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Atopic dermatitis (AD) is an inflammatory, heterogeneous, chronic skin disorder
characterized by recurrent eczematous lesions and intense pruritus, and the
pathophysiology mechanism of AD is known for immune dysregulation and
inflammatory responses. Wuguchong (maggot) has been widely used in the
wound field and found with pharmacological properties of the anti-inflammatory
and immunomodulatory function. Recently, some polysaccharides were proven to
have beneficial effects on AD skin lesions in mice and humans. However, the effect
of the polysaccharide extracted from Wuguchong (PEW) on AD remains to be
investigated. In the present study, we examined the anti-inflammatory and
immunomodulatory effects of PEW on AD and explored the potential
mechanisms. Balb/c mice were orally administrated with PEW to evaluate the
therapeutic effect of PEW on 2,4-dinitrochlorobenzene (DNCB)-induced AD.
Oral PEW administration significantly ameliorated the lesions and symptoms in
AD mice, such as the ear thickness and ear swelling degree, epidermal and dermal
thickness, and the infiltrationofmast cells. In addition, PEW treatment decreased the
levels of serum IgE and histamine, the frequencies of Th1 and Th17 cells, as well as
themRNAexpression levels of Th1 and Th17 cytokines and nuclear transcript factors
(IFN-γ, T-bet, IL-17A, and ROR-rt). Furthermore, the activation of the NF-κB
pathway and the phosphorylation of MAPKs (p38, ERK, and JNK) were
significantly suppressed by PEW treatment. Taken together, our study suggests
that PEW exerts anti-inflammatory and immunomodulatory effects through
inhibition of Th1 and Th17 responses and downregulation of NF-κB and MAPK
pathways, PEW would be developed as a promising immune therapy for AD.
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1 Introduction

Atopic dermatitis (AD), also known as eczema and atopic
eczema, is a chronic, heterogeneous, inflammatory skin disorder
characterized by intense itching and recurrent eczematous lesions
and has wide-ranging clinical phenotypes and courses (Langan et al.,
2020; Bieber et al., 2022). The prevalence and incidence of atopic
dermatitis have increased over the past several decades (Asher et al.,
2006; Nutten, 2015), affecting 15%–20% of children and up to 10%
of adults (Drucker et al., 2018). Interactions among genetic and
environmental factors, skin barrier dysfunction, immune
dysregulation, microbial imbalance, and environmental triggers of
skin inflammation contribute to the pathogenesis of atopic
dermatitis (Luger et al., 2021; Patrick et al., 2021; Ständer, 2021).
The treatments of atopic dermatitis include barrier repair and
maintenance therapy (moisturizers), topical anti-inflammatory
therapies (topical corticosteroids, topical calcineurin inhibitors,
novel phosphodiesterase 4 inhibitors), conventional systemic
treatments (glucocorticoids, cyclosporine, or methotrexate), JAK
inhibitors (topical and systemic), phototherapy, targeted
monoclonal antibodies (Th2-targeted therapies have been well-
developed, monoclonal interleukin-4, −13, −22, and −31 receptor
antibodies are promising agents) (Langan et al., 2020; Luger et al.,
2021; Ständer, 2021). However, current therapies for AD face grim
challenges, such as serious side effects, adverse events and drug
tolerance of antibiotic and corticosteroid therapy, long-term and
functionally impairing conjunctivitis with IL-4 receptor antibody,
the risk of thromboembolism and cancer of JAK inhibitors, the high
cost of phototherapy, etc. (Cameron et al., 2014; Ständer, 2021);
moreover, a considerable number of patients are non-responders to
the available regimens (Nogueira and Torres, 2021). AD inflicts a
heavy socio-economic burden (Langan et al., 2020; Laughter et al.,
2021), partly due to the lack of long-term safe effective therapeutics.
This leads to an urgent need to develop alternative and
complementary medicine as a new therapeutic option for AD.
Traditional Chinese medicine (TCM) has long been widely used
as routine management and treatment for AD, including many
formulas and biologically active ingredients (Hon et al., 2011; Yan
et al., 2020). Recently, increasing evidence has demonstrated that
some polysaccharides are effective in alleviating AD-like skin lesions
in mice, such as polysaccharide extract from phragmites rhizome
(Nam et al., 2013), black currant (Ribes nigrum L.) (Ashigai et al.,
2018), Chinese white wax scale (Lin et al., 2017), Aphanothece
Sacrum (Motoyama et al., 2018), and Fucoidan (Tian et al., 2019),
etc. In addition, an 8-week clinical study demonstrated oral systemic
treatment with the polysaccharide extract from Dendrobium
huoshanense had significant beneficial effects on AD symptoms
in children (Wu et al., 2011).

CD4+ T cells are the dominant cellular infiltration in AD and are
differentiated into Th1, Th2, Th17, Th22, and regulatory T cell
subsets (Bieber et al., 2022), increased frequencies of Th1, Th2,
Th17, and Th22 cells together with an excessive accumulation of
their inflammatory cytokines play vital roles in AD pathogenesis
(Grewe et al., 1998; Weidinger and Novak, 2016). AD is historically
considered a bipolar T-cell-mediated disease, in which the acute
phase is predominated by the Th2 signal, with a Th2-to-Th1 shift to
promote disease chronicity (Thepen et al., 1996; Furue et al., 2017).
Nevertheless, a recent study proved that acute AD is induced by both

