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Introduction: Adverse drug reactions (ADR) are directly related to public health
and become the focus of public andmedia attention. At present, a large number of
ADR events have been reported on the Internet, but the mining and utilization of
such information resources is insufficient. Named entity recognition (NER) is the
basic work ofmany natural language processing (NLP) tasks, which aims to identify
entities with specific meanings from natural language texts.

Methods: In order to identify entities from ADR event data resources more
effectively, so as to provide valuable health knowledge for people, this paper
introduces ALBERT in the input presentation layer on the basis of the classic
BiLSTM-CRF model, and proposes a method of ADR named entity recognition
based on the ALBERT-BiLSTM-CRF model. The textual information about ADR on
the website “Chinese medical information query platform” (https://www.dayi.org.
cn) was collected by the crawler and used as research data, and the BIO method
was used to label three types of entities: drug name (DRN), drug component
(COM), and adverse drug reactions (ADR) to build a corpus. Then, the words were
mapped to the word vector by using the ALBERT module to obtain the character
level semantic information, the context coding was performed by the BiLSTM
module, and the label decoding was using the CRF module to predict the real
label.

Results: Based on the constructed corpus, experimental comparisons were made
with two classical models, namely, BiLSTM-CRF and BERT-BiLSTM-CRF. The
experimental results show that the F1 of our method is 91.19% on the whole,
which is 1.5% and 1.37% higher than the other two models respectively, and the
performance of recognition of three types of entities is significantly improved,
which proves the superiority of this method.

Discussion: The method proposed can be used effectively in NER from ADR
information on the Internet, which provides a basis for the extraction of drug-
related entity relationships and the construction of knowledge graph, thus playing
a role in practical health systems such as intelligent diagnosis, risk reasoning and
automatic question answering.
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1 Introduction

Adverse Drug Reaction (ADR), mainly refers to a harmful
reaction unrelated to the purpose of the medication caused by a
qualified drug in normal dosage (Edwards and Aronson, 2000).
Since the 1950s, the number of new drugs in the world has increased
dramatically, and there are tens of thousands of drug varieties. With
the increase in the variety of drugs, the probability of adverse drug
events has also increased dramatically. There have been a number of
serious adverse drug reactions in the world, for example: in the 1950s
and 1960s, thalidomide (Reactive Stop), used for the treatment of
morning sickness in pregnancy, caused “malformations in seal-
limbed babies,” with a total of more than 10,000 cases and
distributed in 17 countries (Zhang et al, 2019); In the early
1980s, the diet pill fenfluramine, which was popular for its
weight loss benefits, had serious adverse effects such as heart
valve hypertrophy and arrhythmias, damaging the heart valves of
hundreds of thousands of dieters in the United States alone (Li,
2001). Due to the small test samples, inadequate observation time
and insufficient scope of testing in early clinical trials of medicines,
many potential adverse reactions aren’t detected early, leading to
risks in the later use of medicines. According to the ADRmonitoring
report: in 2021, China increased the number of new and serious
adverse drug reaction events, reports 597,000, of which serious
adverse drug reactions accounted for 11%, posing a great threat
to people’s lives (National Medical Products Administration of
China, 2022). With the advent of the era of big data, a number
of professional medical websites, pharmacovigilance departments,
health communities, and other online resources provide a database
for drug risk recognition. How to use text mining technology to
obtain valuable knowledge from these information resources, so as
to provide decision-making services for the safe use of medicines has
become an important issue that needs to be addressed urgently. The
premise of text mining is to identify the names of drug-related
entities such as drug names, drug components and adverse drug
reactions from the vast amount of web information.

At a time when computer data is exploding, there is a lot of
valuable information hidden in big data, but most of this data is
unstructured text that cannot be used directly by computers, and
cannot be exchanged in databases, resulting in the dilemma of
“abundant information but lack of knowledge,” Based on this
problem, natural language processing tasks have arisen intending
to enable computers to understand the unstructured text and actively
learn through various methods and techniques to access information
in the unstructured text (Xi and Zhou, 2016; DWOtterMedina and
Kalita, 2020). Named entity recognition, refers to the recognition of
entities with a specific meaning in natural language text (Nadeau and
Sekine, 2007). The named entity recognition task simply means
extracting keywords or information from text information, for
example, recognizing entities such as the name of a person, place,
time, etc. present in a piece of text. The result of named entity
recognition includes the type and boundary of that named entity.
Named entity recognition is an important stage in the process of
moving from theoretical to practical applications of natural language

processing techniques, and it generally underpins many natural
language processing tasks, for example, the recognition of named
entities associated with a graph needs to be implemented before a
knowledge graph can be constructed using text.

