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Introduction: Papillary thyroid cancer (PTC) is the most common endocrine
malignancy. However, different PTC variants reveal high heterogeneity at
histological, cytological, molecular and clinicopathological levels, which
complicates the precise diagnosis and management of PTC. Alternative splicing
(AS) has been reported to be potential cancer biomarkers and therapeutic targets.

Method: Here, we aim to find a more sophisticated molecular subclassification
and characterization for PTC by integrating AS profiling. Based on six differentially
expressed alternative splicing (DEAS) events, a new molecular subclassification
was proposed to reclassify PTC into three new groups named as Cluster0, Cluster1
and Cluster2 respectively.

Results: An in silicopredictionwasperformed for accurate recognitionof newgroups
with the average accuracy of 91.2%. Moreover, series of analyses were implemented
to explore the differences of clinicopathology, molecular and immune characteristics
across them. It suggests that there are remarkable differences among them, but
Cluster2 was characterized by poor prognosis, higher immune heterogeneity and
more sensitive to anti-PD1 therapy. The splicing correlation networks proved the
complicated regulation relationships between AS events and splicing factors (SFs). An
independent prognostic indicator for PTCoverall survival (OS)was established. Finally,
three compounds (orantinib, tyrphostin-AG-1295 andAG-370)were discovered to be
the potential therapeutic agents.

Discussion: Overall, the six DEAS events are not only potential biomarkers for
precise diagnosis of PTC, but also the probable prognostic predictors. This
research would be expected to highlight the effect of AS events on PTC
characterization and also provide new insights into refining precise
subclassification and improving medical therapy for PTC patients.
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1 Introduction

Papillary thyroid cancer (PTC) is the most common histological type of thyroid cancer
(Fagin and Wells, 2016; Wang et al., 2020). Its precise diagnosis and prognosis have all-
important clinical significance. It is commonly classified into three histological variants,
including classical papillary thyroid cancer (CPTC), follicular papillary thyroid cancer
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(FPTC) and tall cell papillary thyroid cancer (TCPTC), which
collectively account for the vast majority of PTCs (Shi et al., 2016).
CPTC is usually characterized by papillary architecture containing
typical nuclear features of chromatin pallor, nuclear enlargement,
grooves and pseudoinclusions (Pusztaszeri and Auger, 2017). TCPTC
commonly occurs at advanced stages with a higher incidence of local
recurrence and distant metastasis (Lloyd et al., 2011). FPTC,
characterized by nuclear of classical PTC and follicular cell growth
patterns, has been shown to be indolent with virtually nometastatic or
recurrence potential so that the encapsulated/well-demarcated, non-
invasive FPTC have been renamed as non-invasive follicular thyroid
neoplasm with papillary-like nuclear features or “NIFTP” (Shi et al.,
2016; Tallini et al., 2016). Different variants differ at histological,
cytological, molecular and clinicopathological levels, which
complicates the precise diagnosis and management of PTC. So
deciphering PTC subtypes plays a vital role in predicting patients’
prognosis, avoiding misdiagnosis and inadequate/aggressive therapy.

Except the histopathological variants, PTC also has been divided
into different subtypes based on different data: five based on mRNA
expression, six on miRNA expression, four on DNA methylation
and four on protein expression, which might better inform the
management of PTC (Agrawal et al., 2014). Nevertheless, PTC is a
heterogeneous neoplasm from both morphological and molecular
perspectives. Therefore, more refined molecular classifications of
PTC and the identification of new markers associated with PTC
subtypes is of great practical significance for precise diagnosis,
surgical and medical therapy of PTC patients.

Alternative splicing (AS) refers to the process that a pre-mRNA
can be processed into different mature mRNA molecules in which
an exon/intron could be differentially included/excluded by the
choice of specific AS sites (Liu and Rabadan, 2021). It has been
estimated that pre-mRNA splicing is essential for the expressions of
more than 95% of all human genes (Bonnal et al., 2020). Recently,
the roles of AS in the development of tumors have been revealed that
AS is involved in the processes of proliferation, differentiation and
apoptosis via regulating the alternative expression of many
oncogenes or antioncogenes, since it is widely deregulated in
multiple cancer types (Sciarrillo et al., 2020; Zhang et al., 2021b).
Besides, increasing evidences have indicated that AS could be the
potential biomarkers for the diagnosis, prognosis, therapy and
monitoring of cancer patients (Bonnal et al., 2020). Moreover, AS
shows heterogeneity among different cancers subtypes and AS
events have been utilized for the identification of cancer
subtypes. So deep insights into AS events and their potential for
cancer precise diagnosis and prognosis are vital for better
understanding the potential molecular mechanisms underlying
PTC subtypes.

To provide more perspectives for PTC molecular classifications
and to explore the landscape of AS events and their potential values
for precise diagnosis and prognosis in PTC, we proposed a new
molecular subclassification and characterization for PTC by
integrating AS profiling. Then in silico predictions for precise
diagnosis and prognosis of PTC were performed using machine-
learning methods. A comprehensive analysis was conducted to
detect the differences of clinicopathology, molecular and immune
characteristics among the new subgroups. At last, the potential drug
screening for PTC was performed for improving the clinical
treatment of patients with high-risk or advanced stages.

