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Background: Immunogenic cell death (ICD) plays an important role in the
development of cancers. This study attempted to explore the role of ICD in
the prognosis of hepatocellular carcinoma (HCC).

Methods: Gene expression and clinical data were downloaded from The Cancer
Genome Alas and Gene Expression Omnibus dataset. The immune/stromal/
Estimate scores of the tumor microenvironment (TME) were calculated by
ESTIMATE and CIBERSORT algorithms. Kaplan-Meier analysis, functional
enrichment analysis, least absolute shrinkage and selection operator (LASSO)
analysis, and univariate and multivariate Cox regression analysis were used for
prognostic gene screening and prognostic model construction. The correlation of
immune cell infiltration and risk scores was analyzed as well. Molecular docking
was used to explore the relevance of related genes to anti-cancer drugs.

Results: Ten ICD associated differentially expressed genes in HCC were found,
and all of them had good predictive ability for HCC. ICD gene high amount of
expression group was associated with poor prognosis (p = 0.015). The TME,
immune cell infiltration and gene expression were different between ICD high and
low groups (all p < 0.05). Six ICD associated genes (BAX, CASP8, IFNB1, LY96, NT5E
and PIK3CA) which could predict the survival status were identified and used to
construct the prognostic model for HCC. A risk score was calculated and it could
be used as an independent prognostic factor in HCC patients (p < 0.001). In
addition, the risk score had a positive correlation with macrophage M0 (r = 0.33,
p = 0.0086). Molecular docking indicated that sorafenib could bind strongly to the
target protein, representing that sorafenib may exert anticancer effects through
these six ICD associated genes.

Conclusion: This study established a prognostic model including six ICD
associated genes for HCC, which may deepen our understanding of ICD and
guide therapy for HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) ranks sixth in the world
among the common cancers (Konyn et al., 2021), and the most
common type of liver cancer is HCC. Hepatis B or C virus infection
and alcohol abuse are the most common causes of HCC (Villanueva,
2019). Liver resection or transplantation, locoregional therapies
such as radiofrequency ablation, trans-arterial therapies like
chemoembolization and external beam radiation therapy are
main treatment measures for liver cancer (Ren et al., 2020).
Tumor-specific T cell lymphocytes and other immune cells can
infiltrate HCC because it is immunogenic, so immunotherapy may
play an important role in HCC by inducing a tumor-specific
immune response (Lawal et al., 2021).

Immunogenic cell death (ICD) is a functionally unique form
of stress-driven regulated cell death (RCD), by which cytotoxic T
lymphocyte and inflammatory response are activated and
adaptive immune response and immunological memory, as
well as antigenicity and adjuvanticity, are initiated (Galluzzi
et al., 2019). Exposure and release of damage-associated
molecular patterns (DAMPs) consist of the immunogenic
characteristics of ICD. ICD associated DAMPs include
released high-mobility group box 1 (HMGB1), surface-exposed
calreticulin (CARL), secreted ATP and annexin A1 (ANXA1).
ICD plays an important role in the development of cancers.
Several studies have been conducted to explore some of the genes
that influence the prognosis of HCC (Rao et al., 2021; Chen et al.,
2022). However, the role of ICD associated genes in the prognosis
of HCC had not been explored.

In this study, we explored the relationship between ICD and
prognosis in HCC patients from a public database. Patients were
divided into 2 groups according to the gene expressions of ICD, and
differentially expressed genes (DEGs) and survival analysis were
analyzed. In addition, immune scores, TME and risk score were also
calculated. We constructed a prognostic model which could predict
the prognosis and survival status in HCC.