Th2 and Th22 activation, and these pathways show an
intensification in chronic AD, rather than a simple switch to a
primarily Th1 response in the chronic phase (Gittler et al., 2012;
Mansouri and Guttman-Yassky, 2015). In acute AD lesions,
Th2 cytokines (IL-4, IL-31, and IL-13) and Th22 cytokine (IL-
22) are markedly accumulated (Gittler et al., 2012; Mansouri and
Guttman-Yassky, 2015). As the disease progresses to the chronic
phase, further significant accumulations are seen in Th2-related (IL-
13, IL-5, IL-10, IL-31, CCL5, CCL13, and CCL18) and Th22-related
molecules (IL-32 and S100A7-9), as well as Th1-related products
(INF-γ, IL-1β, CXCL 9–11, and MX1) (Gittler et al., 2012; Mansouri
and Guttman-Yassky, 2015). Whereas Th17 activation shows
similar magnitude in chronic and acute AD, without further
intensification (Gittler et al., 2012; Mansouri and Guttman-
Yassky, 2015). Th17 pathways are activated in certain subtypes
such as pediatric, intrinsic, and Asian-origin AD (Yu et al., 2019).
Th17 cells were proven to be directly related to AD severity (Koga
et al., 2008). Although Th17 cell frequency is not closely associated
with the Th1/Th2 balance, there is a significant correlation between
the percentages of IL-17+ and INF-γ+ cells (Koga et al., 2008). Even
though IL-17 cells were known to produce a small amount of IL-22
cytokine, a distinct T cell subset—Th22 cell, has recently been
identified to produce IL-22 and is related to epidermal immunity
and remodeling (Duhen et al., 2009; Eyerich et al., 2009; Mirshafiey
et al., 2015). Upregulated IL-22 causes epidermal acanthosis in
chronic AD skin (Nograles et al., 2009). IL-22 plays vital roles in
AD initiation, development, and severity, partly by inducing
epithelial Th2 cytokines production and the GRP pathway
activation (Nograles et al., 2009; Lou et al., 2017).

The nuclear factor-κB (NF-κB) pathway plays important roles in
immunity and inflammation, deregulated NF-κB activation
contributes to the pathogenic processes of various inflammatory
diseases including AD (Oh and Ghosh, 2013; Liu et al., 2017; Ko
et al., 2022). The canonical NF-κB pathway regulates the
differentiation of CD4+ T cells through both regulation of
cytokine production in innate immune cells and T-cell intrinsic
mechanisms (Oh and Ghosh, 2013; Liu et al., 2017). In addition, the
mitogen-activated protein kinase (MAPK) cascade, which includes
the p38, c-jun N-terminal kinase (JNK), and extracellular signal-
regulated kinase (ERK) MAPK, is also an important signaling
pathway in immune responses and cross talks with NF-κB to
regulate inflammation signaling (Ko et al., 2022).
Phosphorylation of MAPKs leads to inflammatory mediators’
production and promotes the allergic inflammatory response
(Barnes, 2011; Arthur and Ley, 2013). And the MAPK pathways
are involved in the pathogenesis of inflammatory skin diseases,
including AD (Johansen et al., 2005; Lu et al., 2018; Lee et al., 2022;
Zeze et al., 2022).

Total serum IgE level has been reported to be correlated with AD
and the severity of the disease, which is a possible marker of AD
activity (Dhar et al., 2005). The IgE-mast cell axis is known to play
an important role in lots of allergic and inflammatory responses
(Stone et al., 2010; Galli and Tsai, 2012). A majority of AD skin
lesions see an increase in mast cells (Kawakami et al., 2009). In mast
cells, degranulation, generation, and secretion of allergic mediators
like histamine, some pro-inflammatory cytokines, and many
proteases are realized via binding their high-affinity surface
receptors to IgE (Theoharides et al., 2012). Among the allergic
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mediators released by mast cells, histamine enhances the production
of some pro-inflammatory cytokines and chemokines, thus
contributing to the progression of allergic-inflammatory
responses (Jutel et al., 2009).

Wuguchong (Maggot), the larvae of Lucilia sericata, which
belongs to the family Calliphoridae within the order Diptera, is a
traditional Chinese medicine widely used in the wound field (Yan
et al., 2018). Pharmacological properties of the Wuguchong include
antibacterial activity, anti-inflammatory activity,
immunomodulatory function, proangiogenic activity,
neurogenesis, etc (Yan et al., 2018). However, poor acceptance by
both patients and healthcare professionals is a major obstacle to the
utilization of maggot therapy; the so-called ‘yuk’ factor or social and
cultural beliefs may initially hinder its use (Richardson, 2004). So,
more and more researchers are trying to extract active ingredients
from Wuguchong (maggot) to improve its clinical utilization and
acceptance. Recently, the polysaccharide extracted from
Wuguchong (PEW) was found to be useful in reducing high-fat
diet-induced obesity in mice through regulation of the intestinal
microbiota composition (Wang et al., 2020). Besides, homogeneous
polysaccharides of Wuguchong showed a protective effect on the
intestinal mucosa and can relieve 5-fluorouracil-induced intestinal
inflammation in mice (Shi et al., 2022). As previously discussed,
some polysaccharides were proven to be effective in ameliorating
AD symptoms in mice or humans. However, currently, it is
unknown whether the polysaccharide extracted from Wuguchong
(PEW) is effective in treating AD. In this study, the effect of PEW on
DNCB-induced AD in Balb/c mice and the underlying mechanisms
involved in immunoregulation and anti-inflammation were
evaluated through the analysis of CD4+ Th cell subset: Th1, Th2,
Th17, Th22 cells, and their related cytokines and nuclear
transcription factors levels. Our findings indicate that PEW
relieves AD-like symptoms in mice via inhibiting Th1 and
Th17 responses and downregulating NF-κB and MAPK pathways.

