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SARS-CoV-2-mediated interactions with drug metabolizing enzymes and
membrane transporters (DMETs) in different tissues, especially lung, the main
affected organ may limit the clinical efficacy and safety profile of promising
COVID-19 drugs. Herein, we investigated whether SARS-CoV-2 infection could
dysregulate the expression of 25 clinically relevant DMETs in Vero E6 cells and
postmortem lung tissues from COVID-19 patients. Also, we assessed the role of
2 inflammatory and 4 regulatory proteins in modulating the dysregulation of
DMETs in human lung tissues. We showed for the first time that SARS-CoV-
2 infection dysregulates CYP3A4 and UGT1A1 at the mRNA level, as well as P-gp
and MRP1 at the protein level, in Vero E6 cells and postmortem human lung
tissues, respectively. We observed that at the cellular level, DMETs could
potentially be dysregulated by SARS-CoV-2-associated inflammatory response
and lung injury. We uncovered the pulmonary cellular localization of CYP1A2,
CYP2C8, CYP2C9, and CYP2D6, as well as ENT1 and ENT2 in human lung tissues,
and observed that the presence of inflammatory cells is the major driving force for
the discrepancy in the localization of DMETs between COVID-19 and control
human lung tissues. Because alveolar epithelial cells and lymphocytes are both
sites of SARS-CoV-2 infection and localization of DMETs, we recommend further
investigation of the pulmonary pharmacokinetic profile of current COVID-19 drug
dosing regimen to improve clinical outcomes.
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Introduction

Coronavirus disease 2019 (COVID-19) has killed over 6 million
people and affected more than 600 million people worldwide,
making it one of the deadliest pandemics of the 21st century
(World Health organization, 2022). Although several vaccines are
now available to protect against severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), full protection is not guaranteed for
multiple reasons including evasion of neutralizing antibody by some
variants of SARS-CoV-2 (Garcia-Beltran et al., 2021; Hoffmann
et al., 2021; Madhi et al., 2021), breakthrough infection (Su et al.,
2016; Krammer, 2020), and delay in reaching herd immunity (Our
World in Data, 2021). Therefore, there is an urgent need to develop
effective antiviral drugs that will complement the existing vaccines
in improving the morbidity and mortality associated with
COVID-19.

Currently, there is no cure for COVID-19; however, drugs such
as remdesivir, molnupiravir, and nirmatrelvir have shown great
promise relative to other candidates (Cascella et al., 2022). A major
determining factor for the clinical efficacy and safety of these drugs
is their ability to sufficiently distribute within the host and reach
optimal therapeutic concentrations at disease target sites,
particularly the lung tissue, the main organ affected by SARS-
CoV-2 infection (Nwabufo and Aigbogun, 2022). For example, a
previous study in rats found that the plasma levels of lopinavir were
greater than its lung concentrations (Kumar et al., 2004), indicating
that the drug may not be reaching the optimal pulmonary
concentrations required to effectively eradicate SARS-CoV-
2 virus. Yet, studies investigating the spatial distribution of
COVID-19 drugs at the primary target cells (Type II alveolar
epithelial cells) of SARS-CoV-2 infection within the lung tissues
are still lacking.

The lung is heterogeneous, comprising about 40 different cell
types with an unequal distribution of drug metabolizing enzymes
and membrane transporters (DMETs), which have a lower
expression and activity compared to their hepatic counterpart
(Enlo-Scott et al., 2021a; 2021b). Alone or in synergy, these
DMETs can alter the pulmonary concentration of drugs, rate and
extent of their spatial distribution to disease target cells,
accumulation in specific cell types and overall pulmonary drug
retention, as well as absorption into the systemic circulation
resulting in distinct local and systemic pharmacokinetic (PK)/
pharmacodynamic (PD) profiles (Gustavsson et al., 2016;
Ehrhardt et al., 2017).

Early response pro-inflammatory cytokines such as tumor
necrosis factor (TNF)-α, interleukin-6 (IL-6), and IL-1β, are
overproduced in a typical hospitalized COVID-19 patient and
may be responsible for the acute respiratory distress syndrome,
lung injury, and multiple-organ damage seen in some COVID-19
patients at severe stages of the disease (Aziz et al., 2020; Pilla Reddy
et al., 2021; Rendeiro et al., 2021; Frisoni et al., 2022). Interestingly,
IL-6 and IL-1β have both been implicated in the dysregulation
(altering the normal levels) of DMETs (Dunvald et al., 2022), and
their presence in COVID-19 pathophysiology warrants a similar
investigation. Recent clinical studies have reported altered PK
profiles for drugs such as midazolam (Le Carpentier et al., 2022),
tacrolimus (Salerno et al., 2021), and lopinavir (Gregoire et al., 2020)
in COVID-19 patients. These studies suggests that SARS-CoV-2-

associated inflammatory response may be responsible for the altered
PK profile. However, the molecular mechanism underlying SARS-
CoV-2-mediated alteration of drug PK profile is yet to be
demonstrated.

At the molecular level, proinflammatory cytokines may
dysregulate the expression of DMETs through xenosensing
regulatory proteins including pregnane X receptor (PXR),
constitutive androstane receptor (CAR), nuclear factor kappa
B (NF-kβ), phosphorylated signal transducer and activator of
transcription 3 (pSTAT3) that control transcription (Wu and
Lin, 2019; Stanke-Labesque et al., 2020; Dunvald et al., 2022).
Also, inflammation-mediated damage of pulmonary cells
housing DMETs, as well as recruitment of pulmonary immune
cells such as macrophages (which also house DMETs) in response
to SARS-CoV-2 infection could also alter local drug PK/PD
profile (Nwabufo and Bendayan, 2022). In general, all these
effects associated with an immune response to SARS-CoV-
2 infection could lead to distinct PK/PD profiles in peripheral
tissues and systemic circulation with potential clinical drug safety
and efficacy issues for COVID-19 patients, especially those with
polypharmacy.