Materials and methods

Data download and process

The TCGA GDC database (https://portal.gdc.cancer.gov/) is an
open-access platform for various kinds of cancers. The
transcriptome profiling, simple nucleotide variation and other
clinical data can be used in TCGA database. We set the primary
site as liver, and choose the program for TCGA and the project for
TCGA-LIHC. Metadata and cart profiles were retrieved, including
447 patients (374 tumor samples and 50 normal samples). Clinical
data were downloaded and processed, which contained the age,
gender, survival time and survival status, grade and stages of
patients. Simple nucleotide mutation variation and masked
somatic mutation were acquired from TCGA, from which we
could find the start position and end position of mutation gene,

chromosome, variant classification and variant type. Then we
calculated the tumor mutation burden and mutation
quantification. ICD associated gene expressions were obtained.
The validation cohort (GSE 10186) was obtained from GEO
datasets (https://www.ncbi.nlm.nih.gov/gds/?term=), which
included 118 resected HCC specimens and their corresponding
clinical data. The probes were labeled with gene symbols based
on the annotation information on the platform.

Enrichment analysis and protein-protein
interactions (PPIs) network of DEGs

We set the criteria of |log2-fold change (FC)| > 1 and adjusted
p < 0.05 as upregulated and downregulated DEGs. To understand
the biological functions and pathways of ICD associated genes, Gene
Ontology (GO) functional enrichment and Kyoto Encyclopedia of
Gene and Genomes (KEGG) pathway analyses were performed
using the ClusterProfiler package in Bioconductor (https://www.
bioconductor.org/packages/release/bioc/html/clusterProfiler.html).
To explore the underlying molecular mechanisms for the
involvement of the key genes, gene set enrichment analysis
(GSEA) was drawn to investigate the differences in the KEGG
pathways between the high- and low-expression groups of ICD
associated genes. The DEGs were imported into the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) online
database (https://string-db.org/) to construct a PPI network, and
we set the minimum required interaction score with medium
confidence (0.400).

Survival analysis and prognostic model
construction

Kaplan-Meier method was used to construct a survival curve.
The least absolute shrinkage and selection operator (LASSO) Cox
regression model was used to identify and construct a prognostic
model based on all genes in ICD associated prognosis genes. After
enrolling each gene expression value, we calculated the formula
for the risk score of each sample. The risk score formula was
established by weighting the estimated regression coefficients in
the LASSO analysis. In addition, the DEGs were screened to
construct the nomogram prediction model. The receiver
operating characteristic (ROC) curve was drawn, and the
prediction ability of the model was evaluated by the area
under the ROC curve (AUC).

Tumor microenvironment and immune
infiltration analysis

ESTIMATE is an algorithm that uses gene expression signatures
to infer the fraction of stromal and immune cells in tumor samples.
Immune score, stromal score and ESTIMATE score and their
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relative proportions were calculated by using ESTIMATE
algorithms. “Limma” and “estimate” packages were used for this
process. The Spearman correlation analysis was performed on the
immune cell infiltration levels and gene expression levels. In
addition, all immunohistochemistry (IHC) images were obtained
from The Human Protein Atlas (HPA) online database (https://
www.proteinatlas.org/).

Molecular docking

Sorafenib, the first-line targeted drug for hepatocellular
carcinoma. It is a dual-channel multi-target inhibitor. On the
one hand, it inhibits VEGFR and PDGFR to block tumor

angiogenesis, and on the other hand, it blocks Raf/MEK/ERK
signaling pathway to inhibit tumor cell proliferation. To
investigate the association of six ICD-related genes with
anticancer drugs, this study searched the details of Sorafenib
using CAS: 284461–73-0 and downloaded its 3D structure in the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/). The
protein structures of six ICD-related genes were downloaded
from the RCSB PDB database (https://www.rcsb.org/), and the
information of the proteins was shown in Table 1. Protein was
dehydrated and de-liganded in PyMOL. Sorafenib was
converted to mol2 format in OpenBabel. Molecular docking
was performed and the binding energy was collected in
AutoDockTools 1.5.7. Finally, the docking results were
visualized by PyMOL.

TABLE 1 Protein information of six ICD-related genes (ICD: immunogenic cell death).