2 Materials and methods

2.1 PEW preparation

The PEW was isolated from the dried bodies of Wuguchong
according to water extraction and alcohol precipitation methods and
characterized by GPC (gel permeation chromatogram) and HPLC
(high-performance liquid chromatography). The molecular weight
of PEW is 32.9 kDa, and its monosaccharide composition includes
rhamnose, glucose, arabinose, mannose, xylose, galactose,
galacturonic acid, and glucuronic acid as previously reported
(Wang et al., 2020).

2.2 Animals and treatment

The present study was approved by the Ethical Committee on
Animal Research of Dalian Medical University (approved number:
AEE19075). Balb/c female mice (18 ± 2 g, 6–8 weeks) were bred in
an animal facility under standard laboratory conditions in the SPF-
level Experimental Animal Center of Dalian Medical University
(Dalian, China).

After 1 week of acclimation, all mice were shaved about 2.5 cm ×
2.5 cm on their dorsal skin on day 0 and then randomly divided into
5 groups (n = 9–10/group) as follows:

Group 1: physiological saline.
Group 2: DNCB + physiological saline.
Group 3: DNCB + PEW (1000 mg/kg.d) + physiological saline.
Group 4: DNCB + PEW (2000 mg/kg.d) + physiological saline.
Group 5: DNCB + dexamethasone (DEX, 1 mg/kg.d) +

physiological saline.
The mice were orally administered with physiological saline, PEW

(1000 mg/kg.d), PEW (2000 mg/kg.d), and dexamethasone (DEX)
(1 mg/kg.d) from day 4 to day 14. PEW and dexamethasone were
separately dissolved in 0.9% physiological saline to get 100 mg/mLPEW
solution, 200 mg/mL PEW solution, and 0.1 mg/mL dexamethasone
solution, respectively. Mice were administered by oral gavage daily at a
dose volume of 0.01 mL/g using a plastic syringe (1 mL) equipped with
a straight, stainless-steel, bulb-tipped gavage needle (20-gauge, 38 mm).

DNCB (Sigma-Aldrich, United States) was applied to the shaved
dorsal skin and the back of the right ear of Balb/c mice to induce AD-
like symptoms, based on the previously described procedure with
minor modification (Lee et al., 2010; Lin et al., 2017). On day 1, the
mice were first sensitized by painting with 120 μL of 2% DNCB
solution (dissolved in a 3:1 mixture of acetone: olive oil) on shaved
dorsal skin and 25 μL on the back of the right ear. The same treatments
were performed on day 3 for the second sensitization. Four days later,
0.5% DNCB solution was painted on the dorsal skin (120 μL) and the
back of the right ear (25 μL) to induce the elicitation phase, once every
2 days till day 14. All mice were sacrificed on day 15 (Figure 1).

2.3 Ear thickness and ear swelling degree

The ear thickness was measured on day 0 and 24 h after each
DNCB application with a thickness gauge (Mitutoyo Corporation,
Tokyo, Japan). Both ears of each mouse were punched with a 7 mm
diameter skin puncher after the mice were sacrificed, the ear swelling
degree was measured as the right ear weight minus the left ear weight.

2.4 Histological analysis

The dorsal skin tissues of mice were cut and fixed in 4%
paraformaldehyde after being sacrificed. The fixed tissues were
embedded in paraffin and then sliced into 4 µm sections.
Hematoxylin and eosin (H&E) and toluidine blue (TB) were
stained on the tissue sections for histological analysis. Epidermal
thickness and dermal thickness were analyzed in H&E-stained
sections at a magnification of ×100. Thickness was measured in
five randomly selected fields from each sample. Toluidine blue (TB)
stain for the measurement of mast cell infiltration and mast cell was
counted in 5 random high-power fields at a magnification of ×400.

2.5 Enzyme-linked immunosorbent assay
(ELISA)

Blood samples were collected immediately after the mice were
sacrificed. The serum samples were obtained from blood using a
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centrifuge (3000 × g, 4°C, 15 min) and stored at −80°C until use. The
level of serum IgE and serum histamine were measured by mouse
IgE ELISA kit (Lengton Biological Technology, Shanghai, China)
and mouse histamine kit (Elabscience Biotechnology, Wuhan,
China) according to the manufacturer’s instructions, respectively.

2.6 Flow cytometry assay

Splenocytes were collected as single-cell suspension after the mice
were sacrificed. The prepared splenocytes (5 × 106) were cultured with
the cell stimulation cocktail (plus protein transport inhibitors)
(eBioscience, United States) for 6 h in a 5% CO2 incubator at 37°C.
Then, the cells were collected and strained with FITC-labeled rat anti-
mouse CD4mAb (Clone RM4-5, BioLegend, United States) for 20 min
at 4°C in the dark. The cells were fixed and permeabilized after being
thoroughly resuspended in BD Cytofix/Cytoperm solution (BD
Pharmingen, United States) for 20 min at 4°C and then washed with
BD Perm/Wash™ buffer (BD Pharmingen, United States) two times.
Next, the permeabilized cells were stained with PE-labeled rat anti-
mouse IFN-γ mAb (Clone XMG1.2, BioLegend, United States), PE-
Cy7-labeled rat anti-mouse IL-4 mAb (Clone 11B11, BioLegend,
United States), PerCp-Cy5.5-labeled rat anti-mouse IL-17A mAb
(Clone eBio17B7, eBioscience, United States) and APC-labeled rat
anti-mouse IL-22 mAb (Clone Poly5164, BioLegend, United States)
for 20 min at 4°C in the dark. Th1 cells were defined as CD4+ IFN-γ+,
Th2 cells were defined as CD4+ IL-4+, Th17 cells were defined as CD4+

IL-17A+, and Th22 cells were defined as CD4+ IL-22+. Data was
harvested with a BD FACSVerse Flow Cytometer (BD Pharmingen,
United States) and analyzed using FlowJo software (BD, United States).