2 Materials and methods

2.1 Data collection and pre-processing

Splicing data for PTC patients were downloaded from TCGA
SpliceSeq database (https://bioinformatics.mdanderson.org/
TCGASpliceSeq/index.jsp) with default settings. SpliceSeq
database evaluates seven types of splicing events, including
alternate acceptor site (AA), alternate donor site (AD), alternate
promoter (AP), alternate terminator (AT), exon skip (ES), mutually
exclusive exons (ME) and retained intron (RI) respectively. The PSI
value ranging from 0 to 1 indicates the efficiency of a certain splicing
process. Here it was used for quantification of AS events. The clinical
data, gene expression and somatic mutation annotation files were
from TCGA (http://portal.gdc.cancer.gov/). Only patients were
included in our analysis with the following information: 1) PTC
variants, 2) corresponding mRNA expression and AS PSI values, 3)
relatively complete clinical information on sex, age, stage and
survival, and 4) the follow-up periods of more than 90 days.
Molecular signatures in gene set collection of KEGG and
REACTOME in curated canonical pathways (C2) and gene
ontology (GO) terms (C5) were downloaded from the molecular
signatures database (MSigDB) (https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp). The splicing factors (SFs) gene list was collected
from the SpliceAid 2 (http://www.introni.it/splicing.html) and
displayed in Supplementary File S1; Supplementary Table S1.

The average PSI value of each AS event in all samples was used to
interpolate the missing values and minimize the possible bias caused
by the missing values. To generate a reliable set of AS events, a strict
filtering was conducted with average PSI valueS0.05 and standard
deviation of PSI valueS0.1. Finally, 422 PTC patients with complete
AS PSI values, gene expression data and corresponding clinical
information were achieved for the further analyses, including
312 CPTC samples, 96 FPTC and 34 TCPTC, respectively.
Moreover, to accurately describe the AS events, the unique
annotation of each AS was named by combing the gene symbol,
the ID number in the SpliceSeq database and the splicing type, for
example, DCN_23655_AT. Details of the whole dataset can be seen
in Supplementary File S2; Supplementary Table S1.

2.2 Identification of DEAS and PTC variants
classification

To identify the DEAS between CPTC and FPTC, CPTC and
TCPTC, as well as FPTC and TCPTC, log2FC and Wilcoxon test
were conducted. AS events with an absolute value of |log2FC|
S1 and p-value<0.05 were considered as statistically significant.
Only DEAS events that are significantly differentially expressed in all
three variants are selected for further analyses.

2.3 Clustering analysis and in silico training
for model construction

Here, k-means clustering algorithm was performed on the PTC
cohorts based on the identified DEAS events and principle
component analysis (PCA) was used to evaluate the difference
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among different PTC variants as well as to validate the clustering
result. For the construction of the classifier model for distinguishing
the clustering groups, the commonly used machine-learning
algorithm, support vector machine (SVM) was selected. Using
the identified DEAS events as the feature inputs, a linear SVM
classifier was trained to classify three clustering groups by “kernlab”
package. We performed 10-fold cross-validation to train and test the
classifier. To verify the robustness of the model, we executed
100 times of 10-fold cross-validation. So the model training and
testing were repeated 100 times and the performance of the
classification model was assessed by averaging the accuracy
(ACC), Precision, Recall and F1 score of 100 times. The
following are the equations of four evaluation parameters:

ACC � TP + TN

TP + FP + TN + FN
(1)

Precision � TP

TP + FP
(2)

Recall � TP

TP + FN
(3)

F1 � 2*Precision*Recall
Precision + Recall

(4)

Where TP, FP, TN and FN are the true positive, false positive, true
negative and false negative, respectively.

2.4 Differences analysis

A comprehensive difference analysis was performed to assess the
rationality of the newly classified clusters. In our research, we
considered clinicopathological variables (T stage, N stage, M
stage and TNM stage), immune landscape (immune score,
stromal score, immune checkpoint inhibitors expression, immune
cell infiltration), survival status (SS), tumor purity, tumor
mutational burden (TMB) and immunotherapy response.

ESTIMATE is a widely usedmethod that can deduce the fraction of
immune and stromal cells in tumor samples using the gene expression
profile (Yoshihara et al., 2013). Tumor purity reveals the percentage of
malignant cells in a solid tumor sample. Immune scores, stromal scores
and tumor purity of each PTC patient were calculated by ESTIMATE
algorithm. CIBERSORT was performed to evaluate the proportions of
all 22 immune cells based on the gene expression profile by running
CIBERSORT script from the website (http://rdrr.io/github/singha53/
amritr/src/R/supportFunc_cibersort.R). Moreover, we compared the
expressions of five immune checkpoints including CTLA4, TIGIT,
HAVR2, PDCD1 and CD274 among clustering groups. The “maftools”
package was used to obtain TMB of all PTC samples (Mayakonda et al.,
2018). To compare the gene expression matrices between our three
clusters and those cancer patients treated with immune checkpoint
blockade (ICB) therapy, the subclass mapping method (SubMap)
(Hoshida et al., 2007) was conducted. Here, transcriptomic data of
65 cancer patients treated by anti-PD1 therapy were used (Prat et al.,
2017) and details about 65 patients are shown in Supplementary File S2
Supplementary Table S2. This step was implemented on SubMap
module of the GenePattern website (http://genepattern.
broadinstitute.org/) with default parameters setting. Gene set
variation analysis (GSVA) was implemented by “clusterProfiler”
package to acquire the GSVA scores of biological pathways and GO

terms of each PTC patient (Hänzelmann et al., 2013). The “limma”
package was used to investigate significant differentially pathways and
GO terms and those with an adjusted p-value <0.05 were considered as
statistically significant (Ritchie et al., 2015).

