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Aims: To determine the bioactive components of Hedyotis Diffusae Herba (HDH)
and the targets in treating lupus nephritis (LN), and so as to elucidate the protective
mechanism of HDH against LN.

Methods and results: An aggregate of 147 drug targets and 162 LN targets were
obtained from online databases, with 23 overlapped targets being determined as
potential therapeutic targets of HDH against LN. Through centrality analysis, TNF,
VEGFA and JUN were screened as core targets. And the bindings of TNF with
stigmasterol, TNFwith quercetin, and VEGFAwith quercetin were further validated
bymolecular docking. By conducting Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) enrichment analyses for drug targets, disease
targets and the shared targets, TNF signaling pathway, Toll-like receptor signaling
pathway, NF-kappa B signaling pathway and HIF-1 signaling pathway, etc., were
found in all these three lists, indicating the potential mechanism of HDH in the
treatment of LN.

Conclusion: HDHmay ameliorate the renal injury in LN by targeting multi-targets
and multi-pathways, including TNF signaling pathway, NF-kappa B signaling
pathway, HIF-1 signaling pathway and so on, which provided novel insights
into further researches of the drug discovery in LN.
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Introduction

Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease along with
abnormally activated immune system, attacking practically any organ system in the human
body (Calle-Botero and Abril, 2020; Kiriakidou and Ching, 2020). In SLE, lupus nephritis
(LN) is considered as the major pathogenic and fatal risk contributors (Maria and Davidson,
2020), affecting almost 40% of adults with SLE, with 10% of LN patients having to face the
torment of end-stage renal disease ultimately (Bastian et al., 2002; Jakes et al., 2012; Almaani
et al., 2017). Recently, the efficacy of corticosteroids, cyclophosphamide, mofetil/
mycophenolate, and calcineurin inhibitors in LN was identified (Fanouriakis et al.,
2019), yet low complete response rates, risk of flares, side effects and adverse outcome
events of these treatments still remain major concerns to physicians (Hobeika et al., 2019).
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Hence, finding effective and safe alternative medicines to fight
against LN is an urgent global issue to be addressed.

Traditional Chinese medicine is one of the oldest healing systems
and has been widely used for thousands of years (Tang et al., 2008; Liu
et al., 2021). Due to the multi-targets function (Jiang et al., 2021),
traditional Chinese medicine is now recognized as one of the
prominent alternative therapies for the treatment of various
diseases, including SLE and LN (Yuan et al., 2019a; Zhang and
Wei, 2020). Tripterygium wilfordii Hook F. (TWHF) is such a
typical representative that has been proved to ameliorate LN
through its anti-inflammatory and immunosuppressive effects (Tao
and Lipsky, 2000; Ma et al., 2017; Song et al., 2020). However, because
of its toxicity, the clinical application of TWHF is severely limited,
especially in patients with reproductive needs (Ren et al., 2021).
Hedyotis Diffusae Herba (HDH) is another traditional Chinese
medicine herb that is widely applied in a variety of prescriptions
for the treatment of immune-related diseases (Fan et al., 2010; Jiang
et al., 2010). In 2010, Jiang et al. (2010) reported that Bizhongxiao
Decoction, which contains HDH, could improve rheumatoid arthritis
by regulating the protein expression and function of peripheral blood
mononuclear cells. In addition, the protective role and mechanism of
HDH in cancer was also demonstrated recently (Wang et al., 2020; Liu
et al., 2022; Ma et al., 2023). Besides, Fan et al. (2010) found that the
application of HDH could significantly inhibit the expression of
regulated on activation, normal T cell expressed and secreted
(RANTES, also known as C-C motif chemokine 5), a biomarker of
LN (Das and Brunner, 2009), in serum and renal tissue of MRL/lpr
mice (lupus-prone mice). However, the specific mechanism of HDH
as related to LN remains unclear due to limited researches. Hence,
studies investigating key molecular targets and mechanism of HDH
against LN needs to be carried out.

Network pharmacology is an emerging interdisciplinary science
that integrates virtual computing, high-throughput data analyses,
network database retrieval, bioinformatic network construction and
network topology analyses (Kibble et al., 2015; Wang et al., 2022a),
and was developed for the explanation of the relationship between
drug components, targets, and diseases (Luo et al., 2020; Jiao et al.,
2022). Nowadays, network pharmacology has become a holistic and
efficient tool to unveil the pharmacological mechanism of traditional
Chinese medicine and is conducive to provide deep insights into new
medicine developing from a network perspective (Hopkins, 2008;
Sucher, 2013). HDH, as a traditional Chinese herbal medicine widely
applied in prescriptions for LN, has a wide range of pharmacological
compounds, however, its mechanism for the treatment of LN remains
obscure. In this study, analyses based on integrated network
pharmacology were applied to tackle this issue and identify active
ingredients and pivotal targets of HDH against LN.