2.7 Real-time quantitative polymerase chain
reaction (RT-qPCR)

The total RNA was isolated from mice’s dorsal skin tissue using
TransZol (Transgen Biotech, Beijing, China) according to the
manufacturer’s protocol. 10 μg of total RNA was used to
synthesize the first-strand complementary DNA (cDNA) with the
All-in-One First-Strand cDNA Synthesis kit (Transgen Biotech,
Beijing, China). The relative mRNA expression was quantified
using RT-qPCR with Top Green qPCR SuperMix (Transgen
Biotech, Beijing, China) performed on an ABI Prism 7,500 device
(Applied Biosystems, United States). Levels of target genes were
normalized with respect to the expression of GAPDH, and the
primer sequences used in this study are listed as follows (Table 1).

2.8 Western blotting

Total proteins were extracted frommice’s dorsal skin tissues using
the Whole Cell Lysis Assay Kit (KeyGEN, Nanjing, China), followed
by the protein concentrations determined with the BCA assay kit
(Solarbio, Beijing, China). The denatured protein was separated by
10% SDS-PAGE and then transferred onto PVDF membranes
(Millipore, United States). After being blocked with 5% BSA for
2 h at room temperature, the membranes were incubated overnight at
4°C with the following primary antibodies: NF-κB (p65), p-IκBα

(Ser32), p-p38 (Thr180/Tyr182), p38, p-JNK (Thr183/Tyr185),
JNK, p-ERK (Thr202/Tyr204), ERK (Cell Signaling Technology,
United States) and GAPDH (Bioworld, Nanjing, China). Then, the
HRP Goat Anti-Rabit IgG (H + L) secondary antibody (ABclonal,
Wuhan, China) was added and incubated for 1 h at room
temperature. The protein bands were visualized with the ECL
FemtoLight kit (EpiZyme, Shanghai, China) and analyzed with the
ImageJ software (NIH, Bethesda, MD, United States).

2.9 Statistical analysis

All statistical analyses were performed using Prism 8.0
(GraphPad Software, San Diego, CA, United States), and
differences across groups were analyzed using unpaired Student’s
T-test and one-way analysis of variance (ANOVA). The data were
expressed as the mean ± standard deviation (SD), and p < 0.05 was
considered statistically significant.

3 Results

3.1 PEW ameliorates DNCB-Induced AD-like
phenotypic and histologic changes in mice

To explore the therapeutic properties of PEW on AD, a Balb/c
ADmodel was established by applying DNCB on the dorsal skin and
the back of the right ear (Figures 1, 2A). As shown in Figures 2B, C,
oral administration of PEW (1000 mg/kg.d and 2000 mg/kg.d)
significantly reduced the increase in ear thickness and ear
swelling degree induced by DNCB in a dose-dependent manner.

In Figure 3, H&E staining demonstrated that the PEW-treated
groups (1000 mg/kg.d and 2000 mg/kg.d) showed significant
decreases in the epidermal and dermal thickness (p < 0.001)
(Figures 3A–C). In addition, PEW application significantly
reduced the infiltration of mast cells labeled by toluidine blue in
DNCB-induced ADmouse skin lesions in a dose-dependent manner
(p < 0.001) [Figures 3A(b), D].

3.2 Effects of PEW on serum levels of IgE and
histamine

To evaluate the effects of PEW on the production of IgE and
histamine in DNCB-induced AD mice, IgE and histamine levels
were measured in the serum with ELISA kits. The AD model group
showed significant increases in IgE and histamine levels compared
with the normal control group (p < 0.001), whereas the PEW-treated
groups (1000 mg/kg.d and 2000 mg/kg.d) displayed significantly
lower levels than the AD model group (p < 0.01) (Figure 4).

3.3 PEW decreases the percentage of
Th1 and Th17 cells in DNCB-induced AD
mice

Considering the relevance of Th1, Th2, Th17, and Th22 axes to
AD immunopathogenesis, we evaluated the influence of PEW on the

Frontiers in Pharmacology frontiersin.org04

Peng et al. 10.3389/fphar.2023.1119103

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1119103


differentiation of CD4+ Th cells in DNCB-induced AD mice by
detecting the intracellular expression of IFN-γ, IL-4, IL-17A, and IL-
22 using Flow cytometry assay. In the present study, the percentage
of Th1, Th2, Th17, and Th22 cells of the AD model group were all
significantly increased compared to the normal control group. Two
PEW-treated groups showed significantly lower percentages of
Th1 and Th17 cell subsets than the AD model group (Figure 5).
However, the percentage of Th2 and Th22 cell subsets exhibited no
significant differences between the PEW-treated groups and the AD
model group (Figure 5).

3.4 PEW reduces mRNA expression of T-bet,
IFN-γ, ROR-rt, and IL-17A in DNCB-induced
mice skin lesions

To further confirm the effect of PEW on different CD4+ Th cell
subsets, mRNA expression of the nuclear transcription factor and
cytokine of Th1 (T-bet and IFN-γ), Th2 (GATA-3 and IL-4), Th17
(ROR-rt and IL-17A), and Th22 (Ahr and IL-22) in different groups
of mouse skin tissue were measured by RT-qPCR. Consistent with
previous results, all nuclear transcription factors and cytokines in

the ADmodel group were significantly increased compared with the
normal control group, and the mRNA expression of Th1 (T-bet and
IFN-γ) and Th17 (ROR-rt and IL-17A) nuclear transcription factors
and cytokines were significantly suppressed in PEW-treated groups
compared to the AD model group (Figure 6). Meanwhile, in PEW-
treated AD mice groups, the mRNA expression of Th2 (GATA-
3 and IL-4) and Th22 (Ahr and IL-22) were not markedly lower than
in the untreated mice group (Figure 6).