At last, the splicing-related networks for AS events and SFs were
also constructed for discovering the regulation relationships
between AS and SFs of each clustering group. For splicing factor
(SF)-AS regulatory network construction, a list of 71 splicing factor
genes was achieved from the SpliceAid two database, and the mRNA
expression profile of SF genes was downloaded from TCGA
database. To screen out the survival-related AS events in
different clustering groups, univariate Cox regression analyses
were performed and AS events with p-value <0.05 were identified
as overall survival (OS)-related AS events. Then, Spearman
correlation method was used to calculate the correlation
coefficients between PSI values of OS-related AS events and the
expression values of SF genes. Finally, the splicing-related network
for AS events and SFs, named as SF-AS regulatory network was built
and drawn by the software of Cytoscape (version 3.7.1).

2.5 Establishment of DEAS-based prognostic
model and survival analysis

To evaluate the prognostic value of the identified DEAS events, we
performed Kaplan-Meier curve analysis to estimate the relationships
between the identifiedDEAS events andOS. Based on PSI values, DEAS
events with p-value<0.05 were considered as prognostic AS events. In
addition, The six DEAS events were entered into the step-wise
multivariate Cox regression analysis using R package “survminer” to
select the key DEAS events with great prognostic values. And the DEAS
events screened in the multivariate Cox regression were used to build
the PTC OS-associated signature. The signature is obtained by the
following formula:

RiskScore � ∑
n

i�1
βi*PSIi (5)

Where βi is the regression coefficient, PSIi is the PSI value of the
corresponding DEAS event. PTC patients would be divided into
high- and low-risk groups by the cutoff value that is determined by
the X-tile, and the Kaplan-Meier curve was plotted to show the
different prognoses. Besides, area under curve (AUC) from the
receiver operating characteristic (ROC) curves of 1, 3 and 5 years
and concordance index (C-index) were calculated to estimate the
prognostic performance of the signature. To determine whether the
prognostic signature is independent of clinical factors, the signature
and confounding clinicopathological variables including age, gender
and TNM stage were analyzed using univariate andmultivariate Cox
regression analyses.

2.6 CMap analysis

The connectivity map (CMap) online tool (https://clue.io) was
used to predict the effect of drugs on the specific gene expression
patterns in tumors. Differentially expressed analysis was
implemented to collect the top 150 up-expressed genes in the
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high-risk cluster. Then, the top 150 up-regulated genes were
uploaded into the CMap online tool. The matches between genes
and chemicals were assessed by scores from -100 to 100. A positive
score implicates a stimulative effect of compound on the query
signatures, while a negative score indicates a repressed effect of a
compound on the query signatures. Bioactive chemicals with a
negative score can be candidate drugs for the treatment of patients.

3 Results

3.1 Overview of AS events in PTC cohort

The splicing data of 442 PTC patients from TCGA SpliceSeq
database were analyzed. Then a total of 8833 AS events were
detected from 4,143 genes using rigorous filtering criteria.
Figure 1A shows the distributions of all AS events and genes
with seven different splicing patterns, including 503 AA in
429 genes, 620 AD in 514 genes, 2741 AP in 1,341 genes,
1183 AT in 601 genes, 2966 ES in 1801 genes, 64 ME in
61 genes and 756 RI in 581 genes, respectively. Besides, the
UpSetR plot in Figure 1B shows that a high proportion of genes
may have two or more different splicing patterns and at least five
different AS events could occur in one single gene, suggesting
the complicated regulation relationships between genes and AS
events.

3.2 Identification of DEAS and PTC variants
classification

To identify DEAS events in PTC variants, the PSI values of
CPTC, FPTC and TCPTC were analyzed. So 59 DEAS events were
obtained between CPTC and FPTC, 17 between CPTC and TCPTC,
and 199 FPTC and TCPTC respectively. The details are shown in
Supplementary File S1; Supplementary Table S2 and Supplementary
Figures S1A–C. By acquiring the intersections in Supplementary File
S1; Supplementary Figure S1D, six DEAS events were identified that
are differentially expressed in all three PTC variants, including
NNMT_18817_AP, DCN_23655_AT, TUBB3_38175_ES,

KIAA1217_10995_AP, COL14A1_85015_AP and RCAN2_
76415_AP.

To verify the distinguishing ability of the identified DEAS events
for CPTC, FPTC and TCPTC, PCA analysis were performed, but
Supplementary File S1; Supplementary Figure S2 shows that three
variants cannot be separated from each other. Then we tried to
classify them by constructing a DEAS-based SVM classifier.
However, the model training result also gives the overall
prediction accuracy with 0.505 and F1 with 0.483. So we can
conclude that the six identified DEAS events cannot be the
classifying biomarkers for the current three variants.