In this present study (Figure 1), we investigated for the first
time whether SARS-CoV-2 infection with D614G variant alters the
mRNA expression of 9 inflammatory markers, 12 DMETs, in Vero
E6 cells compared to mock. The D614G variant of SARS-CoV-
2 was the most prevalent form of the virus at the onset of this study
and is characterized by a mutation at position 614 in the spike
protein which causes a change in amino acid sequence from
aspartic acid to glycine (Korber et al., 2020). Several studies
have shown that the D614G variant is more infectious than the
original strain of the virus with increased spike protein binding to
human cells (Korber et al., 2020; Yurkovetskiy et al., 2020; Zhang
et al., 2020; Plante et al., 2021). Interestingly, the D614G mutation
have been found in several variants of concern (VOI) including
alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), gamma (P.1), and
omicron (BA.1, BA.2, BA.3, BA.4, BA.5) (Ou et al., 2022). Vero
E6 cell line is derived from kidney epithelial cells of African green
monkey and is one of the most used cell lines for studying SARS-
CoV-2 virus because they express high levels of angiotensin-
converting enzyme 2 receptor which is essential for cellular
entry of the virus (Hoffmann et al., 2020; Rosa et al., 2021).
This makes Vero E6 cell a good in vitro model for our study.
More so, we have not identified any previous study that has
examined the full panel of the inflammatory signature
associated with SARS-CoV-2 infection or SARS-CoV-2-DMETs
interactions in Vero E6 cells. Because the lung is the main organ
affected by SARS-CoV-2 infection and may be prone to SARS-
CoV-2-mediated dysregulation of DMETs, we further conducted a
novel investigation of the cellular localization and changes in
protein expression of 2 SARS-CoV-2-associated inflammatory
markers, 4 regulatory proteins, and 13 DMETs in postmortem
human lung tissues obtained from 10 COVID-19 patients
compared to 5 age/sex-matched non-infected controls. We
anticipate that any significant dysregulation will adversely affect
the concentration of promising COVID-19 drugs in both
peripheral tissues and systemic circulation, and may underpin
the limited clinical efficacy and safety observed for several COVID-
19 drug repurposing programs.
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Methods

In Vitro SARS-CoV-2—DMETs interactions

SARS-CoV-2 infection in Vero E6 cells and RNA
extraction

Vero E6 cells were kindly provided by Dr. Mubareka, Sunnybrook
Research Institute, and the SARS-CoV-2 infection was performed in their
laboratory. Vero E6 cells were seeded in T75 cm2

flasks to achieve 95%
confluency the next day. Using amultiplicity of infection of 0.001 to avoid
over-infectionandexcessivecelltoxicity,cellswereinoculatedwith1.5 mLof
SARS-CoV-2 virus containing the spike-protein D614G mutation. Mock
controls were inoculatedwithDMEMmedia only. Cells were incubated at
37°C, 5% CO2 for 45min and rocked every 10min before inoculum was
removed and topped up with 15mL DMEM (Wisent #319-005-CL)
containing 2% heat-inactivated FBS (Wisent #080450), 100IU penicillin-
100 μg/ml streptomycin and 2mML-glutamine (Wisent # 450-202-EL).
Cell pellets were collected at 0-, 6-, 24-, and 48- hours’post-infection (hpi).
Cell pellets were prepared by removing the supernatant, washing with
10mL cold PBS, and scraping the monolayer with 5 mL fresh PBS. Lifted
cellswere collected intoa tube, andanother5mLof freshPBSwasadded to
collect any remaining cells. Cells were spun at 1,000 g for 5 min at 4°C and
kept in the −80°C freezer. RNA extraction was performed using the
Qiashredder and RNeasy Mini Plus kit (Qiagen). RNA concentrations at
anabsorbanceof260 nmandpurityatanabsorbance ratioof260/280were
quantified using Nanodrop One Spectrophotometer (Thermo Scientific).

Virus stock
The virus (S357_P2_LY) propagated in Vero E6 cells and

contains spike-protein D614G mutation. Sequencing revealed that
the virus stock has 2 deletions (7% in position 23,598% and 10% in
position 23,628) in the polybasic furin cleavage site located on the S
gene. Supplementary Table S1 shows a list of other single nucleotide
variants and their frequencies.

Real-time quantitative polymerase chain reaction
analysis

Real-time quantitative polymerase chain reaction (qRT-PCR)
was used to measure the mRNA expression of selected
inflammatory markers, and DMETs (Supplementary Table S2).
2 μg isolated RNA was treated with DNase I to remove residual
DNA and then reverse transcribed to cDNA using a high-
capacity reverse transcription cDNA kit (Applied Biosystems)
according to the manufacturer’s instructions. Specific monkey
TaqMan primers for selected inflammatory markers and DMETs
(Supplementary Table S3) obtained from Life Technologies were
used with TaqMan quantitative polymerase chain reaction
biochemistry. All assays were performed in triplicates with
PPIB (Peptidylprolyl isomerase B) and GAPDH
(Glyceraldehyde-3-phosphate dehydrogenase; used for CRP
and IL10) housekeeping genes as an internal control. For each
gene, the critical threshold cycle (CT) was normalized to the
housekeeping gene using the comparative CT method. Next, the

FIGURE 1
Methods deployed for investigation of SARS-CoV-2—DMETs interactions. (A) Vero E6 cells were infected with SARS-CoV-2 virus and cell pellets
were collected at 0-, 6-, 24-, and 48- hours post-infection. Subsequently, relative mRNA expression of selected clinically relevant inflammatory markers
(9), DMETs (12) was determined using qRT-PCR. (B) Chromogenic immunohistochemistry was used to localize and compare changes in protein
expression of clinically relevant inflammatory markers (2), xenosensing regulatory proteins (4), DMETs (13) between COVID-19 and control
postmortem human lung tissues.
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difference in CT values (ΔCT) between the gene of interest and
the housekeeping gene was then normalized to the corresponding
ΔCT of the vehicle control (ΔΔCT) and the relative difference in
mRNA expression for each gene was represented as 2−ΔΔCT.