3.5 PEW inhibits the nuclear factor (NF)-κB
and mitogen-activated protein kinases
(MAPKs) signaling pathways

The NF-κB signaling pathway and the phosphorylation of
MAPKs (p38, ERK, and JNK) pathways were reported to be
activated in DNCB-induced AD-like skin lesions in mice. In the
present study, the effect of PEW on the activation of NF-κB and the
phosphorylation of IκB-α and MAPKs (p38, ERK, and JNK)
signaling pathways were measured by Western Blotting analysis
with mice dorsal skin tissue. As shown in Figures 7, 8, the level of
NF-κB, p-IκBα, p-P38/P38, p-ERK/ERK, and p-JNK/JNK in the

FIGURE 1
Schedule of the experiment. All mice were shaved about 2.5 cm × 2.5 cm on their dorsal skin on day 0. On day 1, the mice were first sensitized by
painting with 120 μL of 2% DNCB solution on shaved dorsal skin and 25 μL on the back of the right ear. The same treatments were performed for the
second sensitization on day 3. Four days later, the elicitation phase was induced by painting with 0.5% DNCB solution on the dorsal skin (120 μL) and the
back of the right ear (25 μL) once every 2 days till day 14. All micewere sacrificed on day 15. Oral administration treatmentswere conducted fromday
4 to day 14.

TABLE 1 The primer sequences.

Gene Sequence (Forward) Sequence (Reverse) Size (bp)

T-bet CTTTGAGTCCATGTACGCATCTGT GGGAACAGGATACTGGTTGGAT 118

GATA-3 GAACTGCGGGGCAACCTCTA TCCCCATTAGCGTTCCTCCT 213

ROR-rt TGTAATGTGGCCTACTCCTGCA GTATGTAAGTGTGTCTGCTCCGC 261

Ahr CTTCATCTTCAGGACCAAACACA GAGTGGCGATGATGTAATCTGGT 296

IFN-γ GCTACACACTGCATCTTGGCT GGCTTTCAATGACTGTGCCG 82

IL-4 TACCAGGAGCCATATCCACGGATG TGTGGTGTTCTTCGTTGCTGTGAG 139

IL-17A TCCACCGCAATGAAGACCCT CATGTGGTGGTCCAGCTTTCC 104

Il-22 GCAGATAACAACACAGATGTCC GTCTTCCAGGGTGAAGTTGAG 111

GAPDH CCTCGTCCCGTAGACAAAATG TGAGGTCAATGAAGGGGTCGT 133
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DNCB-induced AD model group were significantly increased
compared to the normal control group. However, in comparison
with the AD model group, the expression of NF-κB and the
phosphorylation of IκBα and MAPKs (p38, ERK, and JNK) were
significantly suppressed in the PEW-treated groups in a dose-
dependent manner.

4 Discussion

Wuguchong (maggot) has been widely used in the wound field
since antiquity, including diabetic foot ulcers, chronic wounds,
pressure ulcers, venous ulcers, etc., due to its pharmacological
properties of antibacterial activity, anti-inflammatory activity,

proangiogenic function, and neurogenesis (Yan et al., 2018;
Moya-López et al., 2020). Besides, some studies have proven the
immunomodulatory function of the maggot, which is considered as
a protective behavior of maggot therapy (Yan et al., 2018). Although
AD skin lesion is apparently different from the classical wounds
discussed above, the pathophysiology mechanism of AD is well
known for immune dysregulation and inflammatory responses
(Langan et al., 2020). Moreover, recent research data demonstrate
that polysaccharides extracted from some natural products have a
positive effect in treating AD-like skin lesions in mice and humans
(Wu et al., 2011; Nam et al., 2013; Lin et al., 2017; Ashigai et al., 2018;
Motoyama et al., 2018; Tian et al., 2019). In previous studies, the
polysaccharide extracted from Wuguchong (PEW) was found as a
bioactive ingredient to prevent obesity and relieve intestinal

FIGURE 2
PEW ameliorates DNCB-Induced AD-like symptoms in Balb/c mice. (A). Representative images of dorsal skins and ears in each group (day 15). (B)
Changes in ear thickness weremeasured and recorded (n = 9–10/group). (C) The ear swelling degree was recorded as the right ear weight minus the left
ear weight (a 7 mmpunch) at the endpoint (n= 7–10/group). The data were presented asmeans ± SD. ### p < 0.001, VS. the normal group; * p < 0.05, **
p < 0.01, *** p < 0.001, VS. the model control group.
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inflammation caused by drug side effects, partly through the
modulation of inflammatory responses (Wang et al., 2020; Shi
et al., 2022). However, the effect of PEW on AD has not been
investigated so far. In this study, we interrogated the therapeutic
effects of PEW on DNCB-induced AD-like skin lesions in Balb/c
mice and examined its immunoregulation effects on CD4+ Th cell

subsets. The results demonstrated that PEW markedly alleviates
DNCB-induced AD-like symptoms mainly via inhibition of
Th1 and Th17 responses and downregulation of NF-κB and
MAPK signaling pathways.

Essential features of AD are intense itching and eczematous
lesions, with a relapsing or chronic disease course (Langan et al.,

FIGURE 3
Effects of PEW on histopathological features of dorsal skin lesions in DNCB-induced Balb/c mice. (A) Representative images of histological
examination (dorsal skin); (a) H&E staining (50×, scale bar = 200 μm); (b) toluidine blue staining (100×, scale bar = 100 μm). (B) Epidermal thickness (n =
5–6/group). (C) Dermal thickness (n = 5–6/group). (D) The number of mast cells (n = 5–6/group). The data were presented as means ± SD. ### p <
0.001, VS. the normal group; *** p < 0.001, VS. the model control group.