Named entity recognition techniques can help people
understand unstructured texts about adverse drug reactions, and
also prepare the groundwork for subsequent research on entity
relationship extraction and knowledge graph construction. To this
end, this paper proposes a named entity recognition method for
adverse drug reactions based on the ALBERT-BiLSTM-CRF model.
Among them, the method adopts BIO annotation model for corpus
characteristics and extracts three types of named entities based on
ALBERT-BiLSTM-CRF model for drug names, drug components
and adverse drug reactions, so as to mine the knowledge related to
adverse drug reactions and help people understand the risks of
drugs.

2 Related work

Named entity recognition is initially proposed as a sub-topic of
information extraction and has evolved to the point where the main
approaches to named entity recognition are classified as lexicon and
rule-based, statistical machine learning-based and deep learning-
based. Lexicon and rule-based methods are the first named entity
recognition methods proposed, and currently, deep learning-based
named entity recognition methods have become mainstream
methods (Li et al, 2020).

Deep learning is a collection of algorithms that apply machine
learning to multilayer neural networks. Deep learning is more
adaptable to data and can acquire features from the raw data
itself, reducing human costs and the impact of subjectivity.
Common deep learning network structures include: Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) (Chiu and Nichols, 2016; Dauphin
et al, 2017; Strubell et al, 2017; Zhao et al, 2019).

In order to parse natural scenes and natural language, scholars
proposed the RNN model. Later, the Recurrent Neural Tensor
Network (RNTN) model, which is based on the RNN model, was
proposed and mainly applied to sentiment analysis.

RNNs suffer from a “long-term dependency problem,” where
they can only learn short-term information because the gradient
disappears. In view of the problems of RNNs, Hochreiter et al
proposed a LSTM model in 1997 (Hochreiter, Schmidhuber, 1997).
The LSTM improves the RNN by controlling the rate of
accumulation of information through the design of gating,
successfully solving the gradient disappearance problem and
learning long-range dependencies. The LSTM supports selective
addition and selective forgetting, the feature makes the LSTM well-
suited for applications in named entity recognition problems (Chen
et al, 2015). Hammerton et al first applied LSTM in the area of
named entity recognition (Hammerton, 2003).

The LSTM structure only has a forward hidden layer, so it can
only handle forward sequence information, while BiLSTM is a Bi-
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directional LSTM (Graves and Schmidhuber, 2005), a forward
LSTM and a backward LSTM, respectively, whose output is
obtained by splicing the state vectors of the forward and
backward LSTMs, and the two LSTMs are completely
independent in encoding, not sharing parameters and state
vectors, fully acquiring information and encoding. Lample et al
used BiLSTM to encode sequence context information and proved
that BiLSTM is better than LSTM (Lample et al, 2016).

Darshini et al explored the relationship between a drug and its
associated attributes using three approaches: a rule-based approach,
a deep learning-based approach, and a contextualized language
model-based approach on the n2c2-2018 ADE extraction dataset.
They proved that the contextualized language model-based
approach outperformed other models overall (Mahendran and
McInnes, 2021). Christopher et al developed a deep learning
natural language processing algorithm to identify ADRs in
discharge summaries at a single academic hospital centre
(McMaster et al, 2023).

This paper chooses to improve on the classical model BiLSTM-
CRF, a deep learning recognition method, by introducing the
ALBERT model in the input representation layer to achieve the
recognition of Chinese adverse drug reaction named entities.
Different from the existing approaches, our contributions lie in:

1) We innovatively proposed an ALBERT-BiLSTM -CRF model-
based named entity recognition method for adverse drug
reactions, which outperforms the BERT-BiLSTM-CRF and
BiLSTM-CRF-based methods.

2) We customized the annotated lexicon and constructed a Chinese
corpus of adverse drug reactions using the BIO sequence
annotation method for training named entity recognition
models without laborious manual annotation.

3) The Chinese corpus of adverse drug reactions constructed in this
paper contains both Western and Chinese medicines, with more
comprehensive data than previous studies.

3 Materials

3.1 Sources of data

In this paper, the website of “China Pharmaceutical Information
Query Platform” (https://www.dayi.org.cn/) was selected as the
main data source, and Python crawling technology was used to
crawl the data from the website. The data included drug names, drug
components and adverse drug reactions. Then we annotate various
entities based on these data through manual annotation.

3.2 Data pre-processing

The raw data contained 34,064 drug data, which contained
duplicate items, null values, garbled codes and data not relevant
to the experiment. Data pre-processing of the raw data was required
to process the raw data into the format required for the experimental
dataset.

The main tasks of data pre-processing were: 1) removing
garbled, invisible characters and null data; 2) removing duplicate

drug data; and 3) dividing the initially processed data in such a way
that one TXT file was generated for each drug data. A total of
12,977 TXT files were eventually generated, with each TXT file being
the data for one drug. The average length of the data for one drug is
148 Chinese characters. The purpose of this is to facilitate the
debugging of subsequent programs, reduce the amount of single
processing, and provide a more intuitive view of the entity
recognition effect.