Materials and methods

Identifying LN related targets

LN related targets were retrieved from the OMIM database
(Hamosh et al., 2000) (https://omim.org/), the DisGeNET database
(Piñero et al., 2015; Piñero et al., 2020) (https://www.disgenet.org/)
and the DigSee database (Kim et al., 2013; Kim et al., 2017) (http://
210.107.182.61/geneSearch/). As a biomedical literature based

authoritative database storing information about human genes
and genetic phenotypes, OMIM database could provide us with
phenotypes related targets. In the OMIM database, the term “Lupus
nephritis”was used as a bait to retrieve LN related records and genes,
and 75 records containing 35 LN related genes were obtained finally.
Distinct with the OMIM database, the DisGeNET database and the
DigSee database possess more massive data of human disease-
related genes and scoring systems to help screening reliable
diseases-related genes. By inputting “Lupus nephritis” into query
box and setting “Score_gda” > 0.05 in DisGeNET database or
“Evidence Sentence Score” > 0.5 in DigSee database, 51 LN
associated targets from the DisGeNET database and 115 targets
obtained from the DigSee database were acquired. All genes were
then transformed into unified names by UniProt (UniProt
Consortium, 2018) (https://www.uniprot.org/). A total of
162 genes were identified as LN targets by removing duplicates.

Bioactive components of HDH

TCMSP database (Ru et al., 2014) (https://tcmspw.com/tcmsp.
php) is a platform that captures relationship between Chinese herbal
medicines, targets and diseases. And most importantly, it provides
physical and chemical characteristics of herbal ingredients. To obtain
bioactive chemical components of HDH, “Hedyotis Diffusae Herba”
was used as the search term, and the components meeting following
criterions were selected for further analyses: 1) oral
bioavailability ≥40%; 2) drug-likeness ≥0.18; 3) number of
rotatable bond <10; 4) molecular weight: 180–500; and 5) has
corresponding Pubchem Cid. Poriferasterol, stigmasterol and
quercetin were identified as bioactive chemical components of HDH.

Identifying HDH related targets

To acquire HDH related targets, SMILE strings, InChI strings or
names of HDH bioactive components that were acquired from the
previous step were then inputted into the query boxes of the
STITCH database (Szklarczyk et al., 2016) (http://stitch.embl.de/),
the BATMAN-TCM database (Liu et al., 2016) (http://bionet.ncpsb.
org/batman-tcm/) and the TCMSP database (Ru et al., 2014)
(https://tcmspw.com/tcmsp.php), with the results being limited to
homo species. Targets from the BATMAN-TCM database under the
criterion of score >15 were selected for subsequent analyses. And for
targets predicted from the TCMSP database, those displayed as
originating from the DrugBank database were selected. All the
returned targets were converted into standard names by UniProt
(UniProt Consortium, 2018). Finally, 77 targets of stigmasterol,
40 targets of poriferasterol and 83 targets of quercetin were predicted
as HDH corresponding targets.

Functional enrichment analyses and
network construction

The Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
enrichment analysis were conducted by online function
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annotation tool DAVID (Huang et al., 2009a; Huang et al., 2009b)
(https://david.ncifcrf.gov/, version 6.8), and further visualized by a
data visualization website (http://www.bioinformatics.com.cn/).

While the protein-protein interaction (PPI) networks for LN
targets, HDH targets and the overlapped targets were constructed
by the STRING database (Szklarczyk et al., 2019) (https://string-db.

FIGURE 1
Flow chart of network pharmacology method identifying pivotal targets of Hedyotis Diffusae Herba (HDH) for the treatment of lupus nephritis (LN).
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org/, version 11.0), a platform storing known PPIs originating from
other databases and predicted PPIs that were obtained through
computer algorithms. Further construction of HDH-bioactive
components-targets network, LN targets network, and bioactive
components-the overlapped targets-enriched KEGG pathways
network were conducted by Cytoscape (version 3.7.2).