SARS-CoV-2—DMETs interactions in human
lung tissues

The studies involving human participants were reviewed and
approved by the office of the Chief Coroner at Ontario Forensic
Pathology Service (Chief Forensic Pathologist, and Chief Coroner).
Written informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

Autopsies and postmortem lung tissue processing
Autopsies were performed as per guidelines provided by the

Ontario Forensic Pathology Service with appropriate infection
isolation procedures. Histological samples obtained during the
autopsy were fixed in 10% neutral buffered formalin for at least
24 h before processing.

Immunohistochemical analysis
Chromogenic immunohistochemistry (IHC) was used to localize and

quantify the expression of SARS-CoV-2 virus, inflammatory markers,
regulatory proteins, and DMETs (Supplementary Table S4) in
postmortem human lung tissues obtained from 10 infected COVID-19
patients and 5 age/sex-matched non-infected controls (Table 1). IHC was
performed on 4 μm formalin-fixed paraffin-embedded sections of lung
tissues. Primary antibodies for the selected biomarkers (Supplementary
Table S5) were detected using a secondary antibody and horseradish

peroxidase-conjugated streptavidin (MACH 4 universal HRP kit, Biocare
Medical, CA, United States), followed by color development with 3,3′-
Diaminobenzidine (DAB; DAKO Cat# K3468). Subsequently, cell
morphology and nuclei were visualized by counterstaining with
hematoxylin and eosin (H&E). Reagent negative control
(Supplementary Figure S1) and positive control (Supplementary Figure
S2) were performed to determine specificity. All immunostained slides
were imaged with an Aperio AT2 brightfield scanner (Leica Biosystems)
at ×20 magnification on a standard slide dimension (1”×3″).

Absolute protein quantitation
HALO software v3.4 (Indica Labs) was used to analyze the entire

lung tissue section of each slide across all the investigated
biomarkers. The multiplex IHC (v3.1.4) algorithm was used to
quantify percentage of DAB positive cells which comprised the
total number of DAB positive cells relative to the total number of
cells quantified in the images.

Data analysis

All statistical analyses were performed using GraphPad Prism®
(version 8.0 for Microsoft Windows, Graph Pad Software, San Diego,
CA, United States) with a significant difference defined as a p-value of
0.05 or less. All results for mRNA expression and protein quantification
were expressed as mean ± standard deviation (SD) and mean ± standard
error of the mean (SEM), respectively. An unpaired t-test was used to
determine significant differences inmRNAexpression between the SARS-
CoV-2-infected and mock Vero E6 cells. The non-parametric two-tailed
Mann-Whitney test was used to assess the differences in protein
expression between COVID-19 and control postmortem human lung
tissues for absolute quantitative IHC analysis.

TABLE 1 Clinical and demographic characteristics for patients included in the immunohistochemistry study.

Sample ID COVID-19 Status Age Gender Cause of death

1 COVID-19 76 M COVID-19

2 COVID-19 60 M COVID-19

3 COVID-19 76 F COVID-19; Chronic obstructive lung disease; Hypertensive cardiovascular disease

4 COVID-19 48 M COVID-19

5 COVID-19 53 F Complications of COVID-19 pneumonia (with saddle pulmonary embolism and deep vein thrombosis

6 COVID-19 37 M COVID-19 with acute pulmonary thromboembolism

7 COVID-19 83 M COVID-19; Atherosclerotic and hypertensive heart disease; Pulmonary emphysema

8 COVID-19 66 M COVID-19; Diabetes mellitus; Essential hypertension

9 COVID-19 56 F COVID-19

10 COVID-19 32 M COVID-19

11 Non-COVID-19 32 M Gammahydroxybutyrate toxicity

12 Non-COVID-19 41 M Multiple drug toxicity (fentanyl, ethanol, and methamphetamine)

13 Non-COVID-19 59 F Acute coronary thrombosis; intraplaque hemorrhage and rupture; atherosclerotic coronary artery disease

14 Non-COVID-19 66 M Atherosclerotic heart disease

15 Non-COVID-19 74 M Blunt impact head trauma
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Results

In Vitro SARS-CoV-2—DMETs interactions

SARS-CoV-2-associated inflammatory response in
Vero E6 cells

We observed significant changes in the mRNA expression
level of inflammatory markers associated with COVID-19
severity including IL-1β, TNF-α, CCL2, and CXCL10 in our
SARS-CoV-2 infected Vero E6 cells (Figure 2A); suggesting that
Vero E6 cells may be used to study the inflammatory events
associated with COVID-19 and modelling the severe stage of
the disease in vitro.

The mRNA expression of the pro-inflammatory cytokines,
IL-1β and TNF-α was markedly upregulated by 7-(p < 0.05) and
81-(p < 0.01) fold, respectively, at 24 h (Figure 2A). Similarly,
the mRNA expression of the chemokines, CCL2 and CXCL10,
was markedly increased by 56-(p < 0.01) and 29-(p < 0.001)
fold, respectively, at 24 h in the infected SARS-CoV-2 Vero
E6 cells (Figure 2A). However, at the 48-h mark, the mRNA
expression level of CXCL10 decreased to baseline in the infected
SARS-CoV-2 Vero E6 cells (Figure 2A). No mRNA expression
was observed for CRP and IL-10 in both mock and infected Vero
E6 cells (data not shown).

It is possible that species differences (humans and monkeys), as
well as potential distinctions in the inflammatory events associated
with the different variants of SARS-CoV-2 virus may be responsible
for the lack of observable significant differences in the mRNA

expression of IL6, iNOS, and IFN- γ (Supplementary Figure S3A)
in the infected Vero E6 cells.

