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Introduction: The environment of the infection site affects bacterial growth and
antibiotic activity. When bacterial growth and antibiotic activity are studied in body
fluids, samples of multiple subjects are usually pooled, averaging out potentially
relevant differences in composition. The ascitic fluid (AF) environment is
frequently associated with spontaneous bacterial peritonitis (SBP) in cirrhotic
patients. In this study, bacterial growth and ceftriaxone activity were evaluated
in individual AF using an in vitro model of SBP, reflecting the environment and
pharmacokinetics at the infection site.

Methods: AF was obtained from nine cirrhotic patients with non-infected ascites.
Growth of nine bacterial strains (three Escherichia coli, four Staphylococcus
aureus, one Enterococcus faecalis, and one Klebsiella pneumoniae) in
individual AF was assessed and correlated with biomarkers including potential
risk factors for SBP. Ceftriaxone time-kill experiments, in which the
pharmacokinetic profile observed in AF following a 1 g intravenous infusion
was replicated, were performed with two E. coli and two S. aureus isolates with
minimum inhibitory concentrations around the ceftriaxone resistance breakpoint.

Results: Significant correlations were found between bacterial growth and AF
levels of protein (Spearman’s rank correlation coefficient ρ = −0.35), albumin
(ρ = −0.31), and complement C3c (ρ = −0.28), and serum levels of bilirubin (ρ =
0.39) and aspartate aminotransferase (ρ = 0.25). Ceftriaxone was active in AF, even
against resistant isolates, generally resulting in ≥2 log reductions in bacterial count
within 24 h.

Conclusion: Ascites patients may be predisposed to or protected against SBP
based on the antimicrobial capacity of their AF. Ceftriaxone at clinical AF
concentrations is active in the AF environment.
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1 Introduction

Ascites is the accumulation of fluid in the peritoneal cavity,
most commonly as a consequence of cirrhosis. Hospitalized
patients with cirrhosis and ascites frequently develop
spontaneous bacterial peritonitis (SBP), an infection of the
ascitic fluid (AF), with reported incidence rates between 7%
and 30% (Marciano et al., 2019). SBP is associated with poor
clinical outcomes, with overall mortality rates of 32.5% and 66.2%
at 1 and 12 months, respectively (Arvaniti et al., 2010). Upon
diagnosis, empirical antibiotic treatment should be initiated
immediately to prevent sepsis (European Association for the
Study of the Liver, 2018). However, few data are reported on
the activity of antibiotics in the AF environment (Miglioli et al.,
2005), and studies using clinical endpoints are challenging in
patients with SBP.

Microbiological in vitro studies are generally performed
using nutrient media. This has advantages related to
standardization and reproducibility but ignores potential
effects of host factors on bacterial growth and antibiotic
activity. Studies have found altered antibiotic activity when
substituting standardized growth media for body fluids, such
as urine (Erdogan-Yildirim et al., 2011; Yang et al., 2014), bile
(Rees and Elliott, 1998; Wulkersdorfer et al., 2017), cerebrospinal
fluid (Matzneller et al., 2016), peritoneal fluid (König et al., 1998;
Miglioli et al., 1998) or, indeed, AF (Miglioli et al., 2005).
However, data on bacterial growth and antibiotic activity in
body fluids remains scarce (Nussbaumer-Pröll and Zeitlinger,
2020). Moreover, samples of multiple subjects are often pooled,
averaging out potentially relevant differences in composition.
The use of static and sometimes clinically irrelevant drug
concentrations further limits the translational relevance of
many in vitro experiments.

We aimed to establish an in vitro model of SBP, reflecting
both the environment and pharmacokinetics at the infection
site. Using the model, we assessed bacterial growth and the
activity of ceftriaxone, a recommended option for prophylaxis
and treatment of community-acquired SBP (European
Association for the Study of the Liver, 2018; Marciano et al.,
2019).

2 Materials and methods

2.1 Ascitic fluid collection and processing

AF was obtained from patients with non-infected ascites who
were scheduled to undergo paracentesis. Included patients were not
treated with antibiotics for at least 1 week. Patients with known HIV
or hepatitis infection were excluded. Laboratory parameters were
obtained for AF and matched blood samples. Aliquots of AF were
cultured to confirm absence of colonization. Disk diffusion tests
using Bacillus subtilis DSM 618 (Merck, Darmstadt, Germany) to
exclude presence of antibiotic residues in the AF were performed as
described previously (Wulkersdorfer et al., 2017). The remaining AF
was stored at −80°C. Immediately prior to the experiments, AFs were
thawed, passed through 70 μm cell strainers, and the pH was
measured.