Targets PDB ID Method Resolution(Å) R-Value free R-Value work R-Value observed

BAX 2IMS X-RAY DIFFRACTION 1.48 0.204 0.179 0.18

CASP8 3KJQ X-RAY DIFFRACTION 1.80 0.207 0.182 0.185

IFNB1 1AU1 X-RAY DIFFRACTION 2.20 0.283 0.223 0.223

LY96 2E56 X-RAY DIFFRACTION 2.00 0.249 0.194 0.196

NT5E 7QGO X-RAY DIFFRACTION 2.21 0.292 0.239 0.242

PIK3CA 8EXL X-RAY DIFFRACTION 1.99 0.225 0.187 0.188

FIGURE 1
Volcano plot of HCC DEGs (A), and Venn diagram (B), bar chart (C), correlation heatmap (D), genes expression heatmap (E), the protein-protein
interaction networks (F), genes sorted by quantity of nodes (G) and ROC curve (H) of ICD associated DEGs, and survival curves of BAX (I) and
HSP90AA1 (J). (HCC: Hepatocellular carcinoma, DEGs: Differentially expressed genes, ICD: Immunogenic cell death, ROC curve: The receiver operating
characteristic curve; *p < 0.05, **p < 0.01, ***p < 0.001).
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Statistical analysis

Statistical analysis was performed using R software (version
4.2.1). Univariate and multivariate Cox regression analysis were
used to select risk-related factors and genes. Hazard ratios (HRs) and
their 95% confidence intervals (CIs) were calculated by using
multivariate Cox regression analysis. All statistical tests were two-
sided and p-values of <0.05 were considered statistically significant
differences.

Results

ICD associated DEGs

Identification of ICD associated DEGs
There were 19312 DEGs between HCC and normal tissues

(Figure 1A), and there were 34 ICD associated genes. A total of
10 ICD associated DEGs were found (Figure 1B), among which
the upregulated genes were LY96, BAX, ENTPD1, CXCR3,
HSP90AA1, CASP8, CALR and PDIA3, and the
downregulated genes were IL6 and CD4 (Figure 1C). The
10 DGEs were highly correlated with each other (Figure 1D),
and the DEGs were shown in the clustering heatmap (Figure 1E).
In addition, these 10 ICD associated DEGs had a good predictive
ability for HCC (Figure 1H).

PPI network construction of ICD associated DEGs
From the PPI network (Figure 1F), the number of nodes was 10,

the number of edges was 22, average node degrees were 4.4, and
average local clustering coefficients were 0.795, with PPI enrichment
p-value < 8.6e−07. DEGs sorted by quantity of nodes were drawn
(Figure 1G).

IHC and immune infiltration analysis
From HPA, we obtained pathological pictures of ICD associated

DEGs in normal liver tissues and tumor tissues in HCC (Figure 2).
Moreover, all ICD associated DEGs were significantly associated
with a large number of immune cells (Supplementary Figure S1).

Survival analysis and clinical correlation analysis
The high expression of BAX and HSP90AA1 significantly reduced

the survival of HCC patients (Figures 1I, J). In addition, we found no
significant correlation between these 10 ICD associated DEGs and
relevant clinical characteristics (Supplementary Figure S2).

Construction of nomogram prediction model
The nomogram model with 10 ICD associated DEGs was

constructed to predict the 1-year, 3-year, and 5-year survival of
HCC patients (Figure 3A). The calibration diagram of the model
showed that the calibration curve fitted well with the ideal curve
(Figure 3B), indicating that the accuracy of the model was high. The
ROC curve was used to analyze the predictive ability of the nomogram

FIGURE 2
The protein level of ICD associated DEGs in normal liver and tumor tissues were detected by immunohistochemistry from the Human Protein Atlas
database. [(A) BAX, (B) CALR, (C) CASP8, (D) CD4, (E) CXCR3, (F) ENTPD1, (G) HSP90AA1, (H) IL6, (I) PDIA3; ICD: Immunogenic cell death, DEGs:
Differentially expressed genes].
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prediction model, and the AUC values of 10 ICD associated DEGs
indicated that the predicted values were acceptable (Figures 3C–L).