SARS-CoV-2—DMET interactions in Vero E6 cells
Out of the 7 investigated DMEs, onlyCYP3A4 andUGT1A1 were

significantly dysregulated at the mRNA level in SARS-CoV-
2 infected Vero E6 cells (Figure 2B). At 48 h, the mRNA
expression of CYP3A4 was significantly upregulated by 50-fold
(p < 0.05) in the infected Vero E6 cell (Figure 2B). At the same
time point, UGT1A1 mRNA expression was significantly
downregulated by 0.5-fold (p < 0.001) in the infected Vero E6 cell
(Figure 2B). No significant dysregulation of CYP2D6 mRNA
expression was observed (Figure 2B), and no mRNA expression
was detected for CYP1A2, CYP2B6, CYP2C8, and CYP2C9 in both
mock and infected Vero E6 cells (data not shown).

None of the investigated membrane-associated drug
transporters (PGP, BCRP, MRP1, MRP2, and MRP4) showed
significant dysregulation in mRNA expression (Figure 2C;
Supplementary Figure S3B).

SARS-CoV-2—DMET interactions in human
lung tissues

Clinical characteristics and demographic
information

Postmortem human lung samples were obtained from 10 and 5
(age/sex-matched) COVID-19 and control patients, respectively

FIGURE 2
Effect of SARS-CoV-2 infection on themRNA expression of selected (A) inflammatorymarkers; (B) drugmetabolizing enzymes; and (C)membrane-
associated drug transporters in Vero E6 cells. Relative mRNA expression was determined using qRT-PCR with normalization to the housekeeping gene
and themock. Results are expressed asmean ± SD from 3 independent experiments, and unpaired t-test was used to determine significant differences (*,
p < 0.05; **, p < 0.01; ***, p < 0.001).
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(Table 1). COVID-19-related pathologies were the primary cause of
death reported for the COVID-19 cases while no pulmonary
pathologies were reported as the cause of death for the control
cases. Comorbidities including pulmonary and cardiovascular
diseases, as well as a metabolic disorder (Table 1) was observed in
3 of the COVID-19 cases. No additional information, for example,
genetic polymorphisms of DMETs, cytokine panel, and intake of
medications, were available for the COVID-19 and control groups.

COVID-19-related histopathological findings
Histological examination of the control cases did not reveal any

significant pathologic abnormalities (Figure 3A). In COVID-19 cases,
diffuse alveolar damage (DAD) was observed in two cases (Figure 3B).
Assessment of preexisting lung disease was obscured by acute
pathologies in some cases. For example, one COVID-19 case
revealed multiple pathological changes: vascular hyperplasia,
pigments in the alveolar spaces, thick alveolar septa, diffuse fibrosis,
patchy areas of hyaline membranes, patchy type II pneumocyte

hyperplasia, and focal areas of organizing COVID-19 pneumonia
(Figures 3C, D). Another COVID-19 case had acute bronchitis, and
6 of the COVID-19 patients had hyaline membrane formation
(Figure 3B). Pneumonia, ranging from acute to organizing phase
(Figure 3C) was found in 7 COVID-19 cases. Five COVID-19 cases
were also found to have inflammatory cells; one case had focal
aggregation of chronic inflammatory cells, two cases had more acute
and chronic inflammatory cells (Figure 3D), one case had mixed
inflammatory infiltrates, and the fifth case had mixed inflammatory
cells with more neutrophils. Two of the COVID-19 cases had unique
features; one had more expanded air spaces and more diffuse intra-
alveolar blood infiltration, while the other case had focal areas of
consolidation (data not shown).

Localization of selected biomarkers in postmortem
human lung tissues

Figure 4 shows the localization of the selected biomarkers
(Supplementary Table S4) in COVID-19 postmortem human

FIGURE 3
Micrographs of H&E stained postmortem human lung tissues (×40 magnification with an Olympus B×43 microscope) showing (A) normal human
lung; (B) hyaline membrane formation; (C) perivascular lymphocytes; (D) COVID-19 organizing pneumonia.
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lung tissues while Table 2 summarizes the cellular expression of the
biomarkers in each COVID-19 and control postmortem human
lung tissues. Supplementary Figures S1, S2 are negative and positive
control IHC images showing the good specificity of the antibodies

used for the investigated biomarkers. In general, the investigated
biomarkers are expressed in different pulmonary cell types with
differences in cellular localization between COVID-19 and control
cases (Figure 4; Table 2). The distinction in biomarker localization is

FIGURE 4
Micrographs of COVID-19 postmortem human lung tissue sections (×40 magnification with an Olympus B×43 microscope) showing positive
staining in brown color for all the investigated biomarkers. Table 2 summarizes the pulmonary cellular localization of the investigated biomarkers.
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TABLE 2 Summary of the cellular localization of investigated biomarkers in postmortem human lung tissues.

Class of biomarkers Biomarker Cellular compartment Pulmonary cells COVID-19
cases

Control
cases

Drug metabolizing enzymes CYP1A2 Cytoplasm Intra-alveolar lymphocytes 9/10 2/5

Alveolar epithelial cells 10/10 5/5

Macrophages 5/10 1/5

CYP2B6 Cytoplasm Alveolar epithelial cells 10/10 4/5

Macrophages 3/10 3/5

Lymphocytes 5/10 1/5

Fibroblast 1/10 ND

Nucleus Lymphocytes 4/10 ND

CYP2C8 Cytoplasm Lymphocytes 6/10 3/5

Macrophages 7/10 5/5

Endothelial cells 8/10 3/5

Fibroblast 3/10 ND

Alveolar epithelial cells 8/10 4/5

Bronchial epithelial cells 1/10 ND

CYP2C9 Apical membrane Alveolar epithelial cells 10/10 5/5

Cytoplasm Macrophages 9/10 3/5

Fibroblast 1/10 ND

Lymphocytes 3/10 ND

CYP2C19 Cytoplasm Alveolar epithelial cells 10/10 5/5

Bronchial epithelial cells 3/10 4/5

Lymphocytes 5/10 ND

Macrophages 6/10 3/5

Fibroblast 2/10 ND

CYP2D6 Cytoplasm Bronchial epithelial cells 3/10 3/5

Lymphocytes 3/10 ND

Macrophages 3/10 1/5

Alveolar epithelial cells 8/10 4/5

Cytoplasmic and circumferential
membranous

Macrophages ND 1/5

Lymphocytes 1/10 ND

Apical membrane Bronchial epithelial cells 1/10 1/5

CYP3A4 Cytoplasm Lymphocytes 8/10 1/5

Macrophages 2/10 3/5

Alveolar epithelial cells 8/10 4/5

Bronchial epithelial cells 3/10 1/5

Membrane-associated drug
transporters

BCRP Cytoplasm Submucosal gland basement
membrane

1/10 ND

Macrophages ND 1/5

Endothelial cells 8/10 5/5

(Continued on following page)
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TABLE 2 (Continued) Summary of the cellular localization of investigated biomarkers in postmortem human lung tissues.