Screening of key therapeutic targets

The overlapped targets between LN related targets and HDH
related targets were got by using TBtools (Chen et al., 2020a) (version
1.0686). PPI network of these overlapped targets was then retrieved by
the STRING database (Szklarczyk et al., 2019), with the species being
limited to homo species and the confidence level being set to ≥0.900.
Based on the PPI network, betweenness centrality plot and degree
centrality plot were drawn by using MATLAB software. Finally,
pivotal LN related proteins that were targeted by HDH bioactive
components were identified by comparing the betweenness centrality
score and degree centrality score among the overlapped targets.

Molecular docking simulation

The crystal structures of these targets were retrieved from PDB
database (Berman et al., 2002) (http://www.pdb.org), while 3D-
structures of stigmasterol and quercetin were downloaded from
Pubchem database (Kim et al., 2023) (https://pubchem.ncbi.nlm.nih.
gov/). Molecular pretreatment, molecular docking simulation and the
visualization of docking results were performed by PyMOL software
(version 2.4.0) and AutoDockTools (Morris et al., 2008; Morris et al.,
2009) (version 1.5.6).

Results

HDH targets, functions and PPI network

Flow chart of the integrated network pharmacology research is
described as in Figure 1. In brief, HDH therapeutic targets and the
LN related targets were attained from online databases firstly, with
the overlapped part being recognized as latent therapeutic targets of
LN targeted by HDH. Subsequently, functional enrichment analyses
and PPI network construction were implemented to elucidate the
protective mechanism of HDH against LN. Centrality analysis based
on the PPI network of shared targets was then performed to help us
identify core targets within the network. At last, the binding between
core targets and their corresponding bioactive components of HDH
was simulated by molecular docking technique.

Based on the above strategy, three bioactive components of HDH
(poriferasterol, stigmasterol, and quercetin) were identified. And an
aggregate of 147 targets of these components were predicted by the
STITCH database, the BATMAN-TCM database and the TCMSP
database (Figure 2A). KEGG enrichment analysis suggested that HDH
related targets were mainly involved in HIF-1 signaling pathway, TNF
signaling pathway, PI3K-Akt signaling pathway, and NOD-like receptor
signaling pathway, etc. (Figure 2B). Besides, as shown in Supplementary
Figure S1, HDH corresponding targets were closely related to types of

cancers, infectious diseases and autoimmune diseases like rheumatoid
arthritis. GO enrichment analysis for cellular component showed that
most of these proteins were located in the extracellular space, caveola or
plasma membrane, or form receptor complex (Figure 2C). And GO
enrichment analysis for biological process indicated that HDH targets
might participate in the response to drug, oxidation-reduction process
and regulation of transcription (Figure 2C). Besides, the GO enrichment
analysis for molecular function implied that targets of HDH active
components possessed the ability to bind heme, enzyme and so on;
and also had steroid hormone receptor activity, RNA polymerase II
transcription factor activity, protein homodimerization activity,
oxidoreductase activity, and so on (Figure 2C). Moreover, a PPI
network was then constructed for HDH bioactive components related
targets (Figure 3). A total of 147 targets nodes and 1,302 protein-protein
edges were present in the network of HDH-HDH bioactive components-
HDH related targets (Figure 3).

LN therapeutic targets, functions and PPI
network

In total, 162 targets were identified as LN therapeutic targets from the
OMIM database, the DisGeNET database and the DigSee database.
KEGG pathway enrichment analysis illustrated that cytokine-cytokine
receptor interaction, TNF signaling pathway, complement and
coagulation cascades, Toll-like receptor signaling pathway participated
in the course of LN (Figure 4A). Additionally, HDH enriched pathways
such as NOD-like receptor signaling pathway, PI3K-Akt signaling
pathway, HIF-1 signaling pathway were also enriched in the analysis
of LN targets (Figure 4A). On the other hand, besides SLE, these targets
were also enriched in other autoimmune diseases like rheumatoid
arthritis and inflammatory bowel disease, or infection diseases like
tuberculosis, malaria and leishmaniasis (Supplementary Figure S2).
GO enrichment analysis for biological process indicated that LN was
highly correlated with inflammatory response and immune response
(Figure 4B). And as shown in the analysis for cellular component,most of
the potential LN therapeutic targets were located in the extracellular
space, the external side of plasmamembrane and cell surface (Figure 4B).
Furthermore, GO enrichment analysis for molecular functions showed
that LN targets were enriched in cytokine activity, IgG binding, protein
homodimerization activity and so on (Figure 4B). A PPI network was
then constructed for LN targets. As described in Figure 4C, these disease
targets formed a complex network with 2,701 edges.

