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Collagen has been considered a key treatment option in preventing damage to the
articular cartilage over time and supporting the healing process, following the onset
of osteoarthritis (OA). This study aimed to investigate the effect of collagen
fermented from jellyfish (FJC) by Bacillus subtilis natto on anterior cruciate
ligament transection with medial meniscectomy (ACLT + MMx)-induced knee OA
in high-fat diet (HFD)-induced obesity in rats. The male Sprague–Dawley rats were
fed an HFD for 6 weeks before ACLT + MMx surgery, after which they were
administered a daily oral gavage of saline (control, OA, and OBOA), either with
FJC (20mg/kg, 40 mg/kg, and 100mg/kg body weight) or glucosamine sulfate as a
positive control (GS; 200mg/kg body weight) for 6 weeks. Treatment with FJC
decreased the fat weight, triglyceride, and total cholesterol levels in obese rats.
Additionally, FJC downregulated the expression of some proinflammatory cytokines,
including tumor necrosis factor-α, cyclooxygenase-2, and nitric oxide; suppressed
leptin and adiponectin expression; and attenuated cartilage degradation. It also
decreased the activities of matrix metalloproteinase (MMP)-1 and MMP-3. These
results demonstrated that FJC showed a protective effect on articular cartilage and
also suppressed the degradation of cartilage in an animal OA model, suggesting its
potential efficacy as a promising candidate for OA treatment.
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1 Introduction

Osteoarthritis (OA) is a degenerative disease of joint instability, and more than 240 million
people worldwide suffer from this disease (Lee et al., 2020; Katz et al., 2021). The main features
of OA include progressive erosion of articular cartilage, subchondral bone sclerosis, and
synovitis (Feng et al., 2017). In the treatment of OA, it is always a challenge to seek effective
therapies to reduce joint degeneration, improve joint mobility, and relieve joint pain. The
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current treatments for mild to moderate OA include acetaminophen
and non-steroidal anti-inflammatory drugs (NSAIDs), but these drugs
have potential adverse effects on the gastrointestinal tract, liver, heart,
and kidney and will aggravate the reaction as the dose and treatment
time increase (McAlindon et al., 2014). Therefore, it is necessary to
find an alternative therapy for OA such as by using natural products
either as functional foods or food supplements.

Jellyfish (Rhopilema esculentum) has been an indispensable
ingredient in Chinese cuisine for more than a thousand years.
Collagen has been identified as one of the chemical compositions
of jellyfish (Khong et al., 2016). Collagen is a major structural protein
in bone and animal skin (Gistelinck et al., 2016). Collagen is composed
of glycine, proline, and proline amino acids (Albaugh et al., 2017).
Collagen is a major component in the extracellular matrix and also
makes up the cartilage in humans, especially collagen type II (Amirrah
et al., 2022). A previous study reported that collagen is widely used in
the pharmaceutical, biomedical, and film industries (Benjakul et al.,
2010). A previous study also reported that collagen effectively
improves OA symptoms by decreasing both the total VAS score
and WOMAC Index (García-Coronado et al., 2018).

In the case of OA treatment, collagen supplementation is also
considered to be a key treatment option in preventing damage to
articular cartilage over time and supporting the healing process after
OA. However, due to insufficient bone and leather supply, collagen
prices have gradually increased, and religious factors have further
restricted the use of pigs and cattle (Kaewdang et al., 2014), whereas
porcine pepsin has been commonly used for collagen production
(Benjakul et al., 2010). According to these conditions, the research for
alternative collagen sources has been a major issue. The alternative
sources include marine animals and the use of bacterial enzymes as an
alternative to replacing porcine pepsin during collagen extraction. A
previous study reported that Bacillus subtilis natto has been used in
fermented collagen production (Hsu and Chiang, 2009). Therefore,
this study aimed to investigate the ameliorative effects of fermented
jellyfish (Rhopilema esculentum) collagen (FJC) on anterior cruciate
ligament transection with meniscectomy-induced OA in high-fat diet-
induced obese rats.