Class of biomarkers Biomarker Cellular compartment Pulmonary cells COVID-19
cases

Control
cases

Membranous Macrophages ND 2/5

ENT1 Cytoplasm Macrophages 1/10 2/5

Subset of lymphocytes 6/10 2/5

Circumferential membrane Alveolar epithelial cells ND 1/5

ENT2 Apical membrane Endothelial cells 2/10 ND

Alveolar epithelial cells 4/10 3/5

Circumferential membrane Fibroblast 1/10 ND

Cytoplasm Macrophages 6/10 3/5

Lymphocytes 7/10 1/5

Alveolar epithelial cells 3/10 1/5

Endothelial cells 1/10 ND

MRP1 Cytoplasm Lymphocytes 6/10 ND

Macrophages 7/10 3/5

Bronchial epithelial cells 2/10 1/5

Alveolar epithelial cells 7/10 4/5

Nucleus and cytoplasm Intra-alveolar cells 1/10 ND

Nucleus Alveolar epithelial cells 9/10 5/5

MRP2 Circumferential membrane Bronchial epithelial cells 1/10 3/5

Endothelial cells 10/10 4/5

Macrophages 4/10 ND

Lymphocytes 3/10 ND

Alveolar epithelial cells 10/10 5/5

P-gp Cytoplasm Endothelial cells 1/10 ND

Circumferential membrane Macrophages 2/10 ND

Bronchial epithelial cells 4/10 5/5

Alveolar epithelial cells 5/10 1/5

Lymphocytes 1/10 4/5

Submucosal gland epithelium ND 2/5

Apical membrane Alveolar epithelial cells 8/10 4/5

Inflammatory markers IL-1β Cytoplasm Lymphocytes 6/10 ND

Alveolar epithelial cells 9/10 5/5

Macrophages 5/10 4/5

Endothelial cells 1/10 1/5

IL-6 Cytoplasm Neutrophils 1/10 ND

Lymphocytes 9/10 ND

Smooth muscles of blood
vessels

2/10 ND

Alveolar epithelial cells 8/10 4/5

(Continued on following page)
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driven by the infiltration of inflammatory cells such as lymphocytes
and macrophages (Figure 4; Table 2). For example, CYP1A2 is
predominantly expressed in the cytoplasm of alveolar epithelial cells
for both COVID-19 (10/10) and control (5/5) lung tissues; however,
it is distinctly expressed in the cytoplasm of intra-alveolar
lymphocytes (9/10) and macrophages (5/10) of COVID-19
subjects (Figure 4; Table 2). Furthermore, there is a concordance

in the pulmonary cellular localization of SARS-CoV-2 infection,
inflammatory response, regulatory proteins, as well as DMETs. For
instance, SARS-CoV-2 spike protein, nucleocapsid protein, IL-1β,
IL-6, PXR, CAR, CYP2C9, CYP2C19, CYP2D6, and MRP1 are all
more distinctly localized in the cytoplasm of lymphocytes in the
COVID-19 but not control human lung tissues (Figure 4; Table 2),
suggesting that SARS-CoV-2 infection may trigger an

TABLE 2 (Continued) Summary of the cellular localization of investigated biomarkers in postmortem human lung tissues.

Class of biomarkers Biomarker Cellular compartment Pulmonary cells COVID-19
cases

Control
cases

Bronchial epithelial cells 3/10 3/5

Macrophages 3/10 3/5

Scattered intra-vascular
lymphocytes

ND 1/5

Regulatory proteins CAR Cytoplasm Macrophages 7/10 4/5

Lymphocytes 4/10 ND

Fibroblast 2/10 ND

Bronchial epithelial cells ND 1/5

NF-kβ Cytoplasm All the cells except the red
blood cells

10/10 5/5

pSTAT3 Nucleus Alveolar epithelial cells 10/10 4/5

Macrophages 4/10 ND

Intra-alveolar lymphocytes 3/10 ND

Lymphocytes 2/10 ND

Endothelial cells ND 1/5

Cytoplasm Macrophages ND 2/5

PXR Cytoplasm Smooth muscles of blood
vessels

10/10 5/5

Smooth muscles of bronchi 9/10 5/5

Endothelial cells 10/10 4/5

Bronchial epithelial cells 4/10 2/5

Lymphocytes 8/10 ND

Macrophages 2/10 3/5

Viral proteins SARS-CoV-2 nucleocapsid
protein

Cytoplasm Lymphocytes 6/10 1/5

Macrophages 2/10 3/5

Alveolar epithelial cells 9/10 4/5

Bronchial epithelial cells ND 1/5

SARS-CoV-2 spike protein Cytoplasm Lymphocytes 8/10 2/5

Bronchial epithelial cells 2/10 4/5

Alveolar epithelial cells 4/10 1/5

Intra-vascular neutrophils 2/10 3/5

Macrophages 1/10 3/5

Intra-vascular lymphocytes ND 1/5
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inflammation-mediated regulation of the expression of DMETs
through regulatory proteins such as PXR and CAR in lymphocytes.