Analysis of DEGs between ICD high and low
expression groups

ICD gene clustering and survival analysis
Samples were clustered according to ICD gene expression. We

set the number of clusters = 2 to get the clustering result (Figure 4E).
According to the gene expression level, the ICD gene expression
level was divided into ICD high and low expression groups (Figures
4A–C). The volcanomap (Figure 4D) and heat map (Figure 4F) were
drawn. From the survival curve, we found that there was a
statistically significant difference in survival status between ICD
high and low expression groups (p = 0.015) (Figure 4G).

GO and KEGG analysis of DEGs between ICD high
and low expression groups

The enrich GO function was used to enrich from biological
process (BP), cellular component (CC) and molecular function
(MF), respectively (Figures 5A, B). From BP, the top 3 GO terms
were identified and mainly included positive regulation of leukocyte
activation, positive regulation of cell activation, and positive
regulation of lymphocyte activation. From CC, the top 3 GO
terms included immunoglobulin complex, external side of the
plasma membrane, and circulating immunoglobulin complex.
From MF, the top 3 GO terms included antigen binding,
immunoglobulin receptor binding, and immune receptor activity.

The enrich KEGG function showed that the differential genes were
enriched in cytokine-cytokine receptor interaction, chemokine
signaling pathway, PI3K-Akt signaling pathway, etc (Figure 5C).

GSEA, maftools and gene mutation analysis
From GSEA, we could see cell adhesion molecules, chemokine

signaling pathway, cytokine-cytokine receptor interaction,
hematopoietic cell lineage and leishmania infection were enriched
in ICD high group (Figure 5D), and drug metabolism cytochrome
P450, fatty acid metabolism, glycine, serine and threonine
metabolism, primary bile acid biosynthesis and retinol metabolism
were enriched in ICD low group (Figure 5E). Gene mutation data
were divided based on ICD high expression and ICD low amount of
gene mutation, from which chromosome, base mutation and tumor
samples were shown (Figures 5F, G). In the ICD gene high amount of
mutation, 125 of 150 samples (83.33%) were altered, and 184 of
211 samples (87.2%) in the ICD gene low amount of mutation were
altered. TP53 altered in 33% of samples in the ICD high group,
whereas 21% in ICD low group. CTNNB1 altered in 25% of samples in
ICD high group, and 26% in the ICD low group. TTN altered in 17%
of samples in the ICD high group, and 28% in ICD low group.

Tumor microenvironment scores analysis
In the tumor microenvironment score, we found that the group

with ICD high gene expressions had a higher estimate score
(Figure 5H), immune score (Figure 5I) and stromal score
(Figure 5J), but lower tumor purity (Figure 5K). Histograms
showed 22 types of TIILs in each case (Figure 6A), and heatmaps
showed correlations between TIILs (Figure 6B). From the immune

FIGURE 3
Establishment (A) and evaluation (B–L) of nomogrammodel. [calibration curve (B), the ROC curve (C–L); (C) PDIA3, (D) BAX, (E)CASP8, (F) LY96, (G)
CALR, (H) ENTPD1, (I) IL6, (J) CD4, (K) CXCR3, (L) HSP90AA1; ROC: receiver operating characteristic].
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cell differential analysis, we found that B cell naive and T cell
CD4 memory activated were significantly different between the
two groups (p < 0.05) (Figure 6C).