2 Materials and methods

2.1 Materials

Jellyfish (Rhopilema esculentum) was obtained from Fuzhou Zelin
Food Co. Ltd., (Fuzhou, China). Glucosamine sulfate was purchased from
Chen Ta PlamaMfg, Co. Ltd., (Tainan, Taiwan). The standard laboratory
chow-fed diet (Laboratory Rodent Diet 5,001) was purchased from PMI
Nutrition International, Inc. (Brentwood, MO, United States). Lard was
purchased from MP Biomedicals (Cat. No. 902140, Santa Ana, CA,
United States). A total cholesterol commercial kit (Ref. CH7945) was
purchased from Randox Laboratories, Ltd., (Crumlin, United Kingdom),
and triglyceride (TG; Cat. No. ETGA-200) and high-density lipoprotein
cholesterol (HDL-C; Cat. No. EHDL-100) kits were purchased from
BioAssay Systems (Hayward, CA, United States of America). MMP-1
(Cat. No. E-EL-R0617), MMP-3 (Cat. No. E-EL-R0619), and
prostaglandin (PG)-E2 (Cat. No. E-EL-0034) ELISA kits were
purchased from Elabscience Biotechnology Inc. (Houston, TX,
United States). Interleukin (IL)-1β (Cat. No. SEA563Ra), TNF-α (Cat.
No. SEA133Ra), and leptin (Cat. No. SEA084Ra) ELISA kits were

purchased from USCN Life Science Inc. (Wuhan, China). NF-κB (Cat.
No. ER1186) ELISA kits were purchased from Wuhan Fine Biotech Co.,
Ltd., (Wuhan, China). Zoletil 50 and Lofalin injections (cefazolin sodium)
were purchased fromVirbac (Carros, France) and Gentle PharmCo. Ltd.,
(Yunlin, Taiwan), respectively. Formaldehyde solution was purchased
from Avantor Performance Materials Inc. (Radnor, PA, United States).

2.2 Jellyfish collagen (JC) and fermented
jellyfish collagen (FJC) extraction

The jellyfish collagen extract was obtained according to the
previous method (Khong et al., 2018). Briefly, jellyfish was washed
with distilled water and extracted with 0.1 M NaOH. After
homogenization, it was extracted with 0.5 M acetic, and ultrasound
was performed for 2 h and then rigorously mixed at 4°C for 2 h. The
supernatant was collected by centrifugation (10,000 × g, 4°C, 2 h), and
then, NaCl was added to a final concentration of 4.5 M. The precipitate
was collected by centrifugation (10,000 × g, 4°C, 2 h) and dissolved in
0.5 M acetic acid. The solution was dialyzed against distilled water in a
dialysis bag for 3 days and then lyophilized to obtain the jellyfish
collagen extract. FJC was obtained according to the previous method
(Hsu and Chiang, 2009). Briefly, JC was added to dH2O, glucose (2%),
and bacterial fluids (containing 2% of Bacillus subtilis natto culture)
and cultivated at 37°C and shaken at 120 rpm for 3 days. After
incubation time, the mixture was centrifuged at 10,000 × g for
25 min, filtered by using a filter paper, and freeze-dried to obtain
FJC and was then stored at −20°C for further analysis.

2.3 Dried jellyfish and JFC characterization

The proximate composition of dried jellyfish wasmeasured according
to the Association of Official Analytical Chemists (AOAC) method
(AOAC, 2000). Briefly, the moisture content of jellyfish was
determined by oven drying at 105°C to obtain constant dry weight.
The ash was measured by complete incineration of the JC at 550°C in a
muffle furnace (AOAC method 930.05). The fat from jellyfish was
extracted using a Soxhlet extractor for 6 h with ethyl ether (AOAC
method 991.36). Total nitrogen was analyzed by the Kjeldahl method,
whereas the protein content was measured by multiplying total nitrogen
by a factor of 6.25 (AOACmethod 981.10). The carbohydrate content was
determined by the difference method.

The amino acid composition of FJC was measured by the high-
performance liquid chromatography (HPLC) method, whereas the
functional group of FJC was determined by Fourier transform-infrared
(FT-IR) spectroscopy (Bruker-Tensor II, Massachusetts, United States),
according to the previous method (Camacho et al., 2001). Additionally,
the UV-Vis absorbance of fermented jellyfish collagen was also detected,
according to the previous method (Seixas et al., 2020).

