assessed whether covalent docking could be used as a
computational tool to characterize ACR reactivity and its (neuro)
toxic effects at the molecular level. In particular, as a follow-up of
previous computational works by some of us (Ferreira de Lima and
Carloni, 2011; Papamokos et al., 2014), we compiled a list of
acrylamide protein targets and performed a systematic molecular
study using covalent docking. We focused on neuronal protein
targets associated with neurotoxic symptoms of acrylamide, as

FIGURE 1
Michael addition reaction between acrylamide and a Cys residue of a target protein. B and BH+ represent a Brønsted-Lowry acid-base pair, either a
protein residue or a water molecule. (1) The electron-withdrawing effect of the carbonyl groupmakes the β-carbon of acrylamide an electrophilic site. (2)
The deprotonated cysteine side chain can act as nucleophile and react with a soft electrophile such as acrylamide. (3) Michael addition reaction between a
protein thiolate and acrylamide yields a covalent adduct potentially affecting protein function.
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well as acrylamide-modified proteins detectable in plasma and liver
that can be used as biomarkers to monitor ACR exposure. Based on
the analysis of the modeled acrylamide-protein complexes, we
conclude that acrylamide modification is favored in the presence
of nearby positively charged amino acids, such as lysine and arginine.
Most likely, such microenvironment facilitates the Michael addition
reaction and stabilizes the resulting adduct, consistently with previous
proposals (Dennehy et al., 2006). For proteins with more than one
reactive Cys residue, the obtained docking scores were able to
discriminate between the primary ACR binding site and secondary
sites modified only at high ACR concentrations. Therefore, docking
scores emerge as a potential filter to predict Cys reactivity against
acrylamide. Finally, inspection of the ACR-protein complex,
combined with available experimental information, provided
insights into the putative functional consequences of ACR
modification, especially for non-enzyme proteins, for which
in vitro or cellular assays assessing the impact of covalent adduct
formation may not be readily available. Therefore, we expect that
application of covalent docking to other proteins proposed to be
targeted by ACR will help discern the most likely Cys reactive site and
unravel the functional consequences of ACR adduct formation.

2 Methods

Figure 2 shows the workflow of the present systematic study,
which is further explained in the next sections.

2.1 Generation of the dataset of acrylamide
protein targets

We first searched in the literature for human proteins targeted
by acrylamide that have been associated to neurotoxic effects
(Ferreira de Lima and Carloni, 2011; Papamokos et al., 2014) or
used to biomonitor ACR exposure (Barber et al., 2001; Basile et al.,
2008). In addition, we also included proteins listed as acrylamide

targets in several chemical and toxicology databases, namely
ChEMBL (Davies et al., 2015; Mendez et al., 2018) and T3DB
(Lim et al., 2009; Wishart et al., 2015), respectively. Our dataset
contains 19 proteins; the full list is given in Supplementary Tables
S1–S2.

2.2 Characterization of cysteine properties

For eight proteins in our dataset, the location of the cysteine
residue modified by acrylamide or by closely related electrophilic
agents, such as N-ethylmaleimide (NEM), is known (LoPachin and
Gavin, 2012). For the other 11 proteins, we employed
physicochemical, conservation and functional data to rank the
cysteines most likely to react with acrylamide (see Supplementary
Material S1). For all the Cys residues present in dataset proteins,
we calculated their solvent-accessible surface area (SASA, using the
corresponding tool in VMD (Humphrey et al., 1996) with a probe
of radius 1.4 Å), as well as predicted their pKa values (using the
H++ webserver (Anandakrishnan et al., 2012) with default settings,
in particular assuming pH 7). Those Cys residues that are more
solvent exposed and/or have more acidic pKa values are expected
to be more reactive (Marino and Gladyshev, 2011). The resulting
SASA and pKa values are listed in Supplementary Table S1.
Moreover, we inspected UniProt (The UniProt Consortium,
2019) entries in search for functional annotations regarding
candidate Cys residues for all proteins within the dataset. On
one hand, Cys residues subject to redox post-translational
modifications (e.g. sulfoxidation or S-nitrosylation) indicate
reactive cysteines whose modification regulates protein function
(Marino et al., 2013). On the other, Cys natural variants or Cys
site-directed mutants that affect protein function can suggest a link
between protein inactivation and acrylamide modification. The
corresponding information is included in Supplementary Material
S2. Complementary, we also considered whether the structural
location of the candidate Cys is near a functionally relevant site of
the protein (e.g. an enzyme active site); this information is listed in

FIGURE 2
Schematic representation of the computational workflow used in this study.
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Supplementary Table S1. Further details are provided in the
Supplementary Material S1.

2.3 Modeling of the covalent acrylamide-
protein complexes

Acrylamide binding to cysteines of the proteins in
Supplementary Table S1 was investigated with a covalent docking
approach.

2.3.1 Ligand and protein structures
The product of the corresponding Michael addition reaction, i.e.

propionamide (Figure 1), was used as ligand. The respective 3D
structure was obtained from PubChem (Sunghwan et al., 2019) (CID
6578).

The 3D structures of the human proteins in Supplementary
Table S1 were taken from the Protein Data Bank (Berman et al.,
2000; Burley et al., 2021). When more than one structure was
available, the one at the highest resolution was chosen (see
Supplementary Table S1). Protein structures with missing
residues were retrieved from the SWISS-MODEL repository
(Bienert et al., 2017) or generated with SWISS-MODEL
(Waterhouse et al., 2018), by selecting templates structures with
the same sequence as the targets. When experimental structures of
the human protein were not available, we generated homology
models (see Sections 3.2.4–3.2.7). Target-template sequence
alignments were obtained with either BLAST (Camacho et al.,
2009) or HHblits (Steinegger et al., 2019), as implemented in the
SWISS-MODEL webserver. Templates with the highest sequence
identity and the highest resolution were selected and models were
generated with SWISS-MODEL (Waterhouse et al., 2018) (see
Supplementary Table S1). Protein structures were processed with
MolProbity (Chen et al., 2010; Williams et al., 2018) to add missing
hydrogen atoms, assign histidine protonation states and perform
His/Gln/Asn flips, if recommended. The reactive cysteines were
modeled as already deprotonated (Foloppe et al., 2001), as expected
for the Michael addition reaction to take place (see Figure 1, step 2).
Therefore, our computational protocol does not take into account
the energetic cost of Cys deprotonation, i.e. ΔG = ln(10) × kT × (pKa

− pH). Moreover, we have assumed a default pH of 7, even though
the protein targets in our dataset exhibit different optimal pH ranges
(see Supplementary Table S3) and the Michael addition reaction is
favored at basic pH (Lutolf et al., 2001; LoPachin et al., 2007; Nair
et al., 2014). However, even if the Cys pKa (calculated here with the
H++ webserver at a default pH of 7) may predict population of the
thiolate state smaller than the thiol one, reaction with acrylamide is
expected to shift the acid-base equilibrium (step 2 in Figure 1)
towards the deprotonated form.