3.3 DEAS-based new subclassification and in
silico prediction for new clusters

Considering that there are no effective differences among the
current PTC variants, all PTC patients were re-clustered using
k-means clustering analysis based on the six identified DEAS
events. The clustering result was visualized by t-SNE algorithm.
As shown in Figure 2A, all PTC patients were clearly clustered into
three groups, including 282 samples in Cluster0, 118 in Cluster1 and
42 in Cluster2, respectively. Details about the clinical and
demographic data of PTC patients in Clusters 0, 1 and two are
shown in the Supplementary File S2; Supplementary Table S3.
Consistent with the clustering result, PCA analysis in Figure 2B
also reveals virtual differences among Cluster0, Cluster1 and
Cluster2. Consequently, we also validated the differences of these
DEAS events in the three new clustering groups. The box plot in
Figure 2C shows that the six DEAS events exhibit the significant
differences across three clusters. The detailed information is shown
in Supplementary File S1; Supplementary Table S3. So we can see
that all PTC patients could be newly classified into additional three
groups based on the six identified DEAS events, which also indicates
that these DEAS could be the potential biomarkers for PTC
subclassification and characterization of PTC.

Here, we compared our three clusters with the current
histological variants and the previously proposed four DNA
promoter methylation-based clusters by Agrawal et al.
(Agrawal et al., 2014). As shown in Figure 2D, most of

FIGURE 1
Summarization of AS events in PTC Cohort (A) The number of AS events and their parental genes (B) The upset plot of the intersection among seven
types of AS events.
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patients belonging to Cluster0 show an enrichment of CPTC, and
Classical 1 and two of DNA promoter methylation-based
clusters. In addition, clusters annotated as Follicular and CpG
island methylated were mostly assigned to Cluster1. Those within
Cluster2 were almost observed in Classical two and Classical 1.
These findings manifest that Cluster0 and Cluster2 share obvious
similarity with Classical 1 and Classical 2, but Cluster1 is similar
with Follicular and CpG island methylated. Overall, this
subclassification is novel and different from the current
available subtypes.

3.4 In silico prediction for new clusters

Furthermore, a classification model was established for
distinguishing the three new groups using these six DEAS events

as feature input. To build an effective triple-class recognition model,
we selected SVM to train the data and the process of the model
construction and testing was repeated 100 times by performing 100-
round 10-fold cross-validations. The average prediction
performance is shown in Table 1. Overall, the model gives
promising prediction performance with the ACC of 91.2%.
Moreover, each cluster also yields satisfactory result with Recall
of 0.879, 0.998 and 0.981 for Cluster0, Cluster1 and
Cluster2 respectively. The distributions of ACC and F1 values in
Figure 3 indicate that 100 models all give comparable performance,
indicating that the model is robust although it simultaneously
predicts the three clusters.

3.5 Differences of clinicopathological,
immune and molecular features across the
DEAS-based clusters

The comprehensive difference analysis was performed on our
new subclassfication in terms of clinical, immune and molecular
characteristics. Firstly, Kaplan-Meier curve analysis was performed
to assess the relationships between clusters and OS. From Figure 4A,
we can observe the significant prognosis difference across three
clusters with p-value of 0.00038. The PTC patients belonging to
Cluster2 have the worse prognosis than those within Cluster0 and
Cluster1. Furthermore, a higher proportion of patients with stage III
and IV, T3/T4 and N1 are observed in Cluster2 compared with

FIGURE 2
(A) Results of K-means clustering analysis was visualized by t-SNE algorithm (B) PCA of three distinct clusters was shown in a scatter plot (C)
Differential analysis on PSI values of six DEAS events among three clustering groups (****: p < 0.0001) (D) Sankey Diagram showing comparisons between
our clusters, PTC variants and subtypes based on DNA promoter methylation.

TABLE 1 Classification performance of the model for identifying three clusters.

Clusters ACC Precision Recall F1

Cluster0 _ 0.993 0.879 0.934

Cluster1 _ 0.856 0.998 0.929

Cluster2 _ 0.737 0.981 0.830

Overall 0.912 ± 0.007 0.862 ± 0.012 0.948 ± 0.009 0.891 ± 0.011
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Cluster0 and Cluster1 (Figure 4B). These findings all demonstrate
that patients in Cluster2 are associated with poor prognosis.

The overview of immune difference in TME is also shown in the
heat map of Figure 4B. Details are displayed in Figures 4C–G. We
find that immune, stromal scores and tumor purity are remarkably
different among DEAS-based clusters (Figures 4C, D). It is
noteworthy that Cluster2 gives higher immune and stromal
scores, and lower tumor purity than Cluster0 and Cluster1.
Figure 4E illustrates that density curve of immune scores is
distributed at the right side of stromal scores, so immune scores
are higher than stromal scores, which indicates that immune
infiltration may play a predominant role in PTC tumor
microenvironment (TME). Furthermore, immune cell infiltration
analysis in Figure 4F exposes remarkable differences of the
proportions of different immune cells across different clusters.
Compared with Cluster0 and Cluster1, Cluster2 has significantly
higher proportions of T Cells CD4 memory activated, T Cells
regulatory (Treg), dendritic cells resting and dendritic cells
activated, but much lower proportions of macrophages M2, mast
cells activated and eosinophils.