3.3 Customized annotation dictionaries

In this paper, three types of entities, namely, drug name (DRN),
drug component (COM) and adverse drug reaction (ADR), were
defined for the definition requirements of the adverse drug reaction
knowledge graph and the experimental data format. In this
experiment, the deep learning corpus was prepared by using BIO
sequence annotation, and the annotation was performed
automatically according to the entity words and entity labels in
the dictionary. The matching of drug names, drug components and
the presentation of adverse drug reactions is therefore largely
determined by the completeness and accuracy of the lexicon
entries. The experiments in this study required an annotated
lexicon consisting of drug name, drug component and adverse
drug reaction entries.

Named entity recognition has been widely studied in different
languages and different domains, but a large number of related
studies are based on already existing corpora. The existing corpora
are mainly English corpora or based on classical named entities, such
as personal names and place names, although there are a small
number of corpora focusing on other entities, they are still some
distance away from the adverse drug reaction entities studied in this
paper.

As there is no authoritative corpus available, this study used a
customized dictionary approach to write the collected drug
names, drug components and adverse drug reaction entity
entries into a dictionary, stored each entry in one row and
added the entity type to which each entry belongs to construct
the dictionary used for this experimental BIO annotation corpus.
Two different sources for the collection of relevant lexical entries
are shown in Table 1.

Although the lexicon shared by the input method may include
incorrect entries (Gong, 2019), such as the inclusion of Chinese
herbal prescriptions in drug components, both input method
lexicons were chosen as sources for this paper, considering that
the priority of building a lexicon is to ensure that the number of
entries collected is large enough and that the lexicon shared by the
input method contains a large number of entries uploaded by
different authors or institutions with rich data content.
Moreover, in order to include as many entries as possible, all

TABLE 1 Sources of terms related to drug components and adverse reactions.

Source Web link

Baidu Input Method Lexicon https://shurufa. baidu. com/dict

Sogou Input Method lexicon https://pinyin. sogou. com/dict/
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lexicons files on drug names, drug components and adverse drug
reactions were used.

As multiple lexicons files were used previously to ensure that
the collection was large enough, but this may have included the
same entries, for example, lexicons file a and lexicons file b.
Although file b complements a, some entries are the same as file
a, so duplicate entries need to be removed. This step is
implemented by Python programming, the specific idea is: 1)
read the contents of the lexicons file by line; 2) store the read
contents in a set type variable. Duplicate entries are removed by
using the property that set type variables do not contain
duplicate elements.

In the end, a total of 12,977 entries were collected for drug
names, 16,308 entries for drug components and 11,141 entries for
adverse drug reactions. The statistics on the number of entities in the
lexicons are shown in Table 2.

3.4 Corpus construction

The model used for the experiments in this study is the
ALBERT-BiLSTM-CRF model, and preparing a corpus for model
training is an essential task before training this model. The corpus
requires that each word in the corpus is followed by a label for that
word, by which it is possible to indicate whether the word being
labeled belongs to the target named entity and if so, also whether it is
the first word or one of the middle words of the target named entity.
If more than one category of named entity is to be identified at the
same time for this named entity recognition task, multiple entity
labels are to be used.

Sequence labeling is a fundamental problem in NLP
problems. In sequence annotation, we want to label each
element of a sequence. In general, a sequence refers to a
sentence, while an element refers to a word in a sentence.
There are two commonly used sequence annotation methods:
BIO annotation and BIOES annotation. The corpus of this study
used the BIO sequence annotation model to annotate entities in
sentences.

After BIO annotation of data, each record in the corpus should
include two fields: 1) the text of the drug name, drug component and

adverse reaction entity; 2) the BIO label sequence corresponding to
that text.

The generation of BIO sequence annotation was done by Python
programming, based on the customized annotation dictionaries
built in Section 3.3. The specific process was: 1) according to the
constructed annotation dictionary, to annotate the text to be
keyword matching, a successful match will be marked with the
corresponding entity label, not a successful match will be marked as
“O,” the specific entity label is defined in Table 3 below; 2) the BIO
annotated corpus is written to a text file, with a blank line as a
separating mark between sentences. Entity label definitions is shown
in Table 3.

The self-built corpus contains 12,977 records. Each word in each
record is followed by a label to form a row of data separated by spaces,
i.e., “word O\ B-(DRN, COM, ADR),” e.g., “Bifenprox tablets:
bifenprox. Mild nausea and occasional skin rash may occur in some
cases.” The Chinese labeling example is shown in Table 4.

TABLE 2 Type and number of entries.