2.3.2 Covalent docking protocol
Covalent docking to the reactive cysteine(s) of each target

protein was performed using Haddock (version 2.2.) (De Vries
et al., 2010; van Zundert et al., 2016). We followed the standard
covalent docking protocol of Haddock (HADDOCK developer
team, 2018). Such protocol was initially tested for covalent
inhibitors of cathepsin K (HADDOCK developer team, 2018)
and here we have validated it using experimental protein

structures containing Cys-ACR covalent adducts (see Section 1.2
in Supplementary Material S1). The covalent bond between Cys and
the ligand is modeled by scaling down the van der Waals radius of
the Cys sulfur atom 10-fold and introducing two distance restraints:
(i) between the sulfur atom of the targeted cysteine and the reactive
carbon atom of the ligand, set to 1.8 ± 0.1 Å (i.e. the average length of
a single C-S bond) and (ii) between the cysteine Cβ atom and the
ligand carbon atom adjacent to the reactive carbon, set to 2.8 ± 0.1 Å
(i.e. the same as between the Cγ and Cϵ atoms of methionine, to
model the proper angular geometry). The docking procedure
(Kurkcuoglu et al., 2018; Koukos et al., 2019) consisted in the
following three different stages: (1) A rigid body docking was
performed with all geometrical parameters treated as fixed and
allowing 180° rotations to generate 1,000 initial poses. After
minimization, the best scored 200 poses were selected for further
refinement. (2) A semi-flexible simulated annealing simulation (SA)
in torsion angle space was applied to introduce gradually flexibility
to the system. SA can be further divided into three steps. (2a) First, a
rigid body simulated annealing was performed to optimize
orientations of the interacting partners. (2b) Then, the system
underwent 1000 molecular dynamics (MD) steps from 500K to
50K, with a 2 fs timestep, in which ligand and protein side chain
movement was allowed. (2c) Finally, flexibility was introduced to
both protein side chains and backbone, besides the ligand. 1000 MD
steps (with a 2 fs timestep) were performed with a stepwise
temperature decrement from 300K to 50K. It should be noted
that flexibility was only applied to the ligand and protein
residues within a range of 5 Å. (3) The final stage of the docking
protocol was a refinement in explicit water. Namely, three MD-
based steps (with a 2 fs timestep) were carried out: (3a) A heating
phase of 100 MD steps from 100K to 200K and to 300K, (3b)
1250MD steps at a constant temperature of 300K, and (3c) a cooling
down phase of 500 MD steps to a final temperature of 100K. In stage
(3), both ligand and protein were fully flexible, with the exception of
protein backbone atoms. The HADDOCK score settings
recommended for small molecule docking were used across the
whole protocol (Kurkcuoglu et al., 2018; Koukos et al., 2019). The
obtained 200 docking poses were clustered based on their positional
protein-ligand interface root-mean-square deviation (iL-RMSD)
with a cutoff of 1.0 Å. The Haddock score of each cluster was
calculated as the average of the top four structures, as done by the
Haddock webserver (De Vries et al., 2010; van Zundert et al., 2016),
using the equation: HADDOCK score = 1.0 Evdw + 0.1 Eelec +
1.0 Edesol + 0.1 Eair, where Evdw and Eelec are the van der Waals
and electrostatic intermolecular energies, respectively, Edesolv is the
desolvation energy and Eair is the distance restraints energy; the
weights of the different terms were parameterized for scoring of
protein-ligand complexes (Kurkcuoglu et al., 2018; Koukos et al.,
2019). Further analysis was performed for the top cluster (i.e. the one
with the best average Haddock score) and, if present, also for other
clusters with Haddock scores within the standard deviation of the
top cluster. For proteins with more than one reactive cysteine, we
performed independent dockings for each of the Cys residues. This
approximation is valid provided that these cysteines are far enough
apart that they (or their ACR covalent adducts) cannot interact with
each other. However, in the case of one of the target proteins,
creatine kinase (Supplementary Table S1), the two Cys are within
7.1 Å (Cα-Cα distance) and thus we also considered the possibility
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that the two Cys could be targeted simultaneously by ACR (see
Section 3.2.2). In this case, binding of two ligand molecules at the
same time was modeled using the multibody docking approach
(Karaca et al., 2010) implemented in HADDOCK. Namely, a so-
called molecule interaction matrix is used to define partners that
interact with each other. In particular, we defined the subsequent
interacting pairs: protein-ACR molecule 1, protein-ACR molecule
two and ACR molecule 1-ACR molecule 2.

2.4 Structure-based analysis of the modeled
acrylamide-protein complexes

Hydrophobic interactions were investigated using VMD
(Humphrey et al., 1996) (version 1.9.3.) and in-house scripts.
Namely, such contacts were defined as interactions between
either of the two carbon atoms of the ligand and “apolar” protein
carbon atoms (i.e. with CHARMM-based point charges below
0.15 electrons) located within the distance cutoff of 4.0 Å. The
hydrogen bond (HB) interactions with both the amide and the
carbonyl group of the ligand were analyzed with ProLIF (Bouysset
and Fiorucci, 2021) (version 1.0.0). The donor-acceptor distance
cutoff was set to 4.1Å and the donor-hydrogen-acceptor angle
tolerance to at least 100°. Each docking was analyzed separately,
regardless of whether the reactive cysteines belong to the same
protein or different protein targets. The protein-ligand interaction
frequency is calculated as the percentage of poses belonging to the
top (best scored) cluster that exhibit such interaction. When
additional clusters with HADDOCK scores within the standard
deviation of the top cluster are present, their poses were also
included in the analysis, but a weighted average of the
interaction frequencies was calculated, based on the size of each
of the clusters analyzed. 2D representations of the protein-ligand
interactions for each of the docking clusters considered were
generated using ProLIF (Bouysset and Fiorucci, 2021) (version
1.0.0) and are shown in the Supplementary Material S1.

The covalent docking approach used here aims at predicting the
most likely configuration or binding pose of the Cys-acrylamide
adduct. However, the Michael addition reaction starts with the
deprotonation of the reactive Cys. Hydrogen bonding to the Cys
sulfur atom is crucial for thiolate formation and stabilization of the
transition state of the subsequent reaction (Mazmanian et al., 2016).
Moreover, the Michael addition reaction involves an enolate-type
intermediate in which the ligand oxygen atom acquires negative
charge (see step 2 in Figure 1) and thus hydrogen bonding or a
positively charged microenvironment could stabilize this
intermediate, facilitating adduct formation (Ha et al., 2011;
Weber et al., 2013). Hence, we additionally analyzed protein
residues either near the reactive Cys (in the initial X-ray
structure of the protein target, i.e. before the Michael addition
reaction occurs) or ligand (in the best structure of the top
docking cluster, i.e. after covalent adduct formation). First, we
checked H-bonded protein residues. These could act as potential
proton acceptors to deprotonate the Cys sulfur atom or may stabilize
the intermediate and/or product of the Michael addition reaction.
Next, we visually inspected other nearby protein residues in the
binding cavity that could have favorable, yet longer-range,
electrostatic effects on thiolate or adduct formation. In particular,

we focused on His, Asp, Glu, Arg and Lys. Histidine is one of the
most interesting residues regarding acid-base properties, since its
intrinsic pKa of ~6 is the closest value to the physiological pH of
around 7, as well as to the intrinsic pKa of Cys of ~8.6. Hence, the
imidazole side chain can be either singly or doubly protonated and
thus serve as both proton acceptor and as positively charged residue
stabilizing the thiolate formed upon Cys deprotonation. Aspartic
and glutamic acids have lower intrinsic pKa values (~4.0 and ~4.4);
however, their pKa can shift to higher values depending on their
microenvironment. Hence, Asp and Glu can also be potentially
responsible for Cys deprotonation in some cases. Instead, the
positively charged Lys and Arg are expected to stabilize the
negatively charged thiolate (or the enolate-type intermediate
formed during the Michael addition reaction), either by forming
a salt bridge or electrostatically. The results of this analysis of the Cys
microenvironment are presented in Supplementary Table S2.