Network and functions of LN-related
proteins that were targeted by HDH

As displayed in Figure 5A, 44 pathways were shared between
HDH targes and LN targets, including TNF signaling pathway, Toll-
like receptor signaling pathway, NF-kappa B signaling pathway and
so on. And a total of 23 targets of LN that were also targeted by HDH
active components were identified (Figure 5B). Further KEGG
enrichment analysis of these shared targets indicated that the
functions of these targets were enriched in TNF signaling
pathway, NOD-like receptor signaling pathway, cytokine-cytokine
receptor interaction, NF-kappa B signaling pathway, and HIF-1
signaling pathway, etc. (Figure 5C). The GO enrichment analysis of
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these overlapped targets was shown in Figure 5D. The analysis for
biological process implied that the overlapped targets were related to
the nitric oxide biosynthetic process mostly, and were also associated

with humoral immune response (Figure 5D). As for the molecular
functions, cytokine activity and identical protein binding were
associated with these targets most obviously (Figure 5D). Besides,

FIGURE 2
HDH targets and functional enrichment analyses. (A) Venn diagram of the predicted HDH targets. (B) Dot bubble plot of the top 20 Kyoto
Encyclopedia of Genes and Genomes (KEGG) signaling pathways enriched by HDH related targets. The size of dots represents the number of enriched
proteins, and the color represents −log10 (FDR). (C) Histogram plot of the top 10 enriched biological processes, cellular components and molecular
functions of HDH targets by GeneOntology (GO) enrichment analysis. FDR, false discovery rate; BP, biological process; CC, cellular component; MF,
molecular function.
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these targets were located in the extracellular space and external side
of plasma membrane mostly (Figure 5D). A network containing the
active components of HDH, the overlapped targets and their
enriched pathways was displayed in Figure 6.

Screening of pivotal overlapped targets and
molecular docking

By setting “confidence level” to “≥ 0.900,” a more credible PPI
network of the overlapped targets was acquired (Figure 7A).

Subsequently, a betweenness centrality map and a degree
centrality map based on the predicted PPI network were plotted
(Figures 7B, C). According to these maps, TNF, JUN and VEGFA
were recognized as the most pivotal targets in the network, as the
betweenness centrality score and the degree centrality score of these
three targets were highest (Figures 7B, C). Simulation of the binding
between these three targets and their corresponding ligands was
conducted then, with energy required for binding of each pairs being
calculated by AutoDockTools. As summarized in Table 1, binding
energy of TNF with stigmasterol was lowest (−6.32 Kcal/Mol), with
the binding activity being identified as good. And the free energy

FIGURE 3
Protein-protein interaction (PPI) network of proteins targeted by three bioactive components of HDH. The yellow octagon represents HDH, the red
hexagons represent components of HDH, while the purple dots represent the predicted targets of these three chemical components. The blue lines
represent interaction between HDH and its bioactive components, the orange lines represent interaction between HDH bioactive components and the
predicted targets, while the PPI networks of targets were represented as prey lines.
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required for the binding of TNF with quercetin, and VEGFA with
quercetin was −4.56 Kcal/Mol and −4.58 Kcal/Mol, respectively,
indicating certain binding activities. While no certain binding

activity was found for JUN-quercetin interaction (binding
energy =−2.32 Kcal/Mol). Detailed binding modes of
macromolecular proteins and their corresponding small ligands

FIGURE 4
Functional enrichment analyses and PPI network of LN targets. (A)Dot bubble plot of the top 20 KEGG signaling pathways enriched by the targets of
LN. Size of dots represents the number of enriched proteins, and the color represents −log10 (FDR). (B)Histogram plot of the top 10 biological processes,
cellular components and molecular functions of LN targets by GO enrichment analysis. (C) PPI network of LN targets. FDR, false discovery rate; BP,
biological process; CC, cellular component; MF, molecular function.
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FIGURE 5
Functional enrichment analyses of LN targets that were targeted by HDH. (A) Venn diagram composed of the KEGG pathways of HDH and KEGG
pathways of LN targets. (B) Venn diagram composed of the predicted poriferasterol targets, the quercetin targets, the stigmasterol targets and the LN
targets. (C) Dot bubble plot of the top 20 enriched KEGG signaling pathways of the overlapped targets of LN and HDH. The size of dots represents the
number of enriched genes, and the color represents −log10 (FDR). (D) Histogram plot of the top 10 biological processes, cellular components and
molecular functions of the shared targets by GO enrichment analysis. FDR, false discovery rate; BP, biological process; CC, cellular component; MF,
molecular function.
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were displayed in Figures 7D–G. As shown in Figure 7D,
stigmasterol bound with TNF in a groove through 1 hydrogen
bond with TYR-191. And Figure 7E implied that quercetin might
interact with TNF through six hydrogen bonds with GLY-100, ASP-
121, ASN-122, GLN-123 and ILE-212, thus exerting its latent
therapeutic effect. Similar results for quercetin with VEGFA and
quercetin with JUN could be found in Figures 7F, G.