Human Leukocyte Antigens (HLA) and immune
checkpoint gene differential analysis

HLA analysis showed that HLA-A, HLA-B, HLA-C, HLA-DMA,
HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-
DBP2, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-
DRA, HLA-DRB1, HLA-DRB5, HLA-DRB6, HLA-E, HLA-F, HLA-G,
HLA-H, HLA-J and HLA-L in ICD gene high expression group were
higher than those of ICD gene low expression group (Figure 6D).
According to immune checkpoint gene differential analysis, we found
that CD274, CTLA4, TIGIT, PDCD1LG2, PDCD1, LAG3 and
HAVCR2 in ICD gene high expression group were higher than
those of the ICD low expression group whereas SIGLEC15 was
lower in ICD high group (Figure 6E).

ICD associated prognosis genes

Find ICD associated prognosis genes
All data in the GEO database were transformed. The same gene in

GEO and TCGAwere intersected and rectified, and ICD associated gene
expressions were output. From the forest map based on univariate
analysis, we found that BAX, CASP8, IFNB1, IL17RA, LY96, NT5E
and PIK3CA were the 7 risk genes (all p < 0.05) (Figure 7A). LASSO
regression model of HCC patients showed that the best number of ICD

associated prognosis genes in the model was 6, which were BAX, CASP8,
IFNB1, LY96,NT5E andPIK3CA, and the formulawas risk scores = gene
expression of BAX*0.1738 + gene expression of CASP8*0.1628 + gene
expression of IFNB1*0.5482 + gene expression of LY96*0.0646 + gene
expression of NT5E*0.1006 + gene expression of PIK3CA*0.0723
(Figures 7B, C). There was a good correlation between these 6 ICD
associated prognosis genes in HCC (Figure 7D).

Risk curve and survival analysis
The samples were sequenced according to risk scores, the lower

risk group was labeled blue and the higher risk group was labeled red
color (Figure 7G). When making the survival status map, patients
alive were dotted with green and patients dead were dotted with red
points (Figure 7F). From the risk curve and survival status map, we
found that with the risk scores increased, patients’ overall survival
time decreased (Figures 7E, F). From the survival curve, the overall
survival of patients in higher risk group was shorter than those of
lower risk group (Figure 7H).

Correlation analysis of clinical characteristics
The risk score was correlated with age (> 65 years old vs. <

65 years old), grade (G2 vs. G1; G3 vs. G1; G3 vs. G2), and stage (III
vs. I) (all p < 0.05) (Figure 8).

Correlation analysis of immune cells
We obtained the correlation between risk scores and immune cells,

and scatter plots and spearman correlation values were constructed for
immune cells with p < 0.05. It showed that macrophage M0 was

FIGURE 4
Unsupervised consensus clustering of HCC samples based on ICD associated DEGs (A,B), consensus CDF curve and area under CDF curve when k =
2–9 (C), two clusters according to the best consensusmatrix (k = 2) (E), volcano plot (D), heatmap (F), and Kaplan-Meier survival plot (G) of DEGs between
ICD high and low expression groups. (HCC: Hepatocellular carcinoma, ICD: Immunogenic cell death, DEGs: Differentially expressed genes).
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positively associated with risk score (r = 0.33, p = 0.0086) (Figure 7I). To
explore the role of the risk score in differentiating responders and non-
responder inHCCwho had received immune-checkpoint inhibitors, we
obtained TIDE data from http://tide.dfci.harvard.edu andwe found that
the risk score was not significantly different (Figure 7J).

Independent prognosis analysis
Based on univariate prognosis analysis, it showed that stage and risk

score were independent risk factors for prognosis (all p < 0.001)
(Figure 9A). From multivariate prognosis analysis, we found stage
and risk score were independent risk factors for prognosis (all p< 0.001)
(Figure 9B). Concordance index and AUC showed that risk score and
stage had a significantly higher predictive performance for prognosis
(Figures 9C, D), and this model had an acceptable performance for
predicting the prognosis of HCC patients in 1 year, 3 years, and 5 years
(Figure 9E).