FIGURE 4
Effects of PEW on serum levels of IgE and histamine in DNCB-induced AD mice. (A) Levels of IgE in serum (n = 6/group). (B) Levels of histamine in
serum (n = 6/group). The data were presented as means ± SD. ### p < 0.001, VS. the normal group; ** p < 0.01, VS. the model control group.
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2020). Histologically, “acute” papular skin lesions are characterized
by spongiosis (profound intercellular edema in the epidermis),
whereas “chronic” lichenified lesions are characterized by a
hyperplastic epidermis with prominent hyperkeratosis, and
elongation of the rete ridges, but minimal spongiosis (Bieber,
2010). In the current study, the epidermal and dermal
thicknesses were significantly increased in DNCB-induced AD
mice, and oral administration of PEW effectively reversed the
trends [Figures 3A(a), B, C]. Increased infiltration of mast cells is
another histological feature of AD (Bieber, 2010). Intensive
degranulation of mast cells is often observed in the inflammatory
skin region in AD and is proven to be related to the severity of the
disease (Irani et al., 1989; Zhao et al., 2006; Liu et al., 2011). Mast
cells are sensitized by IgE through the high-affinity receptor of IgE
(FcεRI) on their cell surface, then involved in the production of
some cytokines, chemokines, and growth factors, thus regulating
the recruitment, trafficking, and functions of cells related to the
skin inflammatory response (Liu et al., 2011). Polyvalent antigens
recognized by bound IgE aggregate FcεRI to activate mast cells,
allowing for the initiation of an immediate hypersensitivity
response (or early-phase), and also the late-phase response,
which is central to the pathogenesis of allergic diseases (Stone
et al., 2010; Galli and Tsai, 2012). Immediate response determined
by rapidly synthesized lipid mediators and prefabricated mediators
leads to skin erythema, edema, and itching (Stone et al., 2010).
Histamine, the key preformed mediator produced by mast cells,

plays a crucial role in the development of allergic-inflammatory
responses by promoting the release of some chemokines and pro-
inflammatory cytokines like IL-8, RANTES, IL-6, IL-1α, and IL-1β
(Jutel et al., 2009). At the same time, histamine is an important
regulator of epithelial and endothelial cell barrier function, which
directly changes vascular permeability and leads to the infiltration
of leukocytes and the formation of edema (Jutel et al., 2009). In this
study, PEW reduces the infiltration of mast cells in the skin of
DNCB-induced AD mice and downregulates the levels of serum
IgE and histamine [Figures 3A(b), D; Figure 4], suggesting that
PEW ameliorates AD-like symptoms in mice partly by affecting
the IgE-mast-cell axis. PEW decreases the IgE level and then
inhibits the activation of mast cells due to decreased
combination of receptor FcεRI with IgE, accompanied by a
reduction in histamine secretion, thus relieving allergic-
inflammatory responses.

Cutaneous inflammation is a hallmark of AD, which is
characterized by the infiltration of inflammatory cells in
sequential and progressive patterns, particularly by CD4+ cells
(Weidinger and Novak, 2016). Specifically, both Th2 and
Th22 activation are hallmarks of AD, with some Th1 and
Th17 components (Mansouri and Guttman-Yassky, 2015).
Th2 and Th22 activation induce the acute phase of AD and
show a progressive intensification to the chronic phase (Gittler
et al., 2012), while IL-17 sees a decrease in the progression
(Souwer et al., 2010), lower levels of IL-17 during the chronic

FIGURE 5
PEW decreases the percentage of Th1 and Th17 cells in DNCB-induced AD mice. Splenocytes were collected as single-cell suspension after the
mice were sacrificed. The influence of PEW on the differentiation of CD4+ Th cells in DNCB-induced ADmice was evaluated by detecting the intracellular
expression of IFN-γ, IL-4, IL-17A, and IL-22 using the Flow cytometry assay (n = 5–7/group). (A–D). Representative images of different Th cell
frequencies: (A) Th1, (B) Th2, (C) Th17, (D) Th22. (E–G). Statistical analysis showed the differences in the percentages of (E) Th1, (F) Th2, (G) Th17, and
(H) Th22 cells. The data were presented as means ± SD. # p < 0.05, ### p < 0.001, VS. the normal group; * p < 0.05, ** p < 0.01, *** p < 0.001, VS. the
model control group.
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phase of AD indicate a possible Th17-to-Th1 shift in later phases of
the disease (Cesare et al., 2008; Koga et al., 2008). Known as a
biphasic inflammation, although the Th2-predominant immune
response is closely associated with the acute onset of the disease,
there is a Th2-to-Th1 shift in the progression of AD, in which the
chronic lesion is predominated with a Th1-biased response (Tian
et al., 2019); Th17 activation also seems to play a role in a prolonged
exaggeration of AD lesions and are correlated with the severity of the
disease (Koga et al., 2008). Even though Th17 cells are not closely
associated with Th1/Th2 balance, there is a significant correlation
between the percentage of Th17 cells and IFN-γ-producing
Th1 cells, but not IL-4-producing Th2 cells, suggesting Th17 cells
work as an enhancer in the development of AD, but not an immune-
polarizer (Koga et al., 2008). In the current study, the treatment of