Absolute quantitative analysis of protein
expression

Although no significant difference was observed in protein
expression for the investigated inflammatory markers and
regulatory proteins (Figure 5), the efflux transporters P-gp
and MRP1 reached a significant difference in protein
expression between the COVID-19 and control groups
(Figure 6B). No significant differences in protein expression
for the investigated DMEs was observed (Figures 5, 6).

Discussion

In this study, we investigated the effect of SARS-CoV-
2 infection in the dysregulation of 25 clinically relevant
DMETs at the mRNA and protein levels in Vero E6 cells and
postmortem human lung tissues obtained from COVID-19
patients, respectively. In postmortem human lung tissues, we
further assessed biomarker localization and the role of SARS-
CoV-2-associated inflammatory response and xenosensing
regulatory proteins in modulating the dysregulation of
DMETs. Our study led to three major outcomes:

SARS-CoV-2-infected Vero E6 cells
demonstrated dysregulation of the
metabolic enzyme involved in the
disposition of commonly prescribed COVID-
19 drugs

With the SARS-CoV-2-associated inflammatory response in
Vero E6 cells, we observed that at the mRNA level, CYP3A4 was
upregulated while UGT1A1 was downregulated (Figure 2B).
However, none of the investigated transporters were significantly
dysregulated (Figure 2C and Supplementary Figure S3B). Several
disease-drug interactions associated with SARS-CoV-2 infection
have been suggested (Kumar and Trivedi, 2021). For example,
CYP3A4 involved in the metabolism of dexamethasone, a
corticosteroid drug often administered to hospitalized COVID-19
patients, is known to be dysregulated by inflammation (Kumar and
Trivedi, 2021; Dunvald et al., 2022). Also, nirmatrelvir, an antiviral
drug used to treat SARS-CoV-2 infection is metabolized by
CYP3A4 and is currently coadministered with ritonavir (an
inhibitor of CYP3A4) to improve its bioavailability (Nwabufo
and Bendayan, 2022). Therefore, it is important to further
investigate how SARS-CoV-2-associated inflammatory response
will affect the PK profile of nirmatrelvir-ritonavir combination
therapy for the treatment of COVID-19. Furthermore, human
clinical data suggests that remdesivir is extensively metabolized

FIGURE 5
Effect of COVID-19 on the protein expression of selected (A) inflammatorymarkers and CYP3A4, (B) regulatory proteins in postmortem human lung
tissues. Chromogenic images obtained from the immunostained tissue slides from each subject were analyzed using HALO software v3.4 (Indica Labs) for
absolute quantitative IHC analysis. Results are expressed as mean ± SEM, and the non-parametric two-tailed Mann-Whitney test was used to determine
the differences in protein expression between COVID-19 and control postmortem human lung tissues for absolute quantitative IHC analysis.
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by CYP2C8, CYP2D6, and CYP3A4 (Yang, 2020) and since studies
have shown that these enzymes are dysregulated by inflammation
(Dunvald et al., 2022), the PK profile of remdesivir and
dexamethasone could be altered by the inflammatory state
observed in COVID-19. This may partly explain the variable
clinical outcomes observed in several clinical studies that
investigated the safety and efficacy of remdesivir (Cascella et al.,
2022). In general, remdesivir was primarily approved by the US FDA
for administration to COVID-19 patients requiring hospitalization,
and proper dosing regimen and treatment course need to be further
investigated to achieve the full benefits of remdesivir for patients at
different stages of COVID-19. Additionally, caution needs to be
taken when administering drugs to COVID-19 patients especially
the patient population with comorbidities to mitigate clinically
relevant disease–drug interactions. For example, UGT1A1 is
highly polymorphic and can impact irinotecan (a prodrug used
for small cell lung cancer chemotherapy) metabolite related-toxicity
(Bandyopadhyay et al., 2021). Given that UGT1A1 mRNA
expression was significantly downregulated in SARS-CoV-2-
infected Vero E6 cells and patients with lung cancer have a
greater than 7-fold higher risk of SARS-CoV-2 infection (Rolfo
et al., 2022), further investigation is required to determine the effect
of prescribing UGT1A1 candidate drugs to COVID-19 patients,
especially the UGT1A1 poor metabolizers which accounts for about
10% of North Americans (Dean, 2018).

Dunvald and coworkers recently summarized studies
reporting altered mRNA expression of clinically relevant
DMETs including CYP1A2, CYP2B6, CYP2C8, CYP2C9,
CYP2C19, CYP2D6, CYP3A4, PGP, BCRP, and MRP2 by
proinflammatory cytokines such as IL-6, IL-1β, TNF-α, and
IFN-γ in a dose-dependent manner in primary cultures of
human hepatocytes (Dunvald et al., 2022). For example, the
mRNA expression of the hepatic efflux transporters P-gp,
MRP2, and BCRP is typically low, with a maximum
downregulation of 2-fold, in response to IL-6, IL-1β, TNF-α,
or IFN-γ at doses of 1–100 ng/mL (Ramsden et al., 2015; Moreau
et al., 2017; Ning et al., 2017; Dunvald et al., 2022). However, the
concentrations of the investigated inflammatory markers in
SARS-CoV-2 infected Vero E6 cells are probably more
physiologically relevant compared to the artificial stimulation
of inflammatory response by the administration of toxins such as
lipopolysaccharides, or direct administration of
proinflammatory cytokines such as IL-6 and IL-1β—both of
which may result in supraphysiological responses.
Furthermore, species (human and monkey) and organ (kidney
and liver) differences in DMETs expression, may be responsible
for the lack of dysregulation of the above-mentioned DMETs. For
example, a previous study found that CYP2C18 mRNA
expression is unaffected by cytokine administration due to
limited hepatic expression (Aitken and Morgan, 2007).