2.4 Animal model

Male Sprague–Dawley (SD) rats (5 weeks old) were purchased
from BioLASCO Co. Ltd., (Yilan, Taiwan), then housed individually,
and maintained at 25°C ± 2°C with 50% ± 10% of humidity under a 12-
h light/dark cycle throughout the experiments. The Institutional
Animal Care and Use Committee (IACUC Approval No. 109003)
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of National Taiwan Ocean University reviewed and approved all
protocols. The rats (N = 49) were acclimatized for 1 week and
administered a standard chow-fed diet (Laboratory Rodent Diet
5,001) and water ad libitum. After acclimatization, the rats were
randomly divided into two main groups: the normal group [n =
14; fed with chow-fed diet (CFD)] and the obesity (OB) group [n = 35;
fed with high-fat diet (HFD)] (Figure 1). The HFD is composed of
~20% of fat in the total diet or ~40% of calories from fat. After 6 weeks
of feeding time, the normal group was subdivided into two subgroups:
the sham group (control, without ACLT + MMx surgery, n = 7) and
the OA group (with ACLT + MMx surgery, n = 7), whereas the OB
group was subdivided into five subgroups (n = 7) and received ACLT +
MMx surgery (OBOA groups). Four of the OBOA groups were
administered a daily oral gavage with one of three different doses
of FJC [OBOA + FJC1: 20 mg/kg body weight; OBOA + FJC2:
40 mg/kg body weight; FJC5: OBOA + 100 mg/kg body weight] or
a dose of glucosamine sulfate as a positive control (OBOA + GS:
100 mg/kg body weight), according to the previous study with a
modification (Löscher, 2007; Zhuang et al., 2012). These doses are
the effective amount of collagen for human intake, according to the
human equivalent dose (HED) formula of about 2.5 g–15 g/day (Nair
and Jacob, 2016; Paul et al., 2019). The final OBOA group was orally
administered saline (OBOA). The rats were euthanized by exposure to
carbon dioxide (CO2) in an empty chamber after 6 weeks of
treatments. The rats fasted for 12 h before surgery and sacrifice,
and on the day of sacrifice, the body weight and adipose tissues
were measured using a weighing scale. Whole blood and the operated
knee joint were collected and stored for further analysis.

2.5 Surgically induced OA

The surgically induced OA by ACLT + MMx surgery was performed,
according to the previous method (Hayami et al., 2006). Briefly, the rats
were anesthetized by intraperitoneal injection of Zoletil (25 mg/kg body
weight), and hair on the right knee was shaved using a digital hair clipper.
In the control groups, surgery was performed by opening the knee-joint

capsule without ACLT + MMx (sham), whereas the OBOA groups
(OBOA, OBOA + FJC1, OBOA + FJC2, OBOA + FJC5, and GS)
underwent ACLT + MMx. The knee-joint capsule and skin were closed
by sewing with chromic catgut sterile (4-0) and silk braided sterile sutures
(3-0; Unik Surgical SuturesMfg, Co. Ltd., Taipei, Taiwan), respectively. The
rats were then intraperitoneally injected with cefazolin antibiotic
(30 mg/kg) for 3 days after surgery to prevent surgery-related infection.

2.6 Blood sample collection

The whole blood of rats was collected from the abdominal aorta of
the rats on the day of sacrifice using a heparinized syringe. The plasma
or serum was separated from whole blood by centrifugation (Kubota
Centrifuge 3,500; Kubota Corp., Tokyo, Japan) at 3,000 rpm and 4°C
for 15 min. The supernatant was gently collected using a micropipette
and stored at −20°C for future analysis (Sudirman et al., 2019).

2.7 Lipid properties and inflammatory
cytokine analysis

The triglycerides, total cholesterol, and high-density lipoprotein
cholesterol in blood serum were analyzed using commercial kits. The
inflammatory markers, including tumor necrosis factor (TNF)-α,
interleukin (IL)-1β, leptin, matrix metalloproteinase (MMP)-1 and
MMP-13, and prostaglandin (PG)-E2, were analyzed using enzyme-
linked immunosorbent assay (ELISA kits). The analysis was
performed according to manufacturer’s instructions.

2.9 Knee histopathology staining

The operated knee joints were collected on the day of sacrifice and
fixed with a 4% formaldehyde solution. After the decalcification process,
the paraffin-embedded sections (5 μm) were stained with Safranin-O.
This staining was performed by Li Pie Co. Ltd., (Taichung, Taiwan).

FIGURE 1
Flowchart of fermented jellyfish collagen (FJC) treatment on anterior cruciate ligament transection with medial meniscectomy (ACLT + MMx)-induced
osteoarthritis (OA) in high-fat diet-induced obese (OB) rats.
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2.10 Statistical analysis

All data were expressed as the mean ± standard deviation (SD) and
analyzed by one-way ANOVA with Duncan’s post hoc test (p < 0.05)
using SPSS (v.22.0; IBM Corp., Armonk, NY, United States). All
graphics were produced using GraphPad Prism 5.0 software
(GraphPad Software, Inc., San Diego, CA, United States).