Type of entity Quantity Example

DRN 12,977 Allopurinol Tablets

COM 16,308 Allopurinol

ADR 11,141 Skin rash

TABLE 3 Entity label definitions.

Type of entity Start label Middle label

DRN B-DRN I-DRN

COM B-COM I-COM

ADR B-ADR I-ADR

TABLE 4 Example of adverse drug reaction corpus annotation.

Word Label Word Label Word Label

联 B-DRN 个 O 轻 O

苯 I-DRN 别 O 度 O

双 I-DRN 病 O 恶 B-ADR

酯 I-DRN 例 O 心 I-ADR

片 I-DRN 服 O , O

: O 用 O 偶 O

联 B-COM 后 O 有 O

苯 I-COM 可 O 皮 B-ADR

双 I-COM 出 O 疹 I-ADR

酯 I-COM 现 O 。 O

FIGURE 1
Model framework of ALBERT-BiLSTM-CRF.
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At this point, the corpus has been prepared for the experimental
simulation, after which the corpus was divided into the training set,
validation set, and test set and passed into the ALBERT-BiLSTM-
CRF model for experimental simulation.

4 Materials and methods

4.1 Model framework

Based on the superiority of the ALBERT pre-training model,
this paper implements named entity recognition of adverse drug
reactions based on the ALBERT-BiLSTM-CRF model, which
consists of three main components: the ALBERT pre-training
model, the BiLSTM layer and the CRF layer. These three parts are
used in the input representation layer, sequence modeling layer
and prediction decoding layer in turn, and the main structure of
the model is shown in Figure 1.

Themodel consists of three parts: 1) The input representation layer,
where the ALBERT module maps each word into a word vector
through the Embedding layer and then uses the Transformer layer
to obtain character-level semantic information, specifically by encoding
contextual features after a two-way synthesis and adding the learned
syntactic and semantic level information to the token. 2) The Context
Encoder layer, which inputs the obtainedword vectors into the BiLSTM
module, performs high-dimensional feature extraction based on the
contextual information. 3) Label decoder layer, the classical model CRF
is used in this layer to predict the real label sequence.

In this paper, an ALBERT model was introduced in the input
representation layer of the classical BiLSTM-CRF model, and an
ALBERT-BiLSTM-CRF model-based named entity recognition
method for adverse drug reactions was proposed. The method
used the BIO approach to annotate three types of entities,
namely, drug name (DRN), drug component (COM) and adverse
drug reaction (ADR) for the corpus characteristics of drug
instructions, and extracted these three types of entities by using

FIGURE 2
Flow chart of the method.
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the ALBERT-BiLSTM-CRF model. In this paper, the BiLSTM-CRF
and BERT-BiLSTM-CRF models were selected as control models for
experimental simulation with precision P, recall R and F1 score as
performance evaluation indicators. By comparing and analyzing the
evaluation metrics of each model, the superiority of applying the
ALBERT-BiLSTM-CRF model to the adverse drug reaction named
entity recognition task was demonstrated, and the specific
implementation flow is shown in Figure 2.

4.2 ALBERT pre-training model

The named entity recognition task consists of three main
components: the distributed representation of the input, the
context encoder and the label decoder (Chiu and Nichols, 2016).
The distributed representation of the input task implements the
encoding of the input word into a vector of real numbers, and the
context encoder and label decoder process the real vector and,
through mapping, confirm the entity label of the word.

The earliest approach to the distributed representation of input
is the one-hot, which later give rise to methods such as the bag-of-
words model and the n-gram. In order to take into account the
relationships between word vectors, the distributed representation
of the input has evolved to the currently dominant Word2Vec
embedding method (Mikolov et al, 2013). Although it addresses
some contextual issues, Word2Vec only provides a layer of
representation and does not yet address the issue of word
polysemy. The pre-training model BERT uses the Encoder part
of the bidirectional Transformer (Vaswani et al, 2017) to compute
the relationship between input and output, and structures such as
RNN/CNN are completely discarded by BERT and the Attention
mechanism takes its place. With this improvement, BERTmakes full
use of contextual information and defines different vector
representations for words based on different contexts, solving the
problem of multiple-meaning words. However, the high
performance of the BERT model relies on the introduction of

more parameters, which increases the complexity of the model,
and the training time of the BERT model increases significantly and
requires more hardware.

Because of the problems of BERT, Lan et al (Lan et al., 2019)
proposed a lightweight BERT-ALBERT. ALBERT hardly changes
the model architecture of BERT, but ALBERT significantly reduces
the number of parameters, accelerates the training speed and
overcomes the problem of difficulty in extending the model
without affecting its performance.

ALBERT reduces the parameters by embedding the matrix
decomposition technique and cross-layer parameter sharing
mechanism, discarding the next sentence prediction (NSP)
training method and proposing sentence order prediction (SOP)
training method instead, thus improving the performance of
downstream tasks. The structure of the ALBERT pre-training
model is shown in Figure 3.