Molecular docking validation of sorafenib and
protein

The binding energy is an indicator to assess the magnitude of the
affinity between the ligand and the receptor. It has been shown that

there is strong binding activity between ligand and receptor when
the binding energy is less than −5.0 kcal/Mol (He et al., 2023). In this
study, the molecular docking results showed that the binding
energies between Sorafenib and the target proteins were all less
than −5.59 kcal/Mol (Table 2). This suggests that Sorafenib binds
strongly to target proteins and that Sorafenib may exert its
anticancer effects through six ICD-related genes (Figure 10).

Discussions

As a kind of cell death, ICD may have functions in various
cancers. To explore the role of ICD in HCC, we retrieved the data
from public databases such as TCGA and GEO. We divided the
patients into ICD high group and ICD low group, then DEGs and
survival analysis were accomplished. We calculated the risk score
and constructed a prognostic model which could help predict the
prognosis of HCC patients.

From the DEGs, we found that the survival status of HCC
patients with HSP90AA1 high expressions was poor. A previous
study had found that in HCC patients the HSP90AA1 transcripts in

FIGURE 5
GO term (A,B) and KEGG pathway (C) analysis of DEGs between ICD high and low expression groups, and GSEA analysis (D,E), maftools (F,G),
ESTIMATE score (H), immune score (I), stromal score (J) and tumor purity (K) in ICD high and ICD low group. (GO: Gene Ontology, KEGG: Kyoto
Encyclopedia of Gene and Genomes, GSEA: gene set enrichment analysis, DEGs: differentially expressed genes, ICD: immunogenic cell death; *p < 0.05;
**p < 0.01: ***p < 0.001).
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serum were significantly upregulated especially in late HCC patients
(Toraih et al., 2019). From the 10 DEGs between HCC and normal
liver tissues, we found that ectonucleoside triphosphate
diphosphohydrolase-1 (ENTPD1) was higher expressed in HCC
compared to normal tissue. ENTPD1 expressed on CD4+Foxp3+
regulatory T cells (Tregs), and in mice, it could inhibit natural killer
(NK) cells and promote hepatic metastatic tumor growth, whereas
inhibition of the enzymatic activity of ENTPD1 could be used as an
adjunct therapy for hepatic malignancies (Sun et al., 2010). C-X-C
motif chemokine receptor (CXCR) 3 could induce mobilization and
recruitment of Tregs, and it could promote HCC recurrence and
enhance acute-phase liver graft injury after liver transplantation (Li
et al., 2016). The cytoplasmic level of protein-disulfide isomerase-
associated 3 (PDIA3) was increased in HCC tissues, and it could
raise dyskerin pseudouridine synthase 1 (DKC1) expression to
promote HCC progression and reduce HCC associated
recurrence-free survival rates (Ko et al., 2018).

HLA genes could promote the development of HCC and the
expression of HLA genes in the ICD high group and ICD low group
were different. In nucleotide analogs, naive patients with chronic
HBV infection who have an AA genotype of the HLA-DQA1/
DRB1 gene are more likely to develop HCC during entecavir
treatment (Kozuka et al., 2018). HLA-DQB1-AS1 can interact
with ZRANB2 protein to promote cell proliferation and inhibit
apoptosis in HCC (Long et al., 2022). In addition, HLA-DQB1
polymorphisms increase the risk of HCC after hepatis C virus
eradication (Miki et al., 2020). The risk of developing HCC in
chronic hepatis B patients who have the HLA-DRB1*140101 allele is

higher (Jin et al., 2012). We found that in ICD high group HLA gene
expression such as HLA-DQB1, HLA-DQB1 and other genes were
higher than those of the ICD low group.

Then we calculated the immune-checkpoint associated genes in
ICD high group and ICD low group. In liver cancer, a T cell
immunoreceptor with immunoglobulin and immunoreceptor
tyrosine-based inhibitor motif domains (TIGIT) is a marker for
T cell exhaustion (Ostroumov et al., 2021). The anti-tumor immune
response can be suppressed by TIGIT, which is an inhibitory molecule
on CD8+ effector memory T cells, and inhibitors of TIGIT combined
with anti-PD1 are promising to reduce PD1 inhibitor resistance (Chiu
et al., 2020; Ostroumov et al., 2021). From our study, we found that the
immune-checkpoint associated genes such as TIGIT in ICD high group
were higher than those of ICD low group.