3 Results

3.1 Chemical composition of dried jellyfish
and fermented jellyfish collagen

Table 1 shows that freeze-dried jellyfish are composed of high ash
(81.53%) and protein (10.27%). Jellyfish is also composed of low levels

of carbohydrates, water, and lipid. According to the HPLC method,
the fermented jellyfish collagen (FJC) shows a high level of glycine
(324.84 residues) and also presents proline (95.63 residues) and
hydroxyproline (46.86 residues) amino acids (Table 2). The
functional groups by FT-IR and collagen identification by UV-
Visible spectroscopy of FJC’s collagen are shown in Figure 2 and
Figure 3, respectively. Figure 2 shows the five amide peaks that were
detected in the collagen: amide A (3,400 cm−1–3,440 cm−1), amide B
(2,900 cm−1), amide I (1,600 cm−1–1700 cm−1), amide II
(~1,550 cm−1), and amide III (1,220 cm−1–1,320 cm−1). The
maximum UV radiation of the FJC is around 233 nm, as shown in
Figure 3.

3.2 FJC supplementation reduces adipose
tissue weight

Table 3 shows that a high dose of FJC supplementation (OBOA
+ FJC5) significantly (p < 0.05) reduced the epididymal adipose
fat when compared to without treatment (OBOA). It also
significantly (p < 0.05) decreased abdominal fat. Additionally,
supplementation of FJC in high doses also significantly (p < 0.05)
reduced the liver and kidney weights when compared to the OA
group.

3.3 FJC supplementation regulates
triglyceride and cholesterol levels

High levels of triglycerides (TG) and total cholesterol (TC)
were detected in the OBOA group (Figure 4). However, the OBOA
group showed low-level high-density lipoprotein cholesterol
(HDL-C). Oral supplementation of FJC for 6 weeks significantly
(p < 0.05) reduced the levels of TG and TC, and a high dose of FJC
(OBOA + FJC5) treatment significantly (p < 0.05) elevated the
HDL-C level.

TABLE 1 Proximate composition of freeze-dried jellyfish.

Component Values ± SD (% dry weight)

Moisture 2.92 ± 0.05

Protein 10.27 ± 0.09

Lipid 0.15 ± 0.13

Ash 81.53 ± 0.29

Carbohydrates 5.13

Data are shown as the mean ± SD (n = 3).

TABLE 2 Amino acid compositions of fermented jellyfish collagen (JFC).

Amino acid Residues/1,000 residues

Glycine 324.84

Glutamic acid 103.21

Proline 95.63

Alanine 100.74

Aspartic acid 76.86

Arginine 55.87

Hydroxyproline 46.86

Serine 29.85

Lysine 30.22

Threonine 27.33

Leucine 30.68

Valine 22.21

Isoleucine 11.78

Phenylalanine 14.86

Methionine 8.57

Tyrosine 7.23

Cysteine 2.40

FIGURE 2
Fourier transform-infrared (FT-IR) spectra of fermented jellyfish
collagen (FJC).
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FIGURE 3
UV-Visible absorption of fermented jellyfish collagen (FJC).

TABLE 3 Effects of fermented jellyfish collagen (FJC) and glucosamine sulfate (GS) on the change in organ and adipose tissue weights in rats after 6 weeks of treatment.

Group Organ weights (% of body weight)

Liver Kidney Epididymal fat Abdominal fat

Control 3.04 ± 0.22abc 0.76 ± 0.03c 1.68 ± 0.29bc 1.87 ± 0.45cd

OA 3.18 ± 0.15c 1.39 ± 0.37b 1.39 ± 0.37c 1.89 ± 0.63d

OBOA 2.93 ± 0.22abc 2.20 ± 0.60a 2.20 ± 0.60a 2.91 ± 0.46a

OBOA + FJC1 3.09 ± 0.38bc 2.04 ± 0.38a 2.04 ± 0.38ab 2.51 ± 0.39abc

OBOA + FJC2 2.85 ± 0.21ab 0.72 ± 0.05c 1.84 ± 0.38ab 2.25 ± 0.55bcd

OBOA + FJC5 2.80 ± 0.17a 0.75 ± 0.07c 1.65 ± 0.26bc 1.94 ± 0.22cd

OBOA + GS 2.89 ± 0.23ab 0.68 ± 0.07c 1.89 ± 0.36ab 2.71 ± 0.67ab

Data represent the mean ± SD (n = 7). Different letters (a–d) indicate statistically different values (p< 0.05) between groups, as analyzed by using one