As can be seen from Figure 3, the structure of the ALBERT pre-
training model mainly consists of an Embedding Layer and a
Transformer encoder layer (Ma and Huang, 2021). The input
corpus words are transformed into a vector through the
Embedding Layer, and the word vector dimension can be taken
as 128 or 300, after which the Embedding Layer feeds the processed
vector to the encoder layer.

The encoder layer is the encoder part of the Transformer and is
built from a multi-headed Self-attention and fully-connected layer.
The Self-attention is calculated as follows:

Attention Q,K,V( ) � sof tmax
QKT��
dk

√( )V (1)

In which, Q,K,V are the 3 input matrices obtained by linear
transformation of the input vectors, and dk is the input word vector
dimension. Different weights are obtained by calculating the
magnitude of the relational weight between each input word
vector and the other word vectors of the sequence, and then the
weights are weighted and summed with the representations of all the
sequences to finally obtain the new character representations.

To train the encoder layer, ALBERT uses mask learning and
SOP. The SOP task is to determine whether two sentences are
adjacent to each other in the original text, as well as the order and
coherence of the sentences, and was proposed to improve the NSP of
the BERT model. Many studies have shown that the NSP originally
designed to improve the performance of downstream tasks is not
very efficient, so ALBERT proposed SOP, and the experimental
results show that SOP can solve the NSP inefficiency problem within
a reasonable range.

4.3 BiLSTM

BiLSTM takes up the work of the context encoder in the named
entity recognition task. This paper used the ALBERT-BiLSTM-CRF
model for named entity recognition of adverse drug reaction entities,
in which sequence features in the text of adverse drug reactions were
obtained by BiLSTM. BiLSTM used the LSTM (Chen et al, 2015)
structure in the implicit layer unit.

The LSTM has been improved to avoid the problem of gradient
disappearance and has a longer memory in response to the

FIGURE 3
Structure of the ALBERT pre-training model.
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shortcomings and problems of the RNN model. The LSTM avoids
gradient disappearance mainly through the transmission band,
which is the most important structure of the LSTM model.

The LSTM consists of four parts: oblivion gate ft, input gate it,
transmission band Ct and output gate. The oblivion gate ft takes a
value in the middle of 0–1. If an element of ft exists that is 0, the value
of the transmission band Ct−1 cannot be passed, achieving selective
forgetting, while the input gate it adds information to the transmission
band C, and by doing so, information is updated. It is this selective
recording and selective forgetting that avoids the gradient explosion and
disappearance problems and distance dependence of RNNs.

The whole process is as follows.

ft � σ Wf · ht−1, Xt[ ] + bf[ ] (2)
it � σ Wi · ht−1, Xt[ ] + bi[ ] (3)

~Ct � tanh WC · ht−1, Xt[ ] + bC[ ] (4)
Ct � Ct−1+ft + it+~Ct (5)

ot � σ Wo · ht−1, Xt[ ] + bo[ ] (6)
ht � ot+tanh Ct[ ] (7)

The meanings of the variables in the formula are shown in
Table 5.

The BiLSTM used in this paper is a Bi-directional LSTM whose
output is obtained by splicing the state vectors of the forward and
backward LSTMs, and the two LSTMs are completely independent
in their encoding and do not share parameters or state vectors.

4.4 CRF

The BiLSTM takes on the work of the context encoder in the
named entity recognition task, while the CRF model is the label
decoder, predicting the output sequence from the input sequence.
Given a set of observed sequences X � x1, x2,/, xn{ }, the predicted
sequence labels y � y1, y2,/, yn{ } can be obtained.

In named entity recognition, after mapping each character into a
word vector and taking into account the context, the output of the
BiLSTM is a score indicating that each word corresponds to each entity
category, and the category label with the highest score can be selected as
the predicted result. However, there is a problem with such named
entity recognition in that BiLSTM cannot restrict the relationship
between the two labels before and after, and the output results do
not affect each other, simply selecting the label with the highest score at

each step as the output label. For example, in the BIO labeling process, if
“B-entity type” is used to denote the beginning of an entity and “I-entity
type” to denote the middle part of an entity, then a sequence of {I-entity
type 1, I-entity category 2} must be wrong.

In view of this problem, in 2001, Lafferty et al first proposed a CRF
for the sequence annotation problem, which has a feature transfer
matrix, based on which the CRF can learn some constraints on the
labels during training, such as “no O-entity type” (Lafferty et al, 2002).