2.2 Bacterial growth and time-kill assays

Bacterial growth of nine strains from different species known to
cause SBP (Fiore et al., 2017; Marciano et al., 2019) was evaluated in
individual AF and cation-adjusted Mueller Hinton broth (CAMHB;
Sigma-Aldrich, Vienna, Austria). The strains included three Escherichia
coli strains (ATCC 25922 and two clinical isolates), four Staphylococcus
aureus strains (ATCC 29213, ATCC 33592 and two clinical isolates),
Enterococcus faecalis ATCC 29212 and Klebsiella pneumoniae ATCC
700603. Matched time-kill experiments with ceftriaxone (ceftriaxone
sodium, Sigma-Aldrich, Vienna, Austria) were performed with four of
the strains, due to limited availability of individual AF. Strain selection
was based on the ceftriaxone minimum inhibitory concentration
(MIC). MICs were determined by broth microdilution in CAMHB
per guidelines from the Clinical and Laboratory Standards Institute
(Clinical and Laboratory Standards Institute, 2020).

Tubes containing 5 mL individual AF or CAMHB were
inoculated at a target concentration of 1.5x106 colony-forming
units (CFU)/mL and incubated in a shaking water bath at 37°C.
In the ceftriaxone time-kill experiments, drug exposure started 1 h
after inoculation. By stepwise addition of ceftriaxone at 1–3 h
intervals, the concentration was gradually increased to a
maximum of 12 mg/L at 8 h, replicating the clinical ceftriaxone
pharmacokinetics observed in AF of cirrhotic patients following a
1 g intravenous infusion (Hary et al., 1989). At selected time points,
samples were drawn after vortexing, serially diluted in duplicate in
0.9% saline and plated on Columbia agar with 5% sheep blood
(bioMérieux, Marcy-l’Etoile, France). Colonies were counted after
overnight incubation at 37°C. Experiments were performed in at
least triplicate. For the four strains selected for time-kill
experiments, data in CAMHB was obtained in sextuplicate, since
not all AF experiments were conducted simultaneously.

2.3 Statistical analysis

The mean log-scale difference in bacterial count at the end of the
experiment (24 h) compared to baseline (log10 ΔCFU/mL) was
calculated for each combination of strain and fluid, both for the
growth and ceftriaxone time-kill assays. Observations below the limit
of detection (LOD; 50 CFU/mL) were imputed as LOD/2. Using
Spearman’s rank order correlation, mean log10 ΔCFU/mL values
were correlated to patient characteristics and AF and blood
markers considered to be (potentially) associated with risk of
developing SBP (see Table 1) (Runyon et al., 1985; Runyon, 1986;
Such et al., 1988; Titó et al., 1988; Andreu et al., 1993; Guarner et al.,
1999; Schwabl et al., 2015). Bonferroni correction was used to adjust
formultiple testing, with an original significance level of α < 0.05. Data
analysis and visualization were performed in R (R Core Team, 2020).

2.4 Ethics

This study was performed in accordance with the Declaration of
Helsinki, European Commission good clinical practice guidelines
and local good scientific practice guidelines, and approved by the
ethics committee of the Medical University of Vienna (#1801/2018).
Written informed consent was obtained from all patients.
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3 Results

3.1 Patients

The experiments were performed with AF obtained from nine
cirrhotic patients. Patient characteristics and selected AF and blood
laboratory parameters are shown in Table 1. The individual
parameter values are presented in Supplementary Table S1.

3.2 Growth assays

The growth experiments showed considerable variability between
individual AFs (Figure 1). In some AFs, such as AF 4, AF 6 and AF 8,
net bacterial growth was observed for most strains. In fluids of other
patients, such as AF 3 and AF 5, approximate bacteriostasis or
(sometimes extensive) reductions in bacterial count were observed
for most strains. Between-strain variability was also observed. For

example, bacterial concentrations of E. coli ATCC 25922 in all AFs
were similar to those in CAMHB at 24 h, whereas net reductions were
observed in six AFs for K. pneumoniae ATCC 700603.

3.3 Time-kill assays

Two E. coli and two methicillin-susceptible S. aureus isolates
were selected for the time-kill experiments (Figure 2). The MICs of
E. coli isolates #1 and #2 and S. aureus isolates #1 and #2 were 4, 2,
2 and 4–8 mg/L, respectively.

In AF that was not already intrinsically highly bactericidal
(>2 log reduction in the growth experiments), 24 h of ceftriaxone
exposure resulted in bacterial concentrations >2 log lower compared
to the equivalent growth experiments (Figure 3), the only exception
being S. aureus isolate #2 in AF 2.

In CAMHB, ceftriaxone exposure had minimal effect on E. coli
isolate #2, and regrowth was observed for E. coli isolate #1. In all AFs,

TABLE 1 Selected patient characteristics and laboratory parameters, including correlations with in vitro bacterial growth of nine strains in ascitic fluids of nine
patients. Data are presented as mean (standard deviation) unless specified otherwise; p values <0.05 are indicated in bold; * marks significance at Bonferroni-
adjusted α (0.0033).