3 Results

3.1 Dataset of acrylamide protein targets

Our literature and chemical database search (see Section 2.1)
rendered a total of 19 proteins modified by acrylamide that have been
experimentally validated to mediate ACR (neuro)toxicity or to correlate
with ACR exposure as biomarkers. The full list, together with additional
protein and candidate Cys information, is given in Supplementary Tables
S1-S3. The precise Cys modified by ACR (or closely related sulfhydryl
agents, such as NEM) is known for eight of these protein targets and is
indicated in bold in Supplementary Table S1. Noteworthily, incubation
with high ACR concentrations and/or for longer times can result inmore
than one Cys being modified for some protein targets (e.g.,
glyceraldehyde-3-phosphate dehydrogenase and hemoglobin).

Because experimental assays showing ACR-mediated inhibition are
often performed in vitro using purified proteins, we analyzed next the
functional classification and subcellular location of the proteins in our
dataset in order to make a connection with the ACR toxic effects
observed at the neuronal and systemic levels. Functionally, the ACR
protein targets include enzymes (37%), ATPases (21%) and membrane
receptors and transporters (16%), as well as plasma proteins (26%); see
Supplementary Table S3; Supplementary Figure S3. We speculate that
the predominance of enzymes and ATPases is due to the easier
availability of purification protocols and functional assays to test
ACR-mediated inhibition for these protein classes compared to
membrane proteins. Given the diversity of protein classes targeted
by ACR, we surmise that several subcellular mechanisms might
contribute to acrylamide toxicity. At the neuronal level, ACR-
mediated inhibition of cytosolic and extracellular enzymes (in blue
in Figure 3) will cause metabolic imbalance and oxidative stress. In
addition, ACR-mediated impaired function of synaptic proteins
(ATPases and membrane proteins in yellow and green, respectively,
in Figure 3) will result in inhibition of fast axonal transport (through
kinesins), alteration of neurotransmitter levels (dopamine transporter,
NEM-sensitive factor and vesicular proton ATPase) and direct
inhibition of neurotransmission (dopamine D3 receptor). Therefore,
our dataset contains synaptic proteins related to each of the three
subcellular mechanisms proposed in reference (Erkekoglu and Baydar,
2014) to explain ACR neurotoxicity, even though the selection of
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proteins to include in our dataset was only based on experimental
evidence of ACR modification. Among plasma proteins, the levels of
ACR-modified albumin and hemoglobin have been used to monitor
ACR exposure (Barber et al., 2001; Noort and Hulst, 2003; Basile et al.,
2008).

The physiological relevance of ACR modification of the
remaining eight proteins in our dataset is less clear. In addition
to the genotoxic effects caused by direct reactivity of ACR and its
metabolite glycidamide with DNA (Galesa et al., 2008; European
Food Safety Authority (EFSA) et al., 2022), ACR-mediated
inhibition of DNA topoisomerase and kinesins, as well as of
estrogen receptor and sex hormone binding globulin, could
further promote carcinogenicity and reproductive toxicity. In the
case of the immunoglobulins in our dataset (Supplementary Table
S1), we speculate that their ACR-mediated impairment may
contribute to the observed ACR immunotoxicity and generation
of reactive oxygen species (Kumar et al., 2018).

Interestingly, ACR modification of plasma proteins involves
targets with only one free cysteine (for albumin) or cysteines
usually involved in disulfide bonds (for sex hormone binding
globulin and immunoglobulins, see Supplementary Tables S1-S2).
In the latter case, reaction with ACR would require the existence of
(at least a small) population of Cys in the free state, besides the

disulfide bond-forming one. We surmise that ACR modification
would then shift the equilibrium between the two redox states. In
this regard, free thiols and chemical modification of disulfide bridges
have been experimentally detected for immunoglobulins (Liu and
May 2012).

3.2 Acrylamide protein targets with known
reactive cysteine

The effects of ACR modification on the 19 proteins in our
dataset were further investigated using covalent docking.
Considering that some of the ACR protein targets have more
than one potential reactive Cys (Supplementary Table S1),
34 covalent docking calculations were performed, following the
protocol described in Section 2.3). Below we present the results
for the eight ACR protein targets for which the reactive Cys is known
(see Table 1), following the alphabetical order of the protein name.
For the remaining eleven protein targets, detailed discussion can be
found in the next section and in Supplementary Material S1. In all
cases, we combined our computational results with previously
published experimental data to surmise the possible functional
consequences of ACR modification.

FIGURE 3
Subcellular location of the acrylamide protein targets associated to neurotoxicity. The image of the animal neuron cell and synapse was taken and
adapted from SwissBioPics (Philippe et al., 2022) under a CC BY 4.0 license. The color code is as follows: blue, enzymes; yellow, ATPases; and green,
membrane receptors and transporters. The enzymes shown can be present not only in the cytoplasm, but also the extracellular medium, with the
exception of alcohol dehydrogenase.
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3.2.1 Human serum albumin (HSA)
Albumin is a plasma protein able to bind chemically diverse

ligands, from hemin and fatty acids to drugs, acting as their plasma
carrier/transporter (Fasano et al., 2005). Liquid
chromatography–tandem mass spectrometry (LC-tandem MS)
experiments have shown that C34 binds covalently acrylamide
(Noort and Hulst, 2003; Tong et al., 2004). HSA contains
35 cysteine residues and all form disulfide bridges except C34
(Carter and Ho, 1994). This single free Cys is solvent exposed, with
a SASA value of 8.6Å2, and has a calculated pKa value of 10.2 (see
Supplementary Table S1). This is in line with spectroscopic
measurements showing HSA Cys34 to be more acidic than a
normal Cys, with a pKa around 7 (Pedersen and Jacobsen, 1980).
The difference between the computational and experimental pKa values
can be ascribed to the known limitations of computational pKa

predictors when dealing with Cys residues (Awoonor-Williams and
Rowley, 2016), as well as uncertainties in the experimental estimation of
pKa values using spectroscopic methods. For instance, the pKa of
Cys34 changes by 1.5 pH units depending on the ionic strength of
the buffer used (Pedersen and Jacobsen, 1980). Covalent docking of
ACR to C34 resulted in two similar clusters in terms of both score
(−31.3 and −32.3 a.u., respectively) and cluster size (69 and 63, see
Table 1).Mapping of C34 onto theHSA structure also revealed that this
cysteine has two putative proton acceptors in the vicinity (H39 and
D38) that can deprotonate the thiol group, as well as a positively
charged residue (K41) that could stabilize the transition state and/or
product of that reaction (see Figure 4A). Comparison with available
functional information (Sampath et al., 2001; Fasano et al., 2005)

suggests that acrylamide covalent binding to Cys34 might affect the
drug binding properties of albumin. In particular, infrared spectroscopy
has shown that Cys34 is linked allosterically with Sudlow’s site I for
anesthetics such as halothane, propofol and chloroform (Sampath et al.,
2001). Hence, formation of a covalent adduct at Cys34 can be
transmitted to this site and modulate anesthetic binding.