The score for the label y corresponding to the text X is
calculated as follows.

score X, y( ) � ∑n

i�1Pi,yi +∑n

i�0Ayi,yi+1 (8)

In the formula, Ayi,yi+1 denotes the transfer fraction from label
yi to label yi+1; pi,yi is the emission matrix, indicating the fraction of
the ith character predicted to be labeled yi , and the fraction of label
y corresponding to textX is the sum of the transfer matrixA and the
emission matrix P.

To maximize the probability of a correct sequence, the CRF is
given a linear chain of conditional random fields P(y|X)

P y
∣∣∣∣X( ) � exp score X, y( )( )

∑y′ exp score X, y′( )( ) (9)

In the formula, y is the true sequence and y′ is the set of all
possible sequences.

4.5 Experimental design

4.5.1 Experimental environment
This experiment was conducted on Ubuntu 20.04.3 LTS, with a

GPU version of RTX 2080 Ti with 11G of video memory, a 12-core
Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz, 45G of system
memory, a Tensorflow version of 1.15.0 GPU, and the language used
Python 3.6.

4.5.2 Parameter setting
The experimental data source is a self-built corpus, the specific

construction process of which is described in Section 3. The data
content is mainly a corpus of drug information on adverse drug
reactions, containing drug names, drug components and possible
adverse reactions caused by drugs, with a total of 12,977 records.
Ultimately, this paper divided the corpus into three parts with a ratio

TABLE 5 Meaning of variables.

Variables Meaning (at moment t) Variables Meaning (at moment t)

σ Sigmoid activation function ht State vectors

~Ct Intermediate states Xt Input vectors

ft Oblivion gate b Bias vector

it Input gate tanh Hyperbolic tangent function

Ct Transmission band W Model parameter matrix

ot Output gate

Frontiers in Pharmacology frontiersin.org07

Wei et al. 10.3389/fphar.2023.1121796

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1121796


of 6:2:2, which are used as the training set, the validation set and
the test set. The training set is used to train the neural network
model, and then the validation set is used to verify the validity of
the model, selecting the model that gives the best results, until
we have a satisfactory model. Finally, once the model has passed
the validation set, this paper then uses the test set to test the final
effect of the model. We use the bert-base model and albert-base
model pretrained in the hugging face to fine-tune our NER task.

The BiLSTM-CRF and BERT-BiLSTM-CRF models were
selected as the control group for experimental comparison and
analysis to verify the performance of the ALBERT-BiLSTM-CRF
model. The experiments used the ALBERT_BASE model released
by Google, which has an Embedding of 128, a hidden layer
number of 12, a hidden layer dimension of 768, a Layers value
of 12 and used gelu, with an overall parametric number of only
12M. The number of hidden layer nodes of BiLSTM was 100. The
training parameters of the ALBERT-BiLSTM-CRF model are
listed in Table 6. In addition, the comparison experiments
used the BERT_BASE model with an Embedding of 128, a
hidden layer count of 12, a hidden layer dimension of 768, a
Layers value of 12, and gelu with an overall parametric count
of 110M.

The experiments were set up with different epoch values to
study the fitting condition of the model with the number of
iterations, so as to determine the appropriate epoch value. The
experimental results are shown in Figure 4, where the horizontal

coordinates are the epoch values and the vertical coordinates are
the percentage performance of entity recognition. The dashes in
the graph show the changes in F1, accuracy and recall
respectively. As can be seen from the figure, the values of F1
and accuracy rate are 92.14% and 91.47% respectively at the 7th
epoch, reaching the highest; the recall rate reaches the optimal
value of 92.85% at the 8th epoch. With the increase of training
times, the model was gradually fitted and converged to a steady
state. Taking into account, 7 was chosen as the epoch value for the
experiment in this study.

4.5.3 Evaluation metrics
The method was evaluated by using some experimental

performance metrics: precision P, recall R and F1 score as
follows.

P � TP

TP + FP
(10)

R � TP

TP + FN
(11)

F1 � 2PR
P + R

(12)

The meanings of the variables are shown in Table 7.
Tomake the meaning clearer, an example of an ADR entity, “rash,”

is given in this paper. Named entity recognition usually identifies more
than one type of entity at a time, so for convenience here it is assumed
that ADR entities are identified individually. For the entity “rash,” there
are 2 possible predicted outcomes: ADR entity and non-ADR entity. If
the rash is identified as an ADR entity by the model, the result is called
TP; if the rash is identified as a non-ADR entity, the result is called FP;
if the non-ADR entity is identified as a non-ADR entity, the result is
called TN; if the non-ADR entity is identified as an ADR entity, the
result is called FN.

TABLE 6 Training parameters of ALBERT-BiLSTM-CRF model.

Parameter category Value

Maximum sequence length 128

ALBERT Learning Rate 5e-5

Other module learning rates 0.001

Dropout 0.5

Batch_size 128

epoch 7

FIGURE 4
Changes in each evaluation metric of the model on the
validation set.