Immune checkpoint molecules are enable to inhibit the function
of the immune cells to promote immune escape and tumor
formation (Liao et al., 2021). Immune checkpoint blockade (ICB)
could remove inhibitory signals of T-cell activation and make
tumor-reactive T Cells to mount an effective anti-tumor response
and ICB therapies have been approved for treatment of a series of
tumor types (Wei et al., 2018). In our study, we evaluated the
expressions of immune checkpoints in three clusters. The result in

Figure 4G shows that all of immune checkpoints are significantly up-
regulated in Cluster2 compared to those in Cluster0 and Cluster1.
Figure 4H shows that the TMB of patients belonging to Cluster2 is
prominently higher than those belonging to Cluster0 and Cluster1.
Then, subclass mapping method (SubMap) analysis in Figure 4I
manifests that patients in Cluster2 share a higher similarity with the
expression profile of patients that are responsive to PD-1 inhibitor
treatment (p-value = 0.035). These findings validate that PTC
patients in Cluster2 might be more likely to respond to anti-PD1
therapy than patients in Cluster0 and Cluster1.

Finally, we conducted GSVA and difference analysis to screen
the significantly differential pathways and biological functions
across the three new subclasses. Figure 5 shows a set of cancer-
related and immune-associated signatures that are different
between DEAS-based clusters. For KEGG pathways, compared
with Cluster0 and Cluster1, GSVA reveals that Cluster2 contains
a prominent activation in cancer-related signaling pathways,
including cell adhesion molecules, ECM receptor interaction,
focal adhesion, pathways in cancer. We then validated the
differential KEGG pathways among three clusters by
conducting gene set enrichment analysis (GSEA), and the
results indicate that cancer-associated pathways are
significantly enriched in Cluster2 (Supplementary File S1;
Supplementary Figure S3), such as cell adhesion molecules,
ECM receptor interaction and focal adhesion. Except the
cancer hallmark biological processes, Cluster2 is also involved
in various immune-associated pathways, such as regulation of
actin cytoskeleton and leukocyte transendothelial migration. For
reactome, MET activates PTK2 signaling, MET promotes cell
motility, MHC class II antigen presentation and extracellular
matrix organization are significantly enriched in Cluster2, so it
may be more likely to metastasize compared to Cluster0 and
Cluster1. Besides, significant molecular function terms in
Cluster2 include metallopeptidase activity, intergrin binding
and Frizzled binding and significant cellular component terms
are lamellpodium membrane, protein complex involved in cell
adhesion and actin cytoskeleton. The molecular function analysis
suggests that Cluster2 shows significant differences of biological
functions from other two clusters and it may be associated with
tumor growth and metastasis.

SFs could bind to pre-mRNAs and regulate RNA splicing via
influencing exon selection and splicing sites. In order to portray
the potential regulatory network between AS events and SFs,
univariate Cox regression analysis was carried out to identify the
survival-associated AS events in different clusters. Significant
correlations with |R| > 0.4 and p-value <0.05 are shown in the
network map (Figures 6A–C). A total of 55 AS events are
significantly correlated with 23 SFs in Cluster0, 35 AS events
with 46 SFs in Cluster1 and 175 AS events with 66 SFs in Cluster2.
Notably, we can see that the majority of SFs are prominently
linked with multiple AS events and a single AS events could be
regulated by many different SFs. Moreover, it is visual that the
relationships between SFs and AS events in Cluster2 are more
complicated than those in Cluster0 and Cluster1. By network
degree analysis, the average degree of nodes in Culter2 network is
5.2 that is much higher than those in Cluster0 and Cluster1,
further validating that there may be more complicated regulation
relationships between AS and SFs in Cluster2.

FIGURE 3
Performance of the SVM based classifier. The boxplots show the
distributions of ACC and F1 values of 100 different testing sets
produced by performing 100 round 10-fold cross-validations.
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3.6 Prognostic value of DEAS events and
establishment of prognostic model

In order to explore the potential prognostic values of the six
DEAS events, the underlying relationships were investigated
between DEAS events and OS of PTC by depicting Kaplan-Meier
curves. Supplementary File S1; Supplementary Figures S4A–F show
that three DEAS events including KIAA1217_10995_AP, DCN_
23655_AT and RCAN2_76415_AP are prominently associated with

OS. Then, stepwise multivariate Cox regression analysis was
implemented and a predictive signature consisted of KIAA1217_
10995_AP and RCAN2_76415_AP was obtained. The risk score of
each patient was calculated and all patients were divided into high
and low-risk groups using the cutoff value determined by X-tile. It
can be seen from Figure 7A that patients with high-risk score have a
lower survival rate compared with those in low-risk group
(p-value<0.0001). For the clinicophthogical feature analysis, we
have demonstrated that patients in Cluster2 shows poor

FIGURE 4
Clinicopathological characteristics and immune microenvironment features across DEAS-based clusters (A) Kaplan-Meier survival analysis of
patients within three clustering subtypes of OS (B) A total of 442 PTC patients ordered by distinct clusters with annotations with cliniaopathological
characteristics and immune features were visualized in a matrix heatmap (C) Immune and stromal scores of each DEAS-based cluster (D) Tumor purity of
three clusters (E) Density curve of immune and stromal scores of all PTC patients (F) Comparisons on the proportions of immune infiltrating cells
between three clusters (G) Expressions of immune checkpoints across the three clusters (H) Tumor mutation burden of three clusters (I) Responses to
anti-PD1 therapy. The color in the cells represent the p values.
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prognosis, since most of patients belong to stage III and IV. The
time-dependent receiver operating characteristic curve (ROC) in
Figures 7B–D indicates the area under curve (AUC) values of this
prognostic model in predicting outcomes at 1-year, 3-year and 5-
year are 0.932, 0.835 and 0.799 respectively. The C-index of this
signature reaches to as high as 0.842. Besides, the stratification
analysis in Figures 7E, F was conducted based on risk score, age, sex
and TNM stage. After multivariate adjustment by clinical factors,
the prognostic signature could be a moderate and independent
prognostic indicator for PTC patient survival. We can see that
the six DEAS events could not only be the biomarkers for
subclassification, but also can be considered as the prognostic
predictors for PTC.