From DEGs, a prognostic model which included 6 genes (BAX,
CASP8, IFNB1, LY96, NT5E and PIK3CA) was constructed by using
the LASSO Cox regression analysis. A previous study found that in
normal human tissues NT5E-2 was expressed at low abundance, but in
cirrhosis and HCC it was significantly upregulated (Snider et al., 2014).
NT5E-2 codes CD73S protein which has potential significance for
cancer, fibrosis and other diseases (Snider et al., 2014). In addition,
compared with normal breast tissues, in breast cancer more NT5E gene
wasmethylated, andNT5E genemethylation was associated with breast
cancer development and poor prognostic factors, which indicated that
NT5E genemethylationmay be used as an epigenetic biomarker (Jeong
et al., 2020). A previous study from the South Italy population showed
that oncogenic mutations were detected in 18 (28%) of the PIK3CA
gene from 65 HCC patients, which suggested that at the somatic level

FIGURE 6
Histogram showing 22 types of TIILs in each case (A), the correlations between the TIILs (B), comparison of the immune cell fractions (C), HLA (D)
and immune checkpoint associated gene expression (E) between ICD high and ICD low groups. (TIILs: tumor-infiltrating immune cells, HLA: Human
Leukocyte Antigens, ICD: immunogenic cell death; *p < 0.05; **p < 0.01: ***p < 0.001).
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FIGURE 7
Forest plots of univariate prognostic analysis (A), LASSO regression analysis (B), coefficient profile plot (C), correlation heatmap (D) of 6 ICD
associated prognosis genes, risk score plot (E), survival status scatter plot (F), heatmap (G) and survival curve (H) of high risk and low risk groups,
correlation between the risk score and Macrophage M0 (I) and risk score in responder and non-responder groups in HCC who had received immune-
checkpoint inhibitors (J). (LASSO: least absolute shrinkage and selection operator, ICD: immunogenic cell death, HCC: hepatocellular carcinoma;
*p < 0.05; **p < 0.01: ***p < 0.001).

FIGURE 8
Correlation analysis of risk score and related clinical characteristics. [(A): age, (B) gender, (C) grade, (D) stage, (E) T stage, (F) N stage, (G) M stage].
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mutational activation of the PIK3CA gene can contribute to
hepatocellular tumorigenesis (Colombino et al., 2012). In Chinese
HCC patients, the frequency of PIK3CA mutations was lower (Li
et al., 2012). PIK3CA and Yes-associated protein (Yap) can contribute
to liver carcinogenesis by activating the MTORC1/2, ERK/MAPK and
Notch pathways (Li H et al., 2015). The risk of PIK3CA gene mutations
in patients with chronic Schistosomiasis is higher, which can result in
hepatocyte fibrosis and liver cancer eventually (Algabbani, 2022). The
polymorphisms of PIK3CA rs17849071 and rs17849079 increase the
risk of HCC (Li X et al., 2015). LY96 is significantly upregulated and can
be used as a prognostic factor inmost types of cancers. LY96 is related to
DNA methylation, copy number, microsatellite instability (MSI),
somatic mutation, tumor mutation burden (TMB), tumor
microenvironment (TME) features and immune cell infiltration in
cancers, and LY96 can contribute to drug resistance and regulate
classic tumor-associated pathways (Nie et al., 2022). We found the

prognostic model constructed by the 6 ICD associated genes could
predict the prognosis as well as 1 year, 3 years, and 5 years survival
status well. As a tumor-promoting cytokine, IL-17A can regulate
alcohol-induced hepatic steatosis, inflammation, fibrosis and HCC,
and the development of HCC in alcohol-fed mice was suppressed
by deleting the IL-17RA gene (Ma et al., 2020). In HCC patients,
increased IL-17 and IL-17RE were related to poorer survival and a
higher recurrence rate, and Th17 associated cytokines as well as the
crosstalk with various kinds of inflammatory or immune cells might
suggest how IL-17-producing CD4+T cells promote the carcinogenesis
in HCC (Liao et al., 2013).