PEW showed significant potency in decreasing the frequency of
Th1 and Th17 cells (Figure 5), as well as suppressing the mRNA
expressions of Th1 and Th17 cytokines and nuclear transcription
factors in AD-lesion inflammation (Figure 6), which indicates that
PEW mainly modulates the pathogenesis of chronic AD skin
inflammation. In chronic AD, Th1 cells and Th1-related cytokine
IFN-γ contribute to dermal thickening in the AD mouse model
(Spergel et al., 1999), so depressed Th1 activation by PEW leads to a
significant decrease in the dermal thickness of AD mice [Figures
3A(a), C]. Th17 cells are characterized by the secretion of
inflammatory cytokines like IL-17A and IL-17F (Cesare et al.,
2008). IL-17A exerts a pro-allergic action on B cells by
promoting IgE production (Milovanovic et al., 2010). The
reduced IL-17A production (Figure 6G) contributes to decreasing

FIGURE 6
PEW reduces mRNA expression of Th1 and Th17 cytokines and nuclear transcript factors (IFN-γ, T-bet, IL-17, and ROR-rt) in DNCB-induced mice
skin lesions. (A–H). Relative mRNA expression levels of different nuclear transcript factors and cytokines (n = 5/group): (A) T-bet, (B)GATA-3, (C) ROR-rt,
(D) AHR, (E) IFN-γ, (F) IL-4, (G) IL-17A, and (H) IL-22. The data were presented as means ± SD. # p < 0.05, ## p < 0.01, ### p < 0.001 VS. the normal
group; * p < 0.05, ** p < 0.01 VS. the model control group.

FIGURE 7
PEW inhibited the NF-κB signaling pathway. (A). Representative images of Western Blotting assays of NF-κB and p-IκBα. (B). Expression of NF-κB
relative to GAPDH (n= 3/group). (C). Expression of p-IκBα relative to GAPDH (n = 3/group). The data were presented asmeans ± SD. ## p < 0.01, ### p <
0.001 VS. the normal group; ** p < 0.01, *** p < 0.001 VS. the model control group.
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the IgE level (Figure 4A), thus affecting the IgE-Mast-cell axis and
relieving the related allergic-inflammatory responses in mice with
AD. Besides, IL-17A induces p50 and p65 NF-κB activations, and
NF-κB is the most important downstream target of IL-17A (Huang
et al., 2007; Milovanovic et al., 2010). IL-17A triggers rapid
degradation of IκBα and subsequent translocation of NF-κB into
the B-cell nucleus, followed by the p50 and p65 nuclear
translocation, and significant increases in their DNA-binding
activities to the consensus sequences of NF-κB (Huang et al.,
2007; Milovanovic et al., 2010). So, a lower IL-17A level
(Figure 6G) caused by PEW plays a role in suppressing the
degradation of IκBα and subsequent activation of NF-κB (Figure 7).

On the other hand, NF-κB is involved in the regulation of T-cell
differentiation and effector function. Canonical NF-κB mediates the
differentiation of CD4+ T cells via regulating cytokine production in
innate immune cells and T-cell intrinsic mechanisms (Oh and
Ghosh, 2013; Liu et al., 2017). NF-κB promotes Th1 cell
differentiation, substantial IFN-γ production, and efficient clonal
expansion, independent of its role in APC production of IL-12
(Corn et al., 2003). Diminished NF-κB activation in T cells can lead
to preferential impairment of Th1 responses, as evidenced by
significant inhibition of delayed-type hypersensitivity responses,
and IFN-γ production (Aronica et al., 1999). Several NF-κB
members are involved in promoting Th17 responses: such as
NFKB1, the IκB-like molecule p105, T-cell-specific IKKβ, c-Rel
and RelA (Liu et al., 2017), in particular, c-Rel and RelA, which
directly bind to the promoter region and upregulate the mRNA
expression of Th17 nuclear transcription factor ROR-γt and induce
Th17 cell generation (Ruan et al., 2011; Oh and Ghosh, 2013). As
indicated above, the NF-κB pathway is crucial in mediating the

generation of Th1 and Th17 cells. In the present study, PEW
significantly reduced the phosphorylation level of IκBα (Figures
7A, C) and inhibited the activation of the NF-κB signal pathway
(Figures 7A, B), which in turn contributes to reducing the generation
of Th1 and Th17 cells and suppressing Th1 and Th17 responses
(Figures 5, 6).

Mitogen-activated protein kinases (MAPKs), including the
p38, ERK, and JNK subfamilies, are the other classic
inflammation-related pathways. Cross-talking with NF-κB
signaling, activation of MAPKs contributes to the induction of
several genes which together mediate the inflammatory response
(Arthur and Ley, 2013). Phosphorylation of MAPKs leads to
inflammatory mediators’ production and promotes the allergic
inflammatory response (Barnes, 2011; Arthur and Ley, 2013).
Among the mitogen-activated protein kinases, p38 and ERK
MAPK pathways are involved in the pathogenesis of
inflammatory skin diseases including AD (Johansen et al.,
2005; Lee et al., 2022; Zeze et al., 2022), and the JNK pathway
is also activated in atopic dermatitis (Lu et al., 2018). Increasing
evidence has demonstrated the efficacy of p38 and ERK MAPK
inhibitors on AD, which may work as potential therapeutic
targets (Lee et al., 2022; Zeze et al., 2022). In the current
study, PEW significantly inhibits the activation of p38, ERK,
and JNK MAPKs (Figure 8), not only contributing to the
downregulation of the NF-κB signaling pathway but also
blocking the production of inflammatory mediators, thus
relieving skin inflammation in AD mice. Additionally,
p38 MAPK regulates the differentiation of naive CD4 T cells
(Dodeller et al., 2005) and mediates the function of Th1 and
Th17 cells and the production of their related cytokines (Rincón

FIGURE 8
PEW suppressed the phosphorylation level of mitogen-activated protein kinases (MAPKs). (A). Representative images of Western Blotting assays of
p-p38, p38, p-JNK, JNK, p-ERK, and ERK. (B–D). Expression of (B) p-p38 relative to p38, (C) p-JNK relative to JNK, and (D) p-ERK relative to ERK (n = 3/
group). The data were presented as means ± SD. ## p < 0.01, ### p < 0.001 VS. the normal group; * p < 0.05, ** p < 0.01, *** p < 0.001 VS. the model
control group.
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et al., 1998; Noubade et al., 2011), indicating that the inactivation
of p38 MAPK by PEW (Figures 8A, B) may play a role in
inhibiting Th1 and Th17 responses in AD (Figures 5, 6).