3.7 Determination of therapeutic drugs by
CMap analysis

Based on various analysis, we find that patients belonging to
Cluster2 show the worse survival rate, more advanced

clinicopathologic characteristics and more cancer hallmark
pathways than those of Cluster0 and Cluster1. Discovering
new effective drugs for patients in Cluster2 could be of more
practical significance and further improve the prognosis of PTC.
Here, a flow chart is given in Figure 8 showing the selection
process of potential compounds for PTC clinical therapy. Firstly,
differential gene expression analysis was performed and the top
150 up-regulated expression genes were screened in
Cluster2 compared to Cluster0 and Cluster1. Those were
predicted as the potential drugs that can reverse the
expression of these genes by CMap analysis. It is expected that
these predicted bioactive chemicals might be of great potential in
the therapy of patients in Cluster2. A negative connectivity score
indicates that the compound represses the query gene expression.
The prediction result demonstrates that there are 45 different
modes of action (MoA) in top 50 compounds with the lowest
scores. Furthermore, three compounds including orantinib,
tyrphostin-AG-1295 and AG-370 with connectivity scores
close to -1 share a common action mode of PDGFR receptor
inhibitor and targeted a common gene, PDGFRB. The detailed

FIGURE 5
Molecular signatures associated with three DEAS-based clusters. Top 10 significantly differential signatures including KEGG pathways, reactome,
molecular function, cellular component and biological process GO terms of three clusters were visualized in a matrix heatmap. The color (blue to red) in
the matrix heatmap represents GSVA scores of biological pathways and GO terms of each PTC patient.
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information about them is listed in Supplementary File S1;
Supplementary Table S4.

4 Discussion

As the main contributor to overall thyroid cancer, PTC is the
only histological subtype that greatly increase in all countries
(Miranda-Filho et al., 2021). Besides, PTC is a heterogeneous
neoplasm both at histological and molecular levels. Different
PTC subtypes exhibit various clinical manifestation and
prognosis. Therefore, it is of great significance to find more

sophisticated molecular subclassifications and to identify novel
biomarkers associated with PTC subtypes for precise diagnosis,
surgical and medical therapy of PTC patients. Recent researches
have studied genome-wide AS landscape in cancers and AS events
are proved to be involved in tumorigenesis and prognosis (Lin et al.,
2019; Han et al., 2021; Zheng et al., 2021). Guo et al. have firstly
integrated gene expression and transcriptome AS profiles to identify
breast cancer subtypes (Guo et al., 2019). Zhao et al. divided
glioblastoma into two subtypes based on the prognostic AS
events by combining similarity network fusion and consensus
clustering (Zhao et al., 2021). Jun et al. extracted the DEAS
events between gastric tumors and matched normal mucosa, and

FIGURE 6
The AS-SF regulatory networks of Cluster0 (A), Cluster1 (B) and Cluster2 (C). Red circles are AS events associated with survival times and Green
triangles are SFs related with corresponding AS events. The red/green lines represent positive/negative correlations between PSI values of prognostic AS
events and expressions of SFs.
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classified gastric cancers into three subtypes (Jun et al., 2021). For
PTC, Zheng et al. identified cancer-associated AS events by
comparing AS events’ PSI values between tumors and adjacent
normal tissues (Zheng et al., 2021). Recently, Park et al. have
discovered two AS events which could be potential biomarkers
for PTC subtypes classification, which indicates that AS events
may be additional classifiers except the histological or molecular
subtypes (Park et al., 2022). However, the deeper insights into AS
events and their potential of cancer classification biomarkers for
PTC subtypes remain to be further explored. In this study, we
present a new molecular subclassification and then performed in
silico predictions for precise diagnosis and prognosis of PTC based
on AS profiles.

Firstly, we identified six DEAS events among three histological
PTC variants. Among them, it has been confirmed that TUBB3_
38175_ES could be a potential biomarker for PTC subclassification
and characterization (Park et al., 2022). Coding for a microtubule
protein, TUBB3 is overexpressed and related to poor prognoses in

various cancers (Li et al., 2021). Zhang et al. suggest that exon skip in
DCN is associated with patient survival with glioblastoma (Zhang
et al., 2021a). KIAA1217 shows different splicing in esophageal
squamous cell carcinoma (Ding et al., 2021) and intron retention of
KIAA1217 has been found in non-small cell lung cancer, but it is not
supported by results of RT-PCR (Langer et al., 2010). These findings
reveal the potential values of DEAS events with molecular typing
and prognosis in various cancers. However, both PCA analysis and
the in silico prediction model show that three variants cannot be well
partitioned by the six DEAS events. Furthermore, due to the
molecular heterogeneity, the multiple growth pattern cell types
and stromal changes of PTC, the current histological subtypes
still have some limitations. So we attempt to present a new
subclassification for PTC based on the six DEAS events and
k-means clustering analysis indicates that based on the six DEAS
events, all PTC patient samples can be clearly clustered into new
three groups, named as Cluster0, Cluster1 and Cluster2 respectively.
We compared our new clusters with current histological variants