3.2.2 Creatine kinase (CK)
Creatine kinase is an enzyme responsible for converting creatine

to phosphocreatine reversibly using adenosine triphosphate (ATP).
CK is inhibited by acrylamide and such inhibition exhibits a biphasic
behavior with respect to acrylamide concentration (Sheng et al.,
2009), suggesting than more than one Cys residue within CK might
be modified. C283 has been proposed as the primary site of ACR
modification in CK. Based on site-directed mutagenesis, C283 was
shown to be essential for enzymatic activity (Lin et al., 1994).
Furthermore, experimental, studies indicated that C283 has a pKa

around 5.7 and thus this cysteine can be present as thiolate. This is
probably required to constrain the position of the guanidinium
group of the creatine substrate (Wang et al., 2006). The low pKa of
C283 and its role in CK enzymatic activity makes it a good candidate
for the main reactive Cys targeted by acrylamide. In contrast, the
secondary site of ACR modification is unclear. A combined
experimental and computational study (Sheng et al., 2009)
suggested that acrylamide can bind to C283, as well as the
nearby C74, but the results were not conclusive. Therefore, we
performed docking for all five solvent exposed cysteines in CK
(C74, C141, C146, C254 and C283; see Table 1). C283 is the most

TABLE 1 Covalent docking results for the subset of acrylamide protein targets with experimentally known reactive cysteine.
For each considered Cys, the Haddock score and size of the top docking cluster are shown. The latter corresponds to the number of docking poses belonging to the top
cluster upon clustering of the total 200 poses.

Protein name Reactive Cys Score (a.u.) Size

Albumin C34 −32.3 63

Creatine Kinase C74 −21.3 12

C141 −31.7 63

C146 −28.2 22

C254 −23.3 34

C283 −32.8 61

Dopamine D3 Receptor C114 −28.6 130

Dopamine Transporter outward C342 −2.0 21

inward C135 −11.9 79

C342 −15.1 87

Glyceraldehyde-3-phosphate dehydrogenase C152 −12.3 163

C156 46.1 1

C247 9.9 14

Hemoglobin C93 −13.9 74

C104 −3.3 75

NEM-sensitive factor C264 −73.4 85

Vesicular proton ATPase C254 −0.1 110
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solvent exposed cysteine (37.2Å2) and with the lowest predicted pKa

value (around 9, see Supplementary Table S1). Although the
calculated pKa of C283 (~ 9) differs from the experimentally
measured value (5.7), we ascribed such difference to the known
limitations of computational (implicit solvent-based) predictors
when estimating the pKa values of Cys residues, with RMSDs
between 3.41 and 4.72 pKa units (Awoonor-Williams and
Rowley, 2016). Given this uncertainty, we decided to use the
calculated pKa values only to rank by relative acidity the Cys
residues within the same protein, i.e. C283 is the most acidic Cys
in CK. In addition, the C283 docking yields the best score (−32.8 a.u.),
as shown in Table 1. Furthermore, C283 is located in the catalytic site
of CK, whereby nearby residues, such as R96 (distance of sulfur atom
to ζ-carbon atom of 7.48Å), R132 (10.71Å) and R236 (10.70Å), can
electrostatically stabilize the enolate intermediate of the Michael
addition reaction (see Supplementary Table S3). Instead, docking
at C74, previously proposed as acrylamide binding site (Sheng et al.,
2009), gives a less favorable docking score (−21.3 a.u.). Together with
most of the C74 poses showing distance values between the ligand Cβ

atom and sulfur atom outside the defined covalent bond range, this
suggests that modification of C283 is preferred over binding to C74.
Due to the proximity of C74 to C283, we also explored the possibility
of two acrylamide molecules binding simultaneously to both
C283 and C74, using a multibody docking approach (Karaca et al.,
2010). The resulting docking poses indicate that adduct formation

with one acrylamide molecule already occupies fully the pocket lined
by C283 and C74 and thus will preclude binding of a second
acrylamide molecule (see Supplementary Figure S12). Thus, C74 is
unlikely to be modified by ACR, either alone or in combination
with C283.

In contrast, docking to other cysteine residues revealed more
suitable candidate for the secondary site of ACRmodification in CK.
The results for C141 and C146 yielded docking values closer to those
of C283 (see Table 1), suggesting that modification of these two
cysteines by acrylamide might be possible. Out of these two
cysteines, C141 has a slightly more favorable docking score
(−31.7 a.u.) than C146 (−28.2 a.u.), as well as a higher solvent
exposed surface area (11.1 compared to 2.6Å2), suggesting a
slightly higher preference of ACR for C141 over C146.
Additionally, C141 has two nearby residues (H145 and E150)
that could facilitate thiolate and/or adduct formation (see
Supplementary Figures S6 and S7), whereas C146 is hydrogen
bonded to P143 (see Supplementary Figures S6–S11). Based on
our covalent docking results and the biphasic time dependent
inactivation of CK observed in enzymatic assays (Sheng et al.,
2009), we propose a molecular model in which ACR
modification of C283 (Figure 4B) occurs first and is the primary
site responsible for enzyme inactivation. Adduct formation at C283,
located in the enzyme active site (Wang et al., 2006), will hinder
creatine binding. At longer times, C141 might also be modified by

FIGURE 4
Representative covalent binding poses of ACR for each of the protein targets discussed in themain text. Acrylamide and its surrounding residues are
represented as sticks, with carbon atoms colored in green and cyan, respectively. The sulfur atom between the reactive cysteine residue and the adduct is
shown as a sphere. Residues forming hydrogen bonds (HBs) with ACR are displayedwith thicker sticks andwith bold labels. HBs present inmore than 60%
of the docking poses are shownwith a dashed line. Nearby residues (i.e. within 5 Å) potentially favoring the Michael addition reaction are shownwith
thinner lines, with positively charged residues and putative proton acceptors labeled. (A) Albumin; (B) Creatine kinase; (C) Dopamine D3 receptor; (D)
Dopamine transporter (inward conformation); (E) Dopamine transporter (outward conformation); (F) Glyceraldehyde-3-phosphate dehydrogenase; (G)
Hemoglobin; (H) NEM-sensitive factor; (I) Vesicular proton ATPase.
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ACR, further contributing to enzyme inactivation by thiol depletion
(Meng et al., 2001; Lü et al., 2009).

3.2.3 Dopamine D3 receptor (D3R)
Acrylamide exposure has been shown to result in decreasing

dopamine concentrations by altering postsynaptic dopamine
receptors (Erkekoglu and Baydar, 2014). Site-directed
mutagenesis data showed that electrophilic compounds, such as
NEM, blocked ligand binding to the dopamine D3 receptor (D3R)
by modifying C114 (Alberts et al., 2009). Furthermore, functional
data compiled in GPCRdb (Kooistra et al., 2020) indicates that
C114 is involved in both ligand binding and receptor activation.
Taken together the C114 reactivity and functional data, we
considered C114 as the most likely candidate for acrylamide
modification. Modeling of the covalent C114-ACR adduct further
revealed how ACR modification can impair D3R signaling. The
ligand interacts with D110 (Figure 4C); this aspartate is essential for
ligand binding in aminergic GPCRs (Michino et al., 2015), such as
D3R. Together with the aforementioned functional roles of C114
(Kooistra et al., 2020), this indicates that formation of the ACR
covalent adduct will hinder ligand binding and/or impair receptor
activation. Moreover, Cys at this position (3.36, following the
Ballesteros-Weinstein generalized numbering for class A GPCRs)
is conserved across dopamine receptors D2, D3 and D4. Given the
role of these receptors in dopaminergic neurotransmission, ACR
modification of Cys(3.36) might be one of the molecular
mechanisms by which ACR intoxication mimics Parkinsonian
symptoms.