Discussion

Traditional Chinese medicine regards individuals as systems
with various states, and has accumulated a large number of
traditional Chinese medicine prescriptions (Li and Zhang,

2013). Compounds isolated from Chinese herbal medicine,
such as antimalarial drug artemisinin, exhibit similar
pharmacological activities as pharmaceutical drugs (Sucher,
2013). The exploration of traditional Chinese medicine
ingredients will inject new vitality into the development of
new drugs (Wang et al., 2018). Recently, the systems
pharmacology method has been widely concerned in the field
of Chinese medicine (Zhou et al., 2016), facilitating the
transformation of traditional Chinese medicine from empirical
medicine to evidence-based medicine (Li and Zhang, 2013).
Besides, the application of network pharmacology strategy is
also attributing to the elucidation of mechanism of Chinese
medicine against diseases and the screening of pivotal
components of Chinese medicine (Zhou et al., 2016).

FIGURE 6
Bioactive components-overlapped targets-KEGG signaling pathways network. The green hexagons represent chemical components of HDH, the
purple dots represent the overlapped targets of LN and HDH, while the yellow rectangles represent the top 20 KEGG signaling pathways. The green lines
represent interaction between chemical components and the overlapped targets, the gray lines represent the PPI networks, while the purple lines are
interaction between the overlapped targets and their enriched KEGG signaling pathways.
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FIGURE 7
Screening of pivotal overlapped targets and molecular docking of HDH components binding to these pivotal targets. (A) PPI network of the
overlapped targets with high confidence (interaction score ≥0.900). (B,C) Betweenness centrality plot and Degree centrality plot of the interaction
network. The color represents the level of the betweenness centrality score or the degree centrality score of every dots. (D–G)Molecular models of TNF
interacting with stigmasterol (D), TNF interacting with quercetin (E), VEGFA interacting with quercetin (F) and JUN interacting with quercetin (G).
Small molecule compounds are represented as purple colored, while the gray colored (left panel) and green colored (right panel) macromolecular
substances represent the target proteins.

TABLE 1 Energy for binding between pivotal targets and corresponding ligands by AutoDockTools.

Target receptors Ligands Binding energy (Kcal/Mol) Binding activity

TNF Stigmasterol −6.32 Good

TNF Quercetin −4.56 Certain

VEGFA Quercetin −4.58 Certain

JUN Quercetin −2.32 —

Note: Binding energy less than −4.25, −5.0, and −7.0 kcal/mol was identified as a certain, good or strong binding activity, respectively.
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In this study, by applying the systematic integrated network
pharmacology method to traditional Chinese medicine research, our
analyses identified TNF, VEGFA and JUN as the most pivotal
therapeutic targets of HDH against LN (Figures 7B, C), with the
binding of the former two proteins with their corresponding HDH
components being validated by molecular docking, especially the
interaction between stigmasterol and TNF (Figures 7D–G, Table 1).

TNF is a cytokine mainly secreted by macrophages, activating the
transcription of several proinflammatory genes and is involved in the
regulation of a wide spectrum of biological processes such as cell
proliferation, differentiation and apoptosis (Wu et al., 2002). Since
Jacob et al elucidated the relationship between TNF and LN in 1998
(Jacob and McDevitt, 1988), there is abundant evidence supporting the
pathogenicity of TNF in LN (Boswell et al., 1988; Jacob, 1992; Zhao
et al., 2013). By enhancing the expression of numerous cytokines, TNF-
alpha mediated the recruitment and adherence of pathogenic
inflammatory cells in LN, amplifying kidney injury (Wuthrich,
1992; Davidson, 2016). Besides, TNF was also proved to cause direct
injury in podocytes (Pedigo et al., 2016). On the other hand, current
clinical data shows that the application of TNF blocker induction
therapy may lead to long-term remission in patients with LN, although
the safety of TNF blockers still needs long-term observation (Aringer
and Smolen, 2012). In the current study, we found that the active
components of HDH might exert therapeutic effect on LN through
TNF signaling pathway. Besides, TNF was identified as a key target in
the network constructed for overlapped targets of LN and HDH.