TABLE 7 Meaning of variables.

Variables Meaning

TP Real entities correctly recognized by the model

FP Real entities not recognized by the model

TN Non-entities correctly recognized by the model

FN Non-entities incorrectly recognized by the model

TABLE 8 Comparison of model performance evaluation indicators on different
set (%).

Set Model Precision Recall F1 score

Validation Set BiLSTM-CRF 88.54 91.25 89.87

BERT-BiLSTM-CRF 89.05 92.30 90.64

ALBERT-BiLSTM-CRF 91.47 92.83 92.14

Test Set BiLSTM-CRF 88.20 91.23 89.69

BERT-BiLSTM-CRF 88.02 91.70 89.82

ALBERT-BiLSTM-CRF 89.88 92.55 91.19
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5 Results

5.1 Model performance evaluation results

In terms of model performance evaluation metrics, this study
compared the validation set and test set results of the three models.
After 7 epochs, the specific training results of theALBERT-BiLSTM-CRF
model, the BiLSTM-CRF and BERT-BiLSTM-CRF are shown in Table 8.

5.2 Entity performance evaluation results

Entity evaluation metrics refer to the calculation of precision P,
recall R and F1 score separately for each entity. In terms of entity
evaluation metrics, the results of the three types of entity recognition
for each model are shown in Table 9.

TABLE 9 Entity recognition performance indicators for each model (%).

Evaluation indicators BiLSTM-CRF BERT-BiLSTM-CRF ALBERT-BiLSTM-CRF

Precision DRN 87.91 83.42 87.78

COM 89.29 88.96 90.28

ADR 85.50 87.67 90.09

Recall DRN 78.90 80.39 80.56

COM 93.45 93.38 94.42

ADR 89.86 92.15 92.73

F1 score DRN 83.16 81.88 84.01

COM 91.32 91.12 92.30

ADR 87.63 89.86 91.39

The bold font is to emphasize the increase in the F1 score of the ALBERT-BILSTM-CRF model used in this article compared to other models.

FIGURE 5
Comparison chart of precision.

FIGURE 6
Comparison chart of recall.

FIGURE 7
Comparison chart of F1 score.
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Figures 5–7 show the comparison of the experimental results of
the models in terms of accuracy, recall and F1 score respectively.

6 Discussion

In this paper, an ALBERT-BiLSTM-CRF model-based named
entity recognition method for adverse drug reactions was proposed.
The method adopted a BIO approach to annotate three types of
entities, namely, drug name (DRN), drug component (COM) and
adverse drug reaction (ADR), for the corpus characteristics of drug
instructions, and used the ALBERT-BiLSTM-CRF model to extract
these three types of entities. In this paper, the BiLSTM-CRF and
BERT-BiLSTM-CRF models were selected as the comparison
models for experimental simulation with precision, recall and F1
score as performance evaluation metrics.

As can be seen from Table 8, after 7 epochs, the F1 score of the
BiLSTM-CRF model is 89.69% and the F1 score of the BERT-
BiLSTM-CRF model is 89.82%, an improvement of 0.13%, which
indicates that BERT extracts the semantic information of the text
better than Word2vec by obtaining word vectors through the
bidirectional Transformer. The F1 score of the ALBERT-BiLSTM-
CRF model is 91.19%, which is an improvement of 1.5% and 1.37%
over BiLSTM-CRF and BERT-BiLSTM-CRF respectively, which
proves the superiority of the method in this paper.

In addition, in terms of training time, it took a total of 31 min to
train the BERT-BiLSTM-CRF, while the ALBERT-BiLSTM-CRF
model only took 17 min, which is nearly double the speed. The
reason for this is that ALBERT reduces the number of parameters, so
the number of parameters that need to be updated in the gradient
during training is greatly reduced and the training speed is
accelerated. In summary, the ALBERT-BiLSTM-CRF model
improves training efficiency while maintaining performance, and
the method of introducing ALBERT into the model input
representation layer solves the problem of redundant parameters
in BERT and has research significance.

The analysis in Table 9 shows that the models are least effective
in recognizing DRN, more effective in recognizing ADR and best in
recognizing COM.

The reason for the poor performance in recognizing drug names
(DRN) is that, firstly, drug names contain a large number of parts
that are identical to drug components, which can be easily
misidentified as drug components when recognizing drug names;
secondly, the number of entries for drug names was small when the
lexicon was first constructed, which may lead to the poor
performance. Secondly, the F1 score for recognizing ADR is
lower than that for recognizing components of COM, both
because there are many entries in the corpus where the
description of ADR is “unclear” and because there are many
statements with the same meaning and different expressions in
the description of ADR, for example, “increase” “rise” “improve”.
This may lead to inadequate inclusion of ADR in the construction of
the lexicon, which may result in the model being less effective in
recognizing ADR entities.