FIGURE 7
The prognostic significance of DEAS events (A) Kaplan-Meier curve analysis for OS (B–D) ROC validation of the predictive signature for predicting
outcomes of PTC at 1-year, 3-year and 5-year, respectively (E) Forest plot summary of univariable analysis of sex, age, stage and risk score (F) Forest plot
summary of multivariable analysis of stage and risk score.
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and the previously proposed four DNA promoter methylation-based
classes and found that they are new subtypes different from the
existing variants. To validate the classification performance of DEAS
events for the new PTC groups, a SVM classifier was constructed
and it yields a promising performance for distinguishing the three
groups with the overall accuracy of 91.2%.

Next, we need to prove the validity of the proposed new
subcalssification for PTC. So a comprehensive difference analysis
was performed in terms of clinical, immune and molecular features
among three groups. Overall, Cluster2 yields significant differences
from Cluster0 and Cluster1. The clinicopathology analysis shows
that patients in Cluster2 have the worse OS andmost of them belong
to the advanced stages of III and IV. So Cluster2 is associated with
poor prognosis of PTC, which is also indicated by the immune
characteristics that Cluster2 with poor prognosis gives higher
immune and stromal scores and lower tumor purity. Previous
reports indicat that lower tumor purity tends to yield worse
survival in glioma and colon cancer (Zhang et al., 2017; Mao
et al., 2018). Mao et al. also have observed that PTC patients
with poor OS show higher immune and stromal scores, while
lower tumor purity, which is consistent with our result (Mao
et al., 2021). Besides, stromal cell-derived factor 1 involved in
tumor cell migration and metastasis and might promote
tumorogenesis, invasion and metastasis of PTC (Liu et al., 2012).
However, it has been indicated that stromal secreted SOD3 could
stimulate cancer cell growth and inhibit cancer cell migration
(Parascandolo et al., 2017), and high stromal score was
significantly associated with improved PFS in patients with PTC

(Tang et al., 2021). So the effect of stromal cells in PTC remains to be
further elucidated. We demonstrated that immune infiltration may
play a predominant role in PTC TME and previous researches have
reported that immune cells, such as Tregs, dendritic cells and T Cells
CD4 memory activated could promote tumor development and
metastasis (Yu et al., 2013; Zhang et al., 2020; Li et al., 2022). Tregs
can facilitate tumor cells to escape immune surveillance by being
recruited to the tumor microenvironment and inhibiting Tregs
function has been a viable strategy to enhance antitumor
immunity (Dees et al., 2021). The study of Zhang et al. (Zhang
et al., 2020) demonstrates that the dendritic cells resting and
dendritic cells activated are observed to be associated with poor
prognosis in thyroid cancer. Meanwhile, we know that TMB reflects
cancer mutation quantity and it has been proposed that higher TMB
clinically correlates with better immune checkpoint inhibitor (ICI)
outcomes because higher TMB results in more neo-antigens and
increases chances for T Cell recognition (Yarchoan et al., 2019;
Jardim et al., 2021). The analysis on immune checkpoint expressions
and TMB disclosed that Cluster2 would probably benefit more from
immune checkpoints blockade, and patients in Cluster2 are proved
to be more responsive to PD-1 inhibitor treatment by SubMap
analysis. Finally, a set of cancer-associated and immune-related
pathways and biological functions were enriched in Cluster2,
such as cell adhesion molecules, focal adhesion, MET activates
PTK2 signaling and leukocyte transendothelial migration,
indicating that patients in Cluster2 may be more likely to
metastasis and immune response.

It has been shown that somatic mutations and overexpression of
SFs contribute to tumorigenesis (Lee and Rio, 2015; Sveen et al.,
2016), so they play a vital role in the malignant transformation of
cancer through modulating the oncogenic variants (Xie et al., 2021).
To inquire the mechanisms of the effects of SFs on alternative
splicing, we investigated the relationships between survival-
associated AS and SFs via constructing splicing correlation
networks for the three groups. It suggests that a single SF could
regulate different AS events and the same AS events could be
controlled by various SFs. Moreover, almost all SFs were
correlated with survival-related AS events in Cluster2, which
validates that there might be more complicated regulation
relationships between AS and SFs in Cluster2.