3.2.4 Dopamine transporter (DAT)
Dopamine transporters are integral membrane proteins

responsible for regulating dopamine neurotransmitter
concentrations at the synaptic cleft (Giros and Caron, 1993).
Chemicals such as peroxynitrite and 2-aminoethyl
methanethiosulfonate (MTSEA), which have in common the
potential to modify cysteine sulfhydryls, are known to inhibit
DAT (Park et al., 2002). Mutagenesis data has also shown that
oxidation of C342 causes a decrease in DAT activity (Park et al.,
2002). Furthermore, Cys modification is enhanced if the transporter
is in the inward-facing state (Chen et al., 2000). To understand this
differential reactivity of the two conformational states of DAT, we
performed two covalent dockings for C342, using DAT structures in
either outward- and inward-facing conformations (hereafter, OF
and IF). Since experimental structural information for human DAT
is missing, we generated homology models of the two transporter
conformations. The templates used for the OF and IF models were
the Drosophila melanogaster DAT (PDB code 6M2R) (Pidathala
et al., 2021) and the human serotonin transporter (PDB code 6DZZ)
(Coleman et al., 2019), respectively. The target-template sequence
identities are 56.2% (OF) and 52.4% (IF); thus, the models are
expected to be medium-to-high quality (Chothia and Lesk, 1986;
Olivella et al., 2013; Piccoli et al., 2013). We further assessed the
quality of the models by calculating their Ramachandran plots
(Supplementary Figure S1) and QMEANbrane local quality
values (Supplementary Figure S2). The percentage of residues in
favored/allowed regions is 93.3%/98.7% (OF) and 95.6%/99.4% (IF),
whereas the predicted local quality scores are above 0.7 (except for
loop regions or not resolved in the template structures). Thus these

two quality assessments support the reliability of the DAT homology
models used here. SASA calculations show that C342 is more solvent
exposed in the IF model, with SASA values four-fold larger than the
OF model (see Supplementary Table S1). Therefore, cysteine
accessibility seems to play a role in the observed higher reactivity
of ACR with the IF state (Chen et al., 2000). Our covalent docking
results (see Table 1) further support the enhanced ACRmodification
in the IF state. The top cluster for the IF model (Figure 4D) had a
more favorable score of −15.1 a.u. than the one (−2.0 a.u.) for the OF
model (Figure 4E). Such preferential binding of acrylamide to
C342 in the IF state could alter the conformational transition
between the two states crucial for dopamine transport, resulting
in altered neurotransmitter concentrations. Considering the link
between DAT and Parkinson’s disease, it is tempting to suggest that
this might be responsible, at least in part, for the PD-like symptoms
of acrylamide neurotoxicity (McHugh and Buckley, 2015;
Jayaramayya et al., 2020).

Besides C342, we also performed covalent docking for C315.
Mutagenesis experiments and transport assays upon treatment with
sulfhydryl reagents have shown that C342 is the main modification
site responsible for transport inhibition in wild-type DAT (Chen
et al., 2000). However, C315 can also be modified and have a minor
contribution to transport inhibition in a DAT C90A/C306A/C319F/
C342Amutant construct lacking C342 (Whitehead et al., 2001), with
higher C135 accessibility in the IF state (Chen et al., 2000;
Whitehead et al., 2001). The docking score for this alternative
C135 site (−11.9 a.u.) in the IF state is less favorable than for the
main C342 site (−15.1 a.u.), further supporting our proposal that the
docking score can help discriminate the most reactive Cys within a
given protein target.

3.2.5 Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH)

GAPDH is a housekeeping enzyme involved in both glycolysis,
as well as apoptotic cell signaling. Multiple studies, both
experimental and computational, have shown that acrylamide can
covalently modify GAPDH, inhibiting enzymatic activity (Tanii and
Hashimoto, 1985). Moreover, such enzymatic inactivation is
concentration- and time-dependent, as well as pH sensitive
Martyniuk et al. (2011). C152 has been identified as the most
reactive cysteine compared to two other solvent exposed cysteine
residues, C156 and C247 (Martyniuk et al., 2011). At small
concentrations of acrylamide, almost only C152 is modified. As
C152 is essential for GAPDH catalysis by acting as nucleophile,
formation of the Michael adduct will result in enzyme inhibition
(Martyniuk et al., 2011). However, at higher concentrations, ACR
adducts with C156 and C247 are also formed and have been shown
to further contribute to enzyme inhibition. To identify features that
could explain this differential reactivity, we performed covalent
docking for each of the aforementioned Cys residues (see
Table 1; Figure 4F; Supplementary Figure S17–20). The top
docking cluster for residue C152 had score of −12.3 a.u.,
significantly more favourable than those for C156 and C247
(46.1 and 9.9 a.u., respectively). Moreover, the last two dockings
showed poses with C-S distances outside the covalent bond range.
Therefore, modeling of theMichael adduct indicates that C152 is the
primary binding site of ACR in GAPDH, in agreement with
experiments (Martyniuk et al. 2011). In addition, both C156 and
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C247 had a calculated pKa above 12, and thus are less likely to
become deprotonated. Instead, the calculated pKa value of 6.6 for
C152 suggests that the sulfur atom can be present, at least partially,
as a thiolate anion. Besides, C152 forms a hydrogen bond with
residue H179 (Figure 4F); this could help deprotonate C152. Indeed,
H179 activates the thiol group during enzymatic catalysis (Soukri
et al., 1989). Moreover, the resulting doubly protonated H179 and its
respective positive charge could electrostatically stabilize the
enolate-type intermediate of the Michael addition reaction.
Furthermore, the SASA values further support C152 as the most
reactive residue, since its predicted accessibility is two orders of
magnitude higher than C156 and C247 (see Table 1). Altogether, the
computational results are in agreement with the experimental
evidence that C152 is the primary site of acrylamide modification
of GAPDH. Moreover, the higher reactivity of C152 with respect to
C156 and C247 seems to correlate with the more favorable score
obtained for the first cysteine.

3.2.6 Hemoglobin (Hb)
Hemoglobin is a heme-containing protein responsible for

oxygen transport from lungs to other tissues. Structurally, Hb is
a heterotetramer (Ahmed et al., 2020) formed by two α and two β

subunits that assemble as dimer of dimers (α1β1 and α2β2,
respectively). Mass spectrometry showed that C93 within the β

chains and C104 in the α chains are modified by acrylamide, with
C93 being the most reactive site (Basile et al., 2008). Hence,
measuring the levels of ACR-modified Hb in plasma can be used
to monitor acrylamide exposure (Barber et al., 2001; Basile et al.,
2008). The two aforementioned reactive cysteines have a predicted
pKa value above 12. However, C93 is more solvent-exposed
compared to C104 (see Supplementary Table S1), suggesting that
C93 is more accessible to acrylamide. This is in line with the covalent
docking results obtained here (Table 1). The top docking cluster for
C93 shows a significantly better docking score (−13.9 a.u.) compared
to −3.3 a.u. for C104. Indeed, docking simulations with C104 did not
result in a properly formed covalent bond between Cys and
acrylamide, which could explain the less favorable docking scores
compared to C93. Moreover, C93 has three nearby potential proton
acceptors, H346, H97 and D294 (Figure 4G), belonging to the same
β2 subunit. C93 is also located near K40 of the adjacent α1 chain,
which stabilizes the adduct by forming a hydrogen bond with the
ligand oxygen atom (see Supplementary Figures S21–S23). In
addition, the nearby positively charged side chain could help
stabilize the transient negative charge developed on the ligand
oxygen atom during the nucleophilic attack. Instead, C104 only
has a single nearby residue, H103, which could deprotonate the thiol
group or stabilize the adduct. Taken together, our computational
analysis suggests that C93 in the β subunit should be the primary site
for acrylamide adduct formation in Hb, whereas binding to C104 in
the α subunit is likely to occur only at higher acrylamide
concentrations or longer times, in line with the experimentally
observed reactivity (Basile et al., 2008). Moreover, the location of
C93 at the interface between the α1 and β2 suggests that covalent
modification of this cysteine by acrylamide could affect Hb function.
Oxygen binding to Hb induces changes within this quartenary
structure, i.e. a conformational transition from deoxyhemoglobin
(T-state) to oxyhemoglobin (R-state). The largest movement occurs
between the α1C-helix and the β2FG corner and a smaller change