The best results were obtained for the recognition of COM,
probably because the characteristics of drug components are very
obvious, most of the components of western drugs are chemical
substances, while most of the components of traditional Chinese

medicine are two-word herbs, which are very different from the
characteristics of other entities. In addition, the largest number of
samples of drug components in this corpus is also more accurate, so
the model has the best results for the recognition of COM.

ALBERT-BiLSTM-CRF model is superior to BiLSTM-CRF and
BERT-BiLSTM-CRF models in recognizing DRN, COM, and ADR
entities. This is demonstrated by the following.

(1) In terms of precision, the precision of DRN on the ALBERT-
BiLSTM-CRF model is 87.78%, which is 0.13% less than
BiLSTM-CRF and 4.36% better than BERT-BiLSTM-CRF; the
precision of recognizing COM is 90.28%, which is 0.99% better
than BiLSTM- CRF by 0.99% and BERT-BiLSTM-CRF by
1.32%; the precision for recognizing ADR is 90.09%, an
improvement of 4.59% over BiLSTM-CRF and 2.42% over
BERT-BiLSTM-CRF. Contrastingly, the precision of
ALBERT-BiLSTM-CRF in recognizing each entity has
improved significantly.

(2) In terms of recall, the recall for recognizing DRN on the
ALBERT-BiLSTM-CRF model is 80.56%, an increase of
1.66% over BiLSTM-CRF and 0.17% over BERT-BiLSTM-
CRF; the recall for recognizing COM is 94.42%, an increase
of 0.97% over BiLSTM-CRF by 0.97% and 1.04% compared to
BERT-BiLSTM-CRF; the recall for recognizing ADR is 92.73%,
an increase of 2.87% compared to BiLSTM-CRF and 0.58%
compared to BERT-BiLSTM-CRF. The overall comparison also
showed a large increase in the recall rate for each entity
recognized by ALBERT-BiLSTM-CRF.

(3) In terms of F1 score, the F1 score for DRN on the ALBERT-
BiLSTM-CRF model is 84.01%, an improvement of 0.85% over
BiLSTM-CRF and 2.13% over BERT-BiLSTM-CRF; the F1 score
for recognizing COM is 92.3%, an improvement of The F1 score
for recognizing ADR is 91.39%, an improvement of 3.76% over
BiLSTM-CRF and 1.53% over BERT-BiLSTM-CRF. In
summary, the F1 score for each entity recognized by the new
model are also improved significantly.

Based on the comparison of the above analysis, it can be seen
that the model after the introduction of ALBERT is optimal in the
recognition of DRN, COM and ADR, especially in the
recognition of ADR with a much higher F1 score than the
other models, which indicates that the inclusion of the
ALBERT pre-training model in the input representation layer
has a significant effect on improving the recognition of named
entities.

There are still areas where this paper could be improved and
future work could be done as follows.

(1) Improving the quality of data. In order to ensure the training
sample size, the original data has “not yet clear,” so the data can
be filtered to remove such data that aren’t relevant to the
training of named entity recognition of adverse drug
reactions, so as to improve the quality of the data. There are
many statements with the same meaning and different
expressions in the description of adverse drug reactions, in
the data pre-processing stage, a similar word conversion module
can be set up to convert such synonyms as " increase” and "
raise” into a uniform expression.
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(2) The self-built annotation dictionary is time-consuming and
labor-intensive. Further, the annotation dictionary can be
constructed by using word separation and lexical annotation
methods, and multiple word separation and lexical annotation
tools can be used to improve each other in order to increase the
accuracy of the data. In addition, if there is an authoritative
dictionary or corpus of adverse drug reactions, it can be
considered as a dataset to experiment with the model again.

7 Conclusion

In this paper, we proposed an ALBERT-BiLSTM-CRF model-based
named entity recognition method for adverse drug reactions, based on a
manually constructed corpus for the recognition of three types of named
entities: drug name, drug component and adverse drug reaction, and
compared it experimentally with two classicalmodels, BiLSTM-CRF and
BERT-BiLSTM-CRF, respectively. The experimental results show that
the method in this paper achieves an overall F1 of 91.19%, which is 1.5%
and 1.37% better than the other two models respectively, and the
performance of all three types of entities is significantly improved,
which proves the superiority of the method proposed.

In the future, the model will also be considered to identify other
entities of a drug, such as the former name of the drug, its English
name, applicable symptoms, possible cross-reactions arising from
the simultaneous use of two drugs, etc. In addition, based on the
identification of named entities of adverse drug reactions, entity
relationship extraction will be carried out so that the knowledge
graph of adverse drug reactions can be constructed and be useful in
practical applications such as intelligent diagnosis, risk inference
and automatic question and answer.
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