FIGURE 6
Effect of COVID-19 on the protein expression of selected (A) drug metabolizing enzymes and (B) membrane-associated drug transporters in
postmortem human lung tissues. Chromogenic images obtained from the immunostained tissue slides from each subject were analyzed using HALO
software v3.4 (Indica Labs) for absolute quantitative IHC analysis. Results are expressed as mean ± SEM, and the non-parametric two-tailed Mann-
Whitney test was used to determine the differences in protein expression between COVID-19 and control postmortem human lung tissues for
absolute quantitative IHC analysis (*, p < 0.05; **, p < 0.01).
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DMETs are expressed in several
human pulmonary cells affected by SARS-
CoV-2 infection

We localized for the first time, the cellular expression of uptake
transporters—ENT1 and ENT2 in human lung tissues by IHC. We
found that both ENT1 and ENT2 were primarily localized in
inflammatory cells of lung tissues from COVID-19 patients
(Figure 4; Table 2), making them potentially liable to SARS-CoV-
2-mediated increases in expression. Interestingly, ENT1 and
ENT2 may be prone to downregulation with SARS-CoV-
2 infection due to the presence of acute lung injury and hypoxia
in some COVID-19 patients (Johnson, 2022). Indeed, previous
studies reported a significant downregulation of ENT1 and
ENT2 expression in lung epithelial and endothelial cells in both
acute lung injury (Morote-Garcia et al., 2013) and hypoxia
(Eltzschig et al., 2005). More so, increased extracellular adenosine
levels due to acute lung injuries (Eckle et al., 2009) suggest a
potential competitive inhibition of ENTs-mediated transport
processes. This is clinically important because ENT1 and
ENT2 are involved in the uptake of the COVID-19 drugs -
remdesivir and molnupiravir, making this uptake pathway
potentially liable to dysregulation with SARS-CoV-2 infection
and may partly explain the limited and variable clinical efficacy
observed for remdesivir (Johnson, 2022).

To the best of our knowledge, our study is the first to reveal
the cellular localization of CYP1A2, CYP2C8, CYP2C9, and
CYP2D6 by IHC in human lung tissues. Previous studies
investigating the expression of DMEs in the human
respiratory system, have mostly assessed expression at the
mRNA level, used non-intact lung samples such as
microsomes and bronchial specimens, or failed to uncover
cellular localization (Hukkanen et al., 2002). The human lung
tissue is highly heterogeneous, making microsomes, bronchial,
and other non-intact lung specimens an inaccurate description of
DMETs expression in different pulmonary cell types. For
example, the mRNA expression of CYP2C8 was previously
found in both bronchial and peripheral lung tissue samples
(Macé et al., 1998), but its protein expression and cellular
localization were not reported. An IHC study identified
CYP2B6 in human Clara cells (Mori et al., 1996) whereas
CYP2C19 and CYP3A4 proteins were detected in serous cells
of bronchial glands (Yokose et al., 1999) but expression in other
pulmonary cell types was not reported. Our study uncovered the
pulmonary cellular localization of CYP2B6, CYP2C8, CYP2C19,
and CYP3A4 (Figure 4; Table 2).

Efflux transporters such as P-gp and BCRP have previously
been identified in human lung tissues (Cordon-Cardo et al.,
1990; Van der Valk et al., 1990; Scheffer et al., 2002; Fetsch et al.,
2006). In contrast to an earlier study that found BCRP
expression only in bronchial epithelial cells and capillaries
(Scheffer et al., 2002), later work demonstrated staining of
alveolar pneumocytes and negligible staining of the bronchial
epithelial cells (Fetsch et al., 2006). These findings are not in
agreement with the results of this study. In our study, BCRP was
primarily localized in the cytoplasm of endothelial cells in both
COVID-19 and control tissues (Figure 4; Table 2). In previous
reports, P-gp localization was shown on the luminal surface of

bronchial and bronchiolar epithelial cells (Cordon-Cardo et al.,
1990; Van der Valk et al., 1990). P-gp was stained in alveolar
macrophages whereas staining of alveolar epithelial cells was
dependent on the antibody employed (Van der Valk et al.,
1990). On the contrary, our findings showed that P-gp is
robustly localized in the alveolar epithelial cells (Figure 4;
Table 2) of both COVID-19 and control tissues. MRP1 was
initially found in the apical membrane of the cytoplasm of
bronchial epithelial cells (Flens et al., 1996); however, two
later studies confirmed MRP1 localization in the basolateral
membrane (Bréchot et al., 1998; Scheffer et al., 2002) which is
consistent with its localization in other tissues (Gustavsson
et al., 2016). In our study, MRP1 expression in the bronchial
epithelium is cytoplasmic (Figure 4; Table 2). Moreover,
MRP1 was predominantly localized in the cytoplasm and
nucleus of alveolar epithelial cells of both COVID-19 and
control postmortem human lung tissues (Figure 4; Table 2).
MRP2 positivity was previously found in the apical membrane
of the bronchial and bronchiolar epithelial layers (Sandusky
et al., 2002; Scheffer et al., 2002). We observed a robust
localization in the alveolar epithelial cells of both COVID-19
and control tissues (Table 2). We also found MRP2 expression
in bronchial epithelial cells in a higher number for controls (3/
5) compared to the COVID-19 (1/10) human lung tissues;
however, it was more circumferential not apical membranous
compartmentalization (Figure 4; Table 2). Our study
demonstrated that circumferential membrane
compartmentalization in alveolar epithelial and endothelial
cells was the major expression site for MRP2 (Figure 4;
Table 2). This circumferential compartmentalization is
indicative of potential bidirectional efflux transport processes
mediated by MRP2 in human lung tissues compared to the
anticipated unidirectional efflux transport.

Typically DMETs are localized in the cytoplasm and cell
membrane, however, our study found that some DMETs were
localized in atypical cellular compartments (Figure 4; Table 2).
For example, our study detected MRP1 in the cytoplasm and
nucleus. Although transporters are localized at the cell
membrane, they are also present in cytoplasmic organelles
such as the Golgi apparatus, rough endoplasmic reticulum,
nuclear envelope, and mitochondria. For instance, a previous
IHC study found MRP2 expression in both cytoplasm and cell
membrane of tumor cells (Yamasaki et al., 2011), and it is
anticipated that in the cytoplasm, MRP2 may not function as
an efflux pump (Evers et al., 1998). Therefore, further
investigation is required to determine whether differences in
pulmonary cellular compartmentalization affect the structure
and function of the implicated DMETs.