In the current study, we predicted that stigmasterol and quercetin,
two bioactive components of HDH, might target TNF and thus
influence the function of TNF. Stigmasterol is a plant sterol
exhibiting anti-inflammatory activity (Ahmad Khan et al., 2020;
Bakrim et al., 2022). Kangsamaksin et al. (2017) reported that
stigmasterol could suppress tumor angiogenesis and
cholangiocarcinoma growth by inhibiting TNF-α expression. Such
effect was also found in collagen induced arthritis (Ahmad Khan et al.,
2020). Besides, some common formulas containing stigmasterol
possess apparent properties that suppress the expression of TNF-α
(Masola et al., 2018; Wang et al., 2022b). However, no research about
the protective role of stigmasterol against LNwas found until now.We
speculate that stigmasterol may possess the ability to bind to TNF in a
groove of TNF and then affect the function of TNF, thus ameliorating
LN. This hypothesis is worthy of further validation by experiments.

Quercetin is a flavonol widely distributed in plants (Chen et al.,
2020b). The effect of quercetin in down-regulating TNF was reported
by abundant researches (Yang et al., 2019; Sul and Ra, 2021; Tsai et al.,
2021), too. And Liu et al. (2019) further demonstrated that quercetin
could block the expression of pentraxin 3 that was induced by TNF-α
and inhibit the proliferation of mesangial cells by inhibiting the
activation of NF-kappa B signaling pathway, playing a protective
role in LN. Nevertheless, the mechanism of reno-protective role of
quercetin in LN still needs to be uncovered.

Our analyses also identified VEGFA as a key target in the course
of HDH treatment against LN. It was evidenced that the plasma
VEGFA level was reduced when SLE patients were treated with
Mycophenolate mofetil (Slight-Webb et al., 2019). And Yuan et al.
(2019b) concluded that VEGF-endothelin-1 system was involved in
the endothelial cell-podocyte crosstalk in LN. However, rare studies
have paid attention to the effect of quercetin on VEGFA. Wang and
the colleagues discovered that astragalus membranaceus, a Chinese

medicine herb containing quercetin, could alleviate acquired
hyperlipidemia through regulating lipid metabolism, in which the
upregulated VEGFA might be one of the key targets (Wang et al.,
2022c). Yu et al. (2022) also found that quercetin could facilitate the
upregulation of the expression of VEGFA and improve fat graft
survival. But the mechanism of quercetin in the treatment of LN
through VEGFA that was predicted in this study still needs to be
further studied.

Besides, this study also elucidated that TNF signaling pathway, Toll-
like receptor signaling pathway, NOD-like receptor signaling pathway,
NF-kappa B signaling pathway, HIF-1 signaling pathway, and PI3K-
Akt signaling pathway might be involved in the pharmacological effect
of HDH against LN (Figures 4A, 5A, C). TNF signaling pathway (Aten
et al., 2000), Toll-like receptor signaling pathway (Pawar et al., 2007),
NF-kappa B signaling pathway (Su et al., 2018), HIF-1 signaling
pathway (Chen et al., 2020c), and PI3K-Akt signaling pathway
(Stylianou et al., 2011) represent classic signaling pathways of LN.
However, limited studies interpreted the effect of HDH from these
aspects. In the treatment of cervical cancer, researchers found that a
traditional Chinese medicine prescription, Yangshe granule that
consists of herbs including HDH, exerted anti-cancer effect through
regulating the PI3K-AKT signaling pathway and apoptosis (Ma et al.,
2023). The above result was consistent with one of the predicted
pathways in our study. While all the predicted mechanism needs to
be further validated by experiments.

In general, our study mainly found that the active components of
HDH, stigmasterol and quercetin, may play a protective role in LN
patients by acting on TNF and VEGFA. Yet the interaction predicted
in this study still needs to be tested in vitro and in vivo. However, it
should be emphasized that even though the study identified several key
targets, the multi-targets effect and multi-pathways effect of traditional
Chinese medicine cannot be ignored, and the therapeutic effects of
HDH in LN cannot be simply attributed to these binding. Anyway, the
research provides us new insights into the therapeutic mechanism of
HDH in LN. And the network pharmacology methods used in this
study also offered guidance and inspiration for further researches and
the development of new drugs.
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