ρ p value

Patient characteristics

Aetiology of cirrhosis (ALD / cryptogenic) 6 / 3

Child-Pugh score (B / C) 7 / 2

Gender (% male) 100%

Age (years) 57.2 (10.0) 0.18 0.113

Ascitic fluid parameters

Protein (g/L) 23.6 (10.4) −0.35 0.001*

Albumin (g/L) 13.6 (5.9) −0.31 0.004

Leucocytes (G/L) 0.242 (0.148) 0.04 0.732

Complement C3c (g/L) 0.260 (0.148)a −0.28 0.010

pH 7.46 (0.09)

Blood parameters

Bilirubin (μmol/L) 20.70 (9.23) 0.39 <0.001*

INR 1.4 (0.2) 0.05 0.665

AST (μkat/L) 0.756 (0.383) 0.25 0.032

ALT (μkat/L) 0.445 (0.244) 0.01 0.896

Albumin (g/L) 34.8 (4.0) <0.01 0.999

Urea nitrogen (mmol/L) 5.66 (2.34) 0.06 0.608

Creatinine (μmol/L) 103.4 (28.0) 0.16 0.164

Sodium (mmol/L) 132.3 (5.4) 0.09 0.443

CRP (mg/L) 14.6 (12.1) <0.01 0.994

Leucocytes (G/L) 6.30 (2.84) 0.10 0.385

aValues of three patients were below the quantification limit (BQL, 0.2 g/L), these values were imputed as BQL/2. ρ, Spearman’s rank correlation coefficient; ALD, alcoholic liver disease; INR,

International Normalized Ratio; AST, aspartate aminotransferase; ALT, alanine aminotransferase; CRP, C-reactive protein.
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FIGURE 1
Bacterial growth of nine strains of four different species in nine individual ascitic fluids and cation-adjusted Mueller-Hinton broth. ΔCFU/mL is the
mean log10-transformed bacterial count at the end of the experiment relative to the initial inoculum. CAMHB, cation-adjusted Mueller Hinton broth; AF,
ascitic fluid; CFU, colony-forming units.

FIGURE 2
Observed bacterial counts in the growth and ceftriaxone time-kill experiments with two E. coli and two S. aureus isolates. Mean log10-transformed
values and standard deviations are plotted. The dashed line indicates the limit of detection (LOD; 50 CFU/mL). Observations below the LODwere imputed
as LOD/2. Experimental ceftriaxone concentrations are displayed in the panels on the right. CAMHB, cation-adjusted Mueller Hinton broth; AF, ascitic
fluid; CFU, colony-forming units; MIC, minimum inhibitory concentration; PK, pharmacokinetics.
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however, >2 log reductions compared to baseline were observed for
the E. coli strains after 24 h of ceftriaxone exposure. Against the S.
aureus isolates, ceftriaxone exposure in AF also generally resulted in
bacterial count reductions similar to or larger than in CAMHB.

3.4 Correlation analyses

Significant (p < 0.05) negative correlations were found
between log10 ΔCFU/mL in the growth assays and protein,
albumin and complement C3c levels in AF, and significant
positive correlations between log10 ΔCFU/mL and serum
bilirubin and aspartate aminotransferase (AST) levels
(Table 1). AF protein and serum bilirubin levels remained
significant after adjusting for multiple testing using Bonferroni
correction. The association between log10 ΔCFU/mL and AF
pH was not tested due to the limited spread in values, with all
but two AF having a pH between 7.43 and 7.50. Considering the
extensive ceftriaxone effect observed in the majority of the time-
kill experiments, correlations between drug effect and laboratory
parameters were not tested.

4 Discussion

We established an in vitro model of SBP, reflecting both the
environment and pharmacokinetics at the infection site.
Importantly, we assessed bacterial growth and ceftriaxone activity in
individual AF, rather than pooling samples from multiple subjects.

The observed variability in bacterial growth in antibiotic-free
AF indicates that AF composition may predispose to or protect
against SBP. Significant but weak negative correlations were
found between bacterial growth and levels of C3c, albumin
and protein in AF. These results are consistent with research
indicating that complement activation, of which protein content
is a surrogate marker (Runyon et al., 1985; Runyon, 1986; Such
et al., 1988), is pivotal to suppress bacterial growth in AF
(Fromkes et al., 1977; Simberkoff et al., 1978; Michel et al.,
1980; Akalin et al., 1983; Runyon et al., 1985). The weakly
positive correlations between bacterial growth in AF and
serum bilirubin and AST found in our study suggest that AF
of patients with impaired hepatic function better supports
bacterial growth. This is in line with studies that identified
increased levels of liver enzymes and/or bilirubin as risk
factors for developing SBP (Titó et al., 1988; Andreu et al.,
1993; Guarner et al., 1999; Schwabl et al., 2015). The
correlation between hepatic function and bacterial growth
in vitro might be reflective of the central role of the liver in
producing complement proteins (Baumann et al., 2004). Our
results thus support the thesis that beside general immune-
suppression the increased risk of SBP in patients with
impaired hepatic function can at least partly be attributed to a
decreased antibacterial capacity of the AF (Simberkoff et al.,
1978; Akalin et al., 1983; Andreu et al., 1993). Altogether,
although the correlations were weak, they support guidelines
recommending primary antibiotic prophylaxis in patients with
AF protein content <15 g/L and advanced cirrhosis in order to
protect those at increased risk of SBP and prevent antibiotic