SARS-CoV-2 may dysregulate pulmonary
DMETs through inflammatory response and
tissue injuries

From the absolute quantitation, we observed significant
differences in the expression of P-gp and MRP1 between the
COVID-19 and control human lung tissues (Figure 6B). P-gp is
involved in the transport of nirmatrelvir, remdesivir, and
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dexamethasone while MRP1 transports lopinavir and ritonavir
(Nwabufo and Bendayan, 2022)—indicating a potential
alteration in pulmonary drug PK/PD profile in COVID-19
patients. The lack of observable significant dysregulation in
the protein expression of other DMETs in COVID-19 human
lung tissues (Figures 5, 6) could be attributed to the potential
variation in the stage of COVID-19 between cases, as well as
comorbidities (Table 1), ongoing medications, and genetic
polymorphisms in the expression of DMETs for both COVID-
19 and control cases. These variables could not be further
addressed due to the paucity of premortem clinical
information. The small sample size, and other diseases present
in the control samples may also have an impact on the expression
of inflammatory markers, regulatory proteins, and DMETs,
possibly resulting in a negligible dysregulation in their
expression between COVID-19 and control tissues. Drug
toxicity, cardiovascular diseases, and head trauma are the
reported causes of death for the 5 control cases (Table 1), and
these disorders can induce inflammatory response and
dysregulate the expression of DMETs through regulatory
proteins (Wu and Lin, 2019; Stanke-Labesque et al., 2020;
Dunvald et al., 2022).

The congruency in the pulmonary cellular localization of
SARS-CoV-2 infection, inflammatory markers, regulatory
proteins, and DMETs, as well as the several COVID-19-
related pulmonary pathologies of the COVID-19 cases
suggest a potential dysregulation of pulmonary DMETs
which may manifest in regulated clinical studies. We
observed that SARS-CoV-2 infection and inflammatory
response are distinctly localized to the cytoplasm of
lymphocytes in COVID-19 compared to control human lung
tissues (Figure 4; Table 2). The detection of SARS-CoV-2 viral
protein in the control human lung tissues is indicative of the
limited specificity of the antibody; however, clinical testing
confirmed the presence of SARS-CoV-2 infection in the
COVID-19 cases. Again, underlying diseases in the control
cases are probably responsible for the observed inflammatory
response. Interestingly, we observed a similar trend in the
localization of xenosensing regulatory proteins; for example,
the two master xenosensing regulatory proteins - PXR and CAR
are both distinctly expressed in the cytoplasm of lymphocytes in
COVID-19 human lung tissues but not in the control cases
(Figure 4; Table 2). Also, we observed a similar trend in the
cellular localization of some DMETs including CYP2C9,
CYP2C19, CYP2D6, and MRP1 (Figure 4; Table 2). These
observations suggest that SARS-CoV-2 infection could result
in an inflammatory response that could activate xenosensing
regulatory proteins, which could then dysregulate the
expression of DMETs in lymphocytes. However, our study
quantified global pulmonary protein expression for the
investigated biomarkers to get a better representation of
SARS-CoV-2-DMETs interactions. Moreover, it is practically
challenging to quantify the investigated biomarkers in the
lymphocytes of human lung tissues except when pulmonary
lymphocyte isolates are used as specimens for the study.

Furthermore, we observed that the presence of inflammatory
cells is a major driving force in the localization of DMETs
between COVID-19 and control tissues (Figure 4; Table 2). In

general, COVID-19 lung tissues had more inflammatory cells
which also expressed DMETs compared to the control lung
tissues. Notably, CYP3A4 and ENT2 were strongly localized in
lymphocytes in COVID-19 compared to control human lung
tissues (Figure 4; Table 2). This suggests a potential SARS-CoV-
2-mediated increase in the expression of DMETs through the
recruitment of inflammatory cells and may have implications for
pulmonary drug PK/PD profiles. For example, CYP3A4 and
ENT2 are involved in the disposition of remdesivir (Nwabufo
and Bendayan, 2022) and may be susceptible to an altered
pulmonary PK/PD profile in the context of SARS-CoV-
2 infection. Additionally, the observed COVID-19-related
pulmonary pathologies could also reduce the expression of
DMETs. For example, DAD could alter the integrity of
alveolar epithelial cells—which also house more than 90% of
the investigated DMETs including CYP3A4 and P-gp. Our recent
paper provides strategies for achieving optimal clinical efficacy
and safety amidst SARS-CoV-2-associated inflammatory
response (Nwabufo and Bendayan, 2022) and should be
considered in the clinical decision-making process for
COVID-19 drugs.

In conclusion, our study has shown for the first time that SARS-
CoV-2 infection dysregulates clinically relevant
DMEs—CYP3A4 and UGT1A1 at the mRNA level, and efflux
transporters—P-gp and MRP1 at the protein level in Vero
E6 cells and postmortem human lung tissues, respectively. We
uncovered the human pulmonary localization of DMETs that are
also involved in the disposition of COVID-19 drugs, and showed
that inflammatory response is the driving force for the discrepancy
in the localization of DMETs between COVID-19 and control
human lung tissues. We observed that at the cellular level,
DMETs could potentially be dysregulated by SARS-CoV-2-
associated inflammatory responses and lung injuries. Further
investigation of SARS-CoV-2-mediated dysregulation of human
pulmonary DMETs and its potential implication in controlling
the safety and efficacy of promising COVID-19 drugs as well as
possible unexpected adverse drug reactions in COVID-19 patients
on polypharmacy is needed. Further research is required to
determine the spatial distribution and disposition of promising
COVID-19 drugs at the cellular level in human lung tissues, and
mass spectrometry imaging may offer an appealing analytical
platform to further investigate this aspects (Nwabufo and
Aigbogun, 2022).
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