Furthermore, recent evidence indicates that obesity can also
influence the immune system and is associated with atopic
dermatitis (Zhang and Silverberg, 2015; Ali et al., 2018; Bapat et al.,
2022). A high-fat diet (HFD) markedly increased inflammatory
response in obese mice with AD compared to lean mice, and
obesity increased disease severity in AD mouse models by
converting the classical Th2—predominated AD to a more severe
disease with prominent Th17 inflammation (Bapat et al., 2022). A
western diet (WD), characterized by rich fat and high sugar enhances
susceptibility to dermatitis, a long-term WD intake leads to dermatitis
with Th2 and Th17 pathway features in mice (Jena et al., 2019), while a
short-term WD induced a Th1/Th17 response biased skin
inflammation (Shi et al., 2020); dietary components, rather than
obesity, can cause mild, even clinically significant skin inflammation
(Shi et al., 2020). In addition, numerous studies have shown a gut
microbial dysbiosis association in ADpatients, the gutmicrobiomemay
contribute to the development, course, and severity of AD via
immunologic, metabolic, and neuroendocrine pathways (Lee et al.,
2018; De Pessemier et al., 2021; Moniaga et al., 2022). Neonatal gut
microbiome dysbiosis is associated with childhood atopy and promotes
CD4+ T cell dysfunction (Fujimura et al., 2016). A recent study
demonstrated polysaccharides of Tremella fuciformis alleviate AD in
mice by regulating immune response and gut microbiota (Xie et al.,
2022). In our previous study, PEW reduces high-fat diet-induced
obesity in mice via the regulation of gut microbiota (Wang et al.,
2020), we hypothesize the gut microbiome regulation function of PEW
may play a role in alleviating skin inflammation of AD and influencing
CD4+ T cell differentiation, also, it is possible that PEW ameliorates AD
via modulating effects of diets. PEW may play its role in AD by
influencing the interaction between diets, gut microbes, and immunity.
Further studies are warranted to clarify whether PEW can alleviate AD
inflammation by regulating intestinal microbiota, mediating diets’
influence, or preventing obesity.

Our current study indicates that PEW significantly inhibits
Th1 and Th17 responses in DNCB-induced AD mice, which may
be used as a promising immune therapy targeting Th1 and
Th17 pathways. However, AD immunoendotypes are in part
associated with race or ethnic group (Suaini et al., 2021). For
instance, activation of the Th1 and Th17 pathways are absent in
Black AD patients; Asian patients have been reported with the
activation of Th2 and Th17 pathways, whereas there is mostly
activation of the Th2 pathway in European patients (Brunner
and Guttman-Yassky, 2019; Ständer, 2021). Besides, the
Th17 pathway is activated in certain subtypes such as pediatric,
intrinsic, and Asian-origin AD (Yu et al., 2019). Th17 activation in
pediatric AD is higher than in adult AD at disease initiation (Esaki
et al., 2016); intrinsic AD patients have higher Th17 immune
activation than extrinsic ones (Suárez-Fariñas et al., 2013); in
European American (EA) AD patients, although Th17 response
sees an increased level in intrinsic AD cases, it is downregulated in
adults with extrinsic AD, and Asian patients with extrinsic AD have
significantly higher Th17 response compared to EA patients with
extrinsic AD (Noda et al., 2015; Chan et al., 2018). The efficacy of
immune therapy varies in different racial subgroups (Alexis et al.,
2019). Although Th2-targeted therapy—the IL-4 receptor antibody

dupilumab that blocks both IL-4 and IL-13 signaling has achieved
tremendous progress in specific populations (Langan et al., 2020), it
clears only approximately one-third of patients, so, additional
targeted therapies are required to resolve all subtypes of AD
(Ungar et al., 2021). Thereby, PEW is promising to be developed
as an immune therapy that targets Th1 and Th17 immune pathways.
However, as discussed, the efficacy of PEW in ADmay differ among
different ethnic groups and subtypes due to the different response
profiles to immune therapies. Thus, further studies of PEW in
different regions and racial subgroups are warranted to design
personalized immune therapy.

5 Conclusion

In conclusion, our findings indicate that PEW treatment can
alleviate skin inflammation in mice with DNCB-induced AD. PEW
significantly inhibited the generation of Th1 and Th17 cells, and
profoundly reduced the expression of Th1 and Th17 cytokines and
nuclear transcription factors including IFN-γ, T-bet, IL-17, and
ROR-rt. Furthermore, we demonstrated the underlying mechanisms
of action involved in suppressing inflammation as well as the
Th1 and Th17 responses are through the inactivation of NF-κB
and MAPK pathways. The potential mechanisms related to
regulating gut microbiota and preventing obesity remain to be
explored. This study verifies the therapeutic effect of PEW on
AD and provides a scientific rationale for this bioactive
ingredient as a promising immune therapy for AD. We will
purify PEW for further studies in the future.
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