No significant OS difference has been manifested among the
current histological variants of CPTC, FPTC and TCPTC by
Kaplan-Meier analysis (Supplementary File S1; Supplementary
Figure S5). However, the new groups classified by the six DEAS
events exhibits significant OS differences (Figure 4A). So we would
like to verify the prognostic values of the six DEAS events. Three
DEAS events were found to be significantly correlated with OS.
KIAA1217_10995_AP and RCAN2_76415_AP are associated with
poor prognosis and DCN_23655_AT with good prognosis. So, a
prognostic signature was established for effective prediction of
PTC’s OS. The Kaplan-Meier analysis suggests that high-risk
patients had a shorter survival times than low-risk patients.
Furthermore, the ROC curves and C-index demonstrate powerful
predictive ability of the signature with AUC of 0.932, 0.835 and
0.799 for 1, 3 and 5 years respectively. Additionally, the risk score is
an independent applicable prognostic indicator of PTC after
adjusting for clinical factors including age, sex and stage. Overall,
we can conclude that the six DEAS events identified by us could be

FIGURE 8
Workflow of selecting potential compounds for PTC therapy and
structures of three bioactive chemicals that share common PDGFR
receptor inhibitor.
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the potential biomarkers for PTC subclassification and
characterization as well as the prognostic predictors of PTC patients.

Finally, due to the worse clinical course of patients belonging to
Cluster2, CMap analysis was performed to disclose the potential
drugs that might reverse the expression of genes which are highly
expressed in Cluster2, so as to improve the prognosis of patients in
Cluster2. Three compounds (orantinib, tyrphostin-AG-1295, and
AG-370) were identified and all of them are receptor tyrosine kinase
inhibitors. In order to support the potential of them in the practical
therapy of PTC and other cancers, a literature-searching was
conducted. Among three compounds, orantinib is a small-
molecule, orally administered, multiple-receptor tyrosine kinase
inhibitor of PDGF receptor-β and VEGF receptor-2 (Kudo et al.,
2018). Previous studies have shown that orantinib may influence
tumor growth by multiple mechanisms including inhibition of
endothelial cell proliferation and/or survival as well as tumor cell
and stromal cell proliferation and had a therapeutic effect on a
variety of solid tumors and hematological malignancies (Laird et al.,
2000; Wang et al., 2013). Tyrphostin-AG-1295 is also an specific
inhibitor of PDGF receptor pathways and could reduce neointimal
formation in aortic allograft vasculopathy by inhibiting PDGF-β-
triggered tyrosine phosphorylation (Karck et al., 2002). AG-370, an
inhibitor of PDGF receptor kinase activity, could repress PDGF-
induced and 17beta-retradiol-induced gonocyte proliferation
(Thuillier et al., 2010). Overall, all three compounds were
receptor tyrosine kinase inhibitors, so they were predicted to
target the common gene of PDGFRB in our analysis. PDGFRB is
a member of receptor protein tyrosine kinase (RPTKs) III family and
stimulation of the PDGFR could lead to activation of intracellular
signaling pathways that can promote cell migration, invasion,
survival and proliferation (Steller et al., 2013). Besides, PDGFRB
plays a pivotal role in angiogenesis and tumor cell proliferation. It
has been proposed that PDGF-mediated angiogenesis appears to be
a reasonable target in the treatment of PTCs (Durante et al., 2011;
Liu et al., 2021). All could prove the validity of our prediction results,
but the practical applicability of those compounds on PTC still need
to explore by experiment in future studies.

Overall, this study provides a deeper understanding of the
potential value of AS events for PTC characterization, which
might contribute to our cognition about the potential mechanism
of AS events in the development of PTC. However, the potential
clinical diagnostic and prognostic value of these biomarkers for PTC
still need to be validated based on clinical trial or biological
experiments. For all this, our research presents a novel
perspective for PTC subclassification and identified potential
therapeutic compounds for PTC.

5 Conclusion

We proposed a new molecular subclassification including
three subtypes for PTC based on AS profiles and identified six
DEAS events as the potential biomarkers for precise diagnosis
and probable prognostic predictors of PTC. In addition, a DEAS-
based classifier was constructed for distinguishing the three new
clustering groups using SVM, which yields a promising
performance. A series of analyses indicate that there are
significant differences of clinicopathology, molecular and

immune characteristics among the new groups. And samples
in Cluster2 showed poor prognosis, higher immune
heterogeneity and more sensitive for anti-PD1 therapy.
Finally, three potential bioactive chemicals were screened out,
including orantinib, tyrphostin-AG-1295, and AG-370, which
might provide potential treatment of PTC patients. As a whole,
this research increases the understanding of the effect of AS
events on PTC characterization, as well as provides new insights
for refining precise subclassification and improving medical
therapy for PTC patients.
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Glossary

AA alternate acceptor site

ACC accuracy

AD alternate donor site

AP alternate promoter;

AS alternative splicing

AT alternate terminator

AUC area under curve

C-index concordance index

CMap connectivity map

CPTC classical papillary thyroid cancer

DEAS differentially expressed alternative splicing

ES exon skip

FN false negative

FP false positive

FPTC follicular papillary thyroid cancer

GO gene ontology

GSEA Gene set enrichment analysis

GSVA Gene set variation analysis

ICB immune checkpoint blockade

ICI immune checkpoint inhibitor

KEGG Kyoto Encylopaedia of Genes and Genomes

MoA modes of action

ME: mutually exclusive exons

MSigDB molecular signatures database

OS overall survival

PCA principle component analysis

PTC papillary thyroid cancer

ROC receiver operating characteristic

PSI percent-spliced-in

RI retained intron

SFs splicing factors

SS survival status

SubMap subclass mapping method

SVM support vector machine

TCPTC tall cell papillary thyroid cancer

TP true positive

TN true negative

TMB tumor mutational burden
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