FIGURE 3
Ceftriaxone activity against two E. coli and two S. aureus isolates in individual ascitic fluids (closed symbols) or cation-adjusted Mueller Hinton broth
(open symbols) plotted against growth assay results. Symbols represent the mean log10-transformed ΔCFU/mL for each combination of isolate and
growthmedium. ΔCFU/mL is the difference in bacterial count at the end of the experiment relative to the initial inoculum. Observations below the limit of
detection (LOD) were imputed as LOD/2. The dashed line represents scenarios in which there is no apparent ceftriaxone activity. CAMHB, cation-
adjusted Mueller Hinton broth; CFU, colony-forming units; MIC, minimum inhibitory concentration.
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overuse (Fernández et al., 2016; European Association for the
Study of the Liver, 2018; Marciano et al., 2019).

Due to limited availability of individual AF, ceftriaxone time-kill
experiments were conducted with four isolates. Selection was based
on ceftriaxone MIC, since time-kill experiments using strains with
MICs much higher or lower relative to planned ceftriaxone
concentrations were hypothesized to yield uninformative results.
The observed bactericidal activity of ceftriaxone in AF is in line with
results from Miglioli et al., which found that moxifloxacin MICs
were unchanged or reduced when supplementing CAMHB with
different levels of pooled AF (Miglioli et al., 2005). It should be noted
that two of the isolates that were used in the time-kill experiments
had ceftriaxone MICs above the clinical breakpoint of 2 mg/L
(European Committee on Antimicrobial Susceptibility Testing,
2023), and would thus likely not have been treated with
ceftriaxone if identified in AF through culturing and
susceptibility testing. However, SBP is not diagnosed based on
culture positivity but on polymorphonuclear leukocyte count, and
empirical treatment should be initiated immediately after diagnosis
(European Association for the Study of the Liver, 2018; Marciano
et al., 2019). Our experiments reflect this empirical approach, as well
as the increasing prevalence of Gram-positive and multidrug-
resistant strains causing SBP (Fiore et al., 2017). The results of
this study show that ceftriaxone at concentrations attained in AF
following a 1 g intravenous infusion may be active against isolates
with MICs above but close to the ceftriaxone breakpoint. This, and
the observed bactericidal activity of ceftriaxone over 24 h against
both E. coli isolates in AF but not in CAMHB, underlines the
limitations of translating susceptibility testing in rich growth media
to effect at the infection site.

A limitation of our experimental setup is the potential of
nutrient depletion, especially in AF, which is likely less rich in
nutrients than CAMHB. This may have affected bacterial growth.
Additionally, we did not use strains isolated from patients with SBP,
and used non-infected AF. Infection changes AF composition
(Huang et al., 2014), and bacterial colonization in AF may not
always progress to SBP, as our results also indicate. In particular the
role of (increasing numbers of) leucocytes in the course of AF
infection was not accounted for in our model. For these reasons, the
model may be regarded as one for early-phase SBP or bacterascites,
which is characterized by positive AF culture without an
inflammatory response. Further, we did not study potential drug
degradation in the time-kill experiments. Studies on ceftriaxone
stability in aqueous solutions and serum at 37°C indicate that less
than 20% of the initial concentration degrades over 24 h (Esteban
et al., 1990; Cantón et al., 1993; Samara et al., 2017). However, drug
degradation potentially occurs at different rates in AF and CAMHB
(Wulkersdorfer et al., 2017). Finally, the extent of protein binding of
ceftriaxone in AF was not measured. However, since our in vitro
pharmacokinetic simulation was based on total drug concentrations
(Hary et al., 1989), the impact of protein binding on ceftriaxone
activity was automatically included in the experimental setup.

In conclusion, this study shows that AF composition affects
bacterial growth and supports antibiotic prophylaxis based on AF
protein content and markers indicating hepatic impairment. More
clinical data are warranted to refine identification of populations at
the highest risk of infection to balance benefits and risks of antibiotic
prophylaxis. Moreover, these results highlight the role of the

infection site environment in pharmacokinetic-pharmacodynamic
relationships of antimicrobials, and shows that ceftriaxone at clinical
AF concentrations is bactericidal in the AF environment.
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