takes place between the α1FG corner and the β2C-helix (Perutz,
1979). Thus, the aforementioned α1β2 intersubunit location of
C93 might alter the transition from the T to R state triggered by
oxygen binding to Hb and/or its cooperativity mechanism. We
propose here that the effect of ACR modification on C93 could
be tested experimentally, for instance, by measuring oxygen
saturation at different oxygen partial pressures, after incubation
with acrylamide. In the absence of such experimental validation, the
functional impact of ACR modification is partially supported by a
previous experimental study showing that covalent modification of
C93 and C104 by other (larger) organic compounds prevented
formation of the Hb tetramer (Hwang and Greer, 1980).

3.2.7 NEM-sensitive factor (NSF)
N-ethylmaleimide(NEM)-sensitive factor is a homohexameric

ATPase (Hoyle et al., 1996). In the presynaptic neuron, NSF,
together with SNARE proteins, is involved in fusion of
neurotransmitter-loaded vesicles with the cell membrane and
vesicle recycling and thus is key for synaptic neurotransmission
(May et al., 2001). Previous studies indicated that thiol reagents (e.g.,
NEM or NO) inhibit NSF (Matsushita et al., 2003). Mass
spectrometry data showed that acrylamide modifies cysteine
sulfhydryls, thereby altering the ATPase activity of NSF (Barber
and LoPachin, 2004). Moreover, experimental evidence indicates
that C264 is a critical residue for NSF function (Zhao et al., 2007).
This cysteine is located in a so-called Walker A motif, important to
ATP binding and thus for NSF ATPase function.

Due to the lack of experimental structural information for
human NSF, we generated a homology model based on a
Cricetulus griseus template (PDB code 3J94) (Zhao et al., 2015),
which has sequence identity of 98.4%. Therefore, the model is
expected to be high quality (Chothia and Lesk, 1986; Olivella
et al., 2013; Piccoli et al., 2013). Indeed, its Ramanchandran plot
(Supplementary Figure S1) shows 90.4%/96.5% residues in favored/
allowed regions (comparable to the 93.0%/98.0% values,
respectively, for the template structure, solved at 4.20Å
resolution). Additionally, the QMEANDisCo local quality values
(Supplementary Figure S2) are mostly above 0.7 (except for loop
regions or not resolved in the template structures), further
supporting the quality of the model. Our computational analysis
using this homology model showed that, among the potential
attachment points of ACR, C264 is both the most susceptible to
deprotonation and the most accessible to acrylamide, with a pKa

value of 7.7 and a SASA value of 85.2Å2. The docking results further
support the modification of C264 by acrylamide (Figure 4H).
Structural inspection of the docking poses revealed that ACR
would partially block access to the ATP binding site, thus
hindering ATP binding and decreasing NSF activity.

3.2.8 Vesicular proton ATPase (v-ATPase)
Filling of the synaptic vesicles with neurotransmitters relies on

the proton gradient created by the vesicular proton ATPases
(v-ATPases) using ATP. N-ethylmaleimide (NEM), a sulfhydryl
reagent similar to ACR, reduces H+ uptake, as well as decreases
v-ATPase activity (Shulamit and Sihra, 1989). The modification site
responsible for v-ATPase inhibition by sulfhydryl reagents (Feng
and Forgac, 1992; LoPachin and Barber, 2006) has been proposed to
be C254, which is located in a loop segment of the v-ATPase catalytic
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subunit, corresponding to the so-called Walker A (GAFGCGKT)
motif coordinating ATP binding and hydrolysis. Physicochemical
characterization of C254 revealed that this cysteine has a pKa value
of 10.3 and a SASA value of 11.0 Å, further supporting this particular
cysteine as ACR target site. Thus, we performed the corresponding
Haddock calculation for C254. The covalent docking poses obtained
here (Figure 4I) show that the ligand is placed at the entrance of the
active site and thus can hinder ATP binding. Nonetheless, the loop
where C254 is located exhibits large rearrangements during the
conformational cycle of v-ATPase (see Supplementary Figure S28)
and such structural changes cannot be modeled with covalent
docking. Hence, we integrated additional experimental data for
validation. Our hypothesis is indirectly supported by the
experimental observation that NEM inactivation of v-ATPase is
associated with exposure of a single cysteine residue that can be
protected by incubation with nucleotides (Hunt and Sanders, 1996).
Moreover, another experimental study showed that
C254 modification, either through formation of a disulfide bridge
with C532 or through adduct formation with NEM, causes
inactivation of the v-ATPase (Feng and Forgac, 1994). Therefore,
we surmise that modification of C254 by ACR might have a similar
inhibitory effect.

3.3 Prediction of ACR-modifiable Cys
candidates with limited experimental
information

Besides performing dockings for ACR protein targets with
experimentally validated reactive Cys (see previous Sections
3.2.1–3.2.8), we also considered protein targets that are known to
be modified by ACR or NEM, but for which the specific cysteine(s)
forming the covalent adduct is not known (see Supplementary Table
S1). In order to pinpoint the most likely reactive Cys candidates, we
first analyzed cysteine properties (SASA and pKa values), inspected
their microenvironment (since nearby residues can favor Cys
deprotonation) and checked for post-translational modifications
and Cys conservation (see Section 2.2). Similar criteria have been
previously used to predict cysteines potentially involved in disulfide
bridges, metal binding, post-translational modifications or catalysis
(as nucleophile) (Soylu and Marino, 2015, 2017; Li et al., 2021). For
most proteins, this first filtering rendered multiple Cys residues
potentially targeted by ACR. Hence, covalent docking was
performed for each candidate Cys. Based on the observation that
more favorable docking scores appear to correlate with Cys
reactivity against ACR within a given protein (see e.g., Sections
3.2.2 and 3.2.5), we used the docking scores as second filter to
suggest the most likely Cys to be modified by ACR (see
Supplementary Table S1). We would like to emphasize that the
Haddock scoring function used here (Kurkcuoglu et al., 2018;
Koukos et al., 2019) is not normalized and thus the docking
score is used only to predict ACR reactivity for Cys residues
belonging to the same protein, but not to compare different
proteins. Further details for this subset of proteins with no
experimental information on the reactive cysteine(s) are provided
in the Supplementary Material S1. The protein-ligand interaction
fingerprints of the obtained docking poses are shown in
Supplementary Material S1, whereas Supplementary Material S2

includes the average Haddock score and size of the docking clusters,
as well as the individual scores for the top four structures of each
cluster.

3.4 Hydrogen bonds

For each of the considered protein targets in Supplementary
Table S1, we analyzed the hydrogen bond (H-bond) network
between the ligand and its surrounding binding site residues. The
representative clusters of each docking were pooled together and
hydrogen bond frequencies were calculated as explained in the
Methods Section 2.

Figure 5 shows ligand-protein H-bonds classified by type of
amino acid. Only H-bonds with amino acid sidechains and
frequency over 60% are displayed; the use of other thresholds
turned out not to significantly change the amino acid ranking.
Interactions were grouped based on whether the H-bond was
formed with either the carbonyl or the amino group of the
ligand. Among the H-bonds formed with the carbonyl group,
lysine is the residue with the highest frequency (50.0%), followed
by arginine (25.0%). After these positively charged residues,
asparagine, serine and tyrosine are next in the ranking, with a
frequency of 8.3% each. The ligand amino group formed instead
H-bonds with polar residues, such as serine (20%), as well as
histidine, tyrosine, aspartic acid, threonine and glutamic acid
(14.3% each). By grouping amino acids of similar chemical
characteristics a more clear picture emerges. In particular,
positively charged amino acids, i.e. lysine and arginine, act as
main H-bond donors to the carbonyl group of the covalent
adduct and have a combined frequency of 75%. Therefore, our
structure-based analysis suggests a preference of the ligand carbonyl
group to interact with positively charged amino acids, in line with a
previous sequence only-based analysis with other thiol-reactive
electrophiles (Dennehy et al., 2006). The ligand amino group
shows a more diverse picture, in that we did not observe any
amino acid preference to interact with the amino group. In
particular, the ligand nitrogen does not prefer to interact with
negatively charged amino acids (aspartate and glutamate, see
Figure 5). We surmise that the specificity of the H-bonds with
the carbonyl group with respect to the amino group is a remnant of
the role of the H-bond donors in the mechanism of the Michael
addition reaction. H-bonding to the carbonyl group does not only
contribute to stabilize the resultingMichael adduct, but can also help
to stabilize the negative charge developed in the enolate-type
reaction intermediate.

4 Discussion

Cysteine residues are one of the least frequent (3.3%)
proteinogenic amino acids (King and Jukes, 1969). Nevertheless,
this residue is disproportionately involved in a variety of important
protein functions due to the nucleophilic and redox properties of the
thiol group (e.g catalytic or regulatory activities), as well as its ability
to form disulfide bridges and bindmetal ions. In this regard, proteins
within the synaptic vesicle cycle are of interest, since they are
considered as cysteine-rich proteins (Calakos and Scheller, 1996).

Frontiers in Pharmacology frontiersin.org11

Mueller et al. 10.3389/fphar.2023.1125871

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1125871


Acrylamide (ACR) is a toxicant that has been shown to affect
protein function by reacting with Cys residues of several protein targets
(LoPachin and Barber, 2006; LoPachin et al., 2007, 2008; LoPachin and
Gavin, 2012). Such covalent adduct formation proceeds through a
Michael addition mechanism and requires the Cys thiol group to be
accessible to acrylamide, as well as deprotonated (i.e. thiolate, see
Figure 1, step 2), so that it can act as nucleophile (Figure 1, step 3).

Here, we first calculated Cys physicochemical properties to
assess whether these intrinsic values would help pinpoint the
most reactive cysteine(s) in a given ACR protein target. The
solvent accessible surface area (SASA) is used as proxy of the
Cys exposure to ligands. However, the SASA values can
significantly vary depending on the resolution of the crystal
structure (which can affect the accuracy of the position of the
Cys side chain) and/or the functional state of the structure
chosen (for the analysis for proteins undergoing large
conformational changes during their functional cycle). For
instance, the accessibility of C342 in DAT is larger in the IF state
compared to OF (see Supplementary Table S1). As for the prediction
of pKa values, popular software packages, such as H++
(Anandakrishnan et al., 2012), PROPKA (Rostkowski et al., 2011)
or MCCE2 (Song et al., 2009), are quite successful in predicting the
acidity of aspartic or glutamic acid, but their performance for Cys
residues is significantly lower (Awoonor-Williams and Rowley,
2016). For instance, C283 in CK has an experimentally validated
pKa value of ~5.6 (Pahari et al., 2019), yet both H++ and PROPKA
estimated values of around 9 (Wang et al., 2006). Unfortunately,
both experimental and computational approaches show limitations
at estimating pKa values. Experimentally, NMR is the most
commonly used technique for pKa estimation; however, such
experiments are quite demanding, in that they require recording
multidimensional (13C and 15N) spectra at different pH values
(Stivers et al., 1996; Czerwinski et al., 2001; Hass and Mulder,
2015). Hence, PKAD (a database of experimentally measured pKa

values of ionizable groups in proteins) (Pahari et al., 2019) contains
data only for 1,350 residues in 157 wild-type proteins and for
232 residues in 45 mutant proteins; out of these, only 20 values
correspond to Cys residues. Computationally, besides implicit

solvent methods such as PROPKA (Rostkowski et al., 2011) and
H++ (Anandakrishnan et al., 2012) mentioned here, explicit solvent
methods include, among others, constant pH (Harris and Shen,
2019; Aho et al., 2022) or quantum mechanics/molecular mechanics
(QM/MM) (Riccardi et al., 2005). Such molecular dynamics-based
approaches have been shown to perform better at predicting pKa

values; however, their high computational cost makes them
prohibitive for systematic applications, such as the one presented
here. Moreover, even such advanced approaches may have
limitations. For instance, convergence problems might arise due
to limited sampling of the titratable residue conformations and of
the reorganization of the surrounding protein environment and
water molecules upon protonation state change. Moreover, in the
case of QM/MM, estimating the energetic contribution of proton
dissociation from the protein to the bulk solvent is far from trivial
(Mangold et al., 2011; Borstnar et al., 2012; Wang et al., 2020).
Therefore, in this work we decided to take advantage of a low
computational cost approach such as the H++ webserver
(Anandakrishnan et al., 2012) and then use the calculated pKa

values only to rank Cys residues within a given target protein by
acidity, rather than considering the predicted absolute values.
Moreover, as thiolate formation is favored in the presence of
H-bonding and positively charged residues (Roos et al., 2013), we
further inspected nearby residues in order to identify possible
candidates to increase Cys acidity (such as Lys and Arg) or act
as proton acceptors (such as His, Asp and Glu). However, this initial
filtering of the candidate Cys residues based on physicochemical
properties and microenvironment effects is not able to pinpoint a
single ACR target site, but rather helps to discard the least likely Cys
sites, as shown in Section 3.3. This is not surprising, because such
analysis has been used to predict Cys reactivity in general (see e.g.,
(Soylu and Marino, 2015, 2017; Li et al., 2021)), but does not take
into account specific features related to acrylamide reactivity.

In this work, we have compiled a list of protein targets associated
to ACR toxicity and biomonitoring of ACR exposure and used a
covalent docking approach to model the adduct formed upon
Michael addition reaction of acrylamide with Cys residues of
these proteins (Supplementary Tables S1–S3). First, we modeled

FIGURE 5
Frequency of hydrogen bonds. Pie chart showing the distribution of binding residues forming H-bonds with acrylamide. Only specific interactions
with amino acid side chains and hydrogen bonds with frequency over 60% were considered.
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the Cys-ACR covalent adduct for a set of protein targets for which
the most reactive Cys is experimentally verified (i.e. those target
proteins with a Cys highlighted in bold font in Supplementary Table
S1). This is the case for (i) C34 of albumin, (ii) C283 of creatine
kinase, (iii) C114 of dopamine D3 receptor, (iv) C342 of dopamine
transporter, (v) C152 of GAPDH, (vi) C93 of hemoglobin, (vii)
C264 of NSF and (viii) C254 of v-ATPase. The covalent docking
approach used here, based on scaling down the van der Waals
parameters of the Cys sulfur atom and defining two distance
restraints, allows to streamline the generation of structural
models of the protein-ACR adducts, compared to more
computationally intensive approaches, such as QM/MM (Mondal
and Warshel, 2020; Luo, 2021; Mihalovits et al., 2022). Moreover, in
the case of creatine kinase, DAT, GAPDH and hemoglobin, we also
applied covalent docking to secondary Cys sites shown
experimentally to be modified at increasing ACR concentrations
or longer incubation times (see Sections 3.2.2–3.2.6). We found that
the docking score was able to discriminate between primary and
secondary ACR sites of the aforementioned proteins, as well as the
higher reactivity of C342 of the DAT in the IF state compared to the
OF one (see Section 3.2.4). Therefore, we surmised that covalent
docking scores can help identify the main Cys reacting with ACR
within a given protein and proceeded to apply the same approach to
other protein targets associated to ACR toxicity for which the
reactive Cys is unknown (see Supplementary Table S1). Although
the aforementioned traditional approaches (Soylu and Marino,
2015, 2017), based on solvent accessibility, pKa prediction and
H-bonding environment, can help pinpoint possible reactive Cys,
the combination with covalent docking, as proposed here, can help
better discriminate between different cysteines within the protein.
Based on our observation that higher Cys reactivity against ACR
turned out to correlate with more favorable docking scores, we
suggest that the following Cys are modified by ACR (marked with an
asterisk in Supplementary Table S1): (i) C240 of alcohol
dehydrogenase, (ii) C134, C239, C268 and C289 of aldolase, (iii),
C134 of immunoglobulin kappa light chain, (iv) C398 of enolase, (v)
C381 and C530 of estrogen receptor, (vi) C663 of kinesin KIF1C,
(vii) C260 and C287 of kinesin KIF2C, (viii) C395 of
immunoglobulin G1 H Nie, (ix) C997 of topoisomerase IIa, and
(x) C164 and C188 of sex hormone-binding globulin. Nevertheless,
further experiments are needed to validate our computational
predictions.

Analysis of the residues surrounding the ACR covalent adducts
modeled in the present study shows that acrylamide binding sites are
enriched in positively charged Arg and Lys residues (see Figure 5).
Thus, our structure-based study confirms the hypothesis put
forward in a previous sequence only-based study with other
thiol-reactive electrophiles (Dennehy et al., 2006). In addition,
our work shows that residues such as His, Asp or Glu are often
found in close proximity of ACR-modified Cys sites. We surmise
that the particular amino acid composition of acrylamide binding
sites may have catalytic effects on covalent adduct formation, in line
with a previous study on model peptide systems (Lutolf et al., 2001;
Nair et al., 2014). Cys deprotonation (step 2 in Figure 1) may be
favored in the presence of positively charged Lys and Arg (which
lower the Cys pKa) and His/Asp/Glu residues (which can either
further decrease the Cys pKa by H-bonding or act as proton
acceptors). Moreover, the Michael addition reaction (step 3 in

Figure 1) proceeds via an enolate-type intermediate, which may
be stabilized in the presence of Lys/Arg/His interacting with the
negatively charged oxygen atom, thus decreasing the reaction energy
barrier.

We would like to note here that, although the docking
protocol used here (see Section 2.3.2) includes a final
refinement step in the presence of explicit water molecules,
our analysis of the protein-ligand H-bonds was focused on
direct interactions only and thus does not include water-
mediated interactions. However, water molecules could also
play a catalytic role in acrylamide adduct formation. Water
can participate in Cys deprotonation (step 2 in Figure 1),
either as proton shuttle between the reactive Cys and a nearby
proton acceptor residue or as a base itself. Unfortunately, such
role is also difficult to predict on the basis of the experimental
protein structures alone, as many show only a limited number of
structured water molecules or lack water molecules altogether
(Gnesia and Carugo, 2017; Caldararu et al., 2020). In addition,
water can help further stabilize the covalent adduct (formed upon
step 3 in Figure 1) by mediating H-bonds between the adduct and
nearby residues, as observed in other protein-ligand complexes
(Breiten et al., 2013). However, here we were interested in
predicting the protein binding site determinants of acrylamide
reactivity, rather than quantifying the binding energetics.

The covalent protocol used here has two potential limitations. As
for the SASA and pKa calculations, the docking results might depend
on the input protein structures. To minimize this dependency, we
chose the highest resolution structure available for each protein target
(to minimize possible errors in the accuracy of the position of the Cys
side chain) and employed a fully flexible docking approach (to allow
the protein environment to adjust to the presence of the ACR adduct).
Nonetheless, docking approaches cannot model large conformational
changes. Therefore, analysis of proteins undergoing large structural
rearrangements during their functional cycle might require previous
knowledge on the conformational state preferentially targeted by ACR
(as done here for the dopamine transporter, see Section 3.2.4).
Moreover, classical docking scoring functions, such as the one
used here (see Section 2.3.2), have been parameterized to describe
noncovalent protein-ligand interactions and thus can have limited
accuracy at describing covalent ligands (Scarpino et al., 2018; Sotriffer,
2018). Nonetheless, such approaches still exhibit a high success rate
for certain warhead chemistry and ligand features, in particular the
Michael addition reaction and small size ligands (Scarpino et al.,
2018), as it is the case for the Cys-ACR adducts considered here.

In conclusion, the application of covalent docking to ACR protein
targets has provided molecular insights into the binding site where the
covalent adduct is formed uponMichael addition. Such sites are enriched
in Lys andArg residues and additionally containH-bonding residues that
stabilize the covalent adduct. Docking scores emerge as a predictive tool
to pinpoint Cys residues most likely to be modified by ACR within a
given protein. Therefore, the computational workflow presented here
(Figure 2) could serve to filter putative ACRprotein targets and candidate
reactive Cys resulting from mass spectrometry-based proteomics studies
and prioritize those that are more likely to be true positives. However,
given the limitations of docking, such ranking should be used to guide
follow-up validation studies. Mutagenesis and biochemical experiments
would help to assess the impact of ACR on protein function and
eventually (neuro)toxicity and computational simulations would

Frontiers in Pharmacology frontiersin.org13

Mueller et al. 10.3389/fphar.2023.1125871

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1125871


provide further insights into the reaction mechanism of ACR
modification, as done for other covalent inhibitors (Mondal and
Warshel, 2020; Luo, 2021; Mihalovits et al., 2022).

The computational workflow presented here is based on
experimental structures from the Protein Data Bank (Berman
et al., 2000; Burley et al., 2021). However, recently developed
machine learning-based protein structure prediction algorithms
(Baek et al., 2021; Jumper et al., 2021; Ahdritz et al., 2022; Lin
et al., 2022) could also be used to generate input protein structures.
Moreover, here we performed the covalent docking calculations with
HADDOCK (Dominguez et al., 2003), because its availability as a
webserver (De Vries et al., 2010; van Zundert et al., 2016) and the
minimal preparation of the protein structures required makes our
workflow accessible to both new and experienced docking users.
Nonetheless, processing the large number of possible candidate ACR
protein targets and reactive Cys sites emerging from mass
spectrometry-based proteomics will require automated covalent
docking workflows, which could integrate either HADDOCK or
other docking programs (Scarpino et al., 2018), such as GOLD
(Borisek et al., 2015) or Schrödinger (Zhu et al., 2014). Upon such
covalent docking-based initial screening, the most promising
protein targets and reactive Cys sites could be further filtered and
analyzed using more computationally intensive QM/MM methods
(Luo, 2021; Mihalovits et al., 2022), such as empirical valence bond
(Warshel and Levitt, 1976; Warshel, 1991).
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