We also calculated the immune scores in the two groups.
Estimate scores, immune scores and stromal scores in ICD high
group were higher than those in ICD low group. Cancer cells, innate
and adaptive immune cells, stromal cells, cancer-associated
fibroblasts and endothelial cells constitute the TME and elucidate

FIGURE 9
Forest plots of univariate prognostic analysis for risk score (A) andmultivariate prognostic analysis (B), and concordance index (C) and ROC curve (D)
of different variables, and ROC curve (E) of prognostic model. (ROC: receiver operating characteristic).

TABLE 2 Basic information on the molecular docking between sorafenib and the target protein.

Element Chemical formula Molecular weight Target name PDB ID Binding energy(kcal/Mol)

Sorafenib C21H16ClF3N4O3 464.825 LY96 2E56 −7.00

PIK3CA 8EXL −6.84

NT5E 7QGO −6.33

CASP8 3KJQ −5.98

IFNB1 1AU1 −5.61

BAX 2IMS −5.59
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the immune microenvironment can help select appropriate
treatment modalities for HCC (Oura et al., 2021). In HCC
patients, M0 macrophages can predict overall survival (OS) (You
et al., 2022). Compared with normal liver tissues, M0 macrophage
infiltrates significantly higher in HCC tissues and it is associated
with poor prognosis in HCC patients (Zhang et al., 2022). Higher
M0 macrophage infiltrations are related to enriched angiogenesis
hallmark genes and decreased OS in patients treated with sorafenib
(Farha et al., 2020). We found that macrophage M0 had a positive
correlation with the risk scores.

This study had serval advantages. First, we explored the role of
ICD in HCC patients which had not been elaborated on previously.
Second, the TME, risk scores and ICD were combined to investigate
how differences between ICD high group and ICD low group. Third,
the prognostic model constructed according to the expression of
ICD associated genes could predict the prognosis and survival status
in HCC patients. However, there are some limitations as well. Firstly,
the prognostic model could not predict the response to immune-
checkpoint inhibitors. Secondly, all the data were obtained from a
public database, so further studies are still warranted to verify the
model in HCC patients.

Conclusion

In conclusion, in this study we explored the role of ICD
associated genes in HCC. The prognosis of HCC patients in the
ICD high group was poor than that in ICD low group. A prognostic

model of 6 genes including BAX, CASP8, IFNB1, LY96, NT5E and
PIK3CA, could predict the survival status and could be used as an
independent prognostic factor in HCC patients. This study provided
insight into the significance of ICD in HCC, and further studies are
needed to validate these findings.
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SUPPLEMENTARY FIGURE S1
Correlation analysis of ICD associated DEGs and different immune cells. (A)
CASP8, (B) BAX, (C) LY96, (D) ENTPD1, (E) CXCR3, (F) HSP90AA1, (G) CALR,
(H) PDIA3, (I) IL6, (J) CD4; ICD: Immunogenic cell death, DEGs:
Differentially expressed genes).

SUPPLEMENTARY FIGURE S2

Correlation analysis of ICD associated DEGs and related clinical
characteristics. ((A) age, (B) gender, (C)N stage, (D)M stage, (E) BMI, (F) AFP,
(G) T stage, (H) pathologic stage, (I) vascular invasion, (J) race, (K) histologic
grade, (L) fibrosis ishak score, (M) residual tumor; ICD: Immunogenic cell
death, DEGs: Differentially expressed genes; ns: p ≥ 0.05, *: p < 0.05, **: p <
0.01, ***: p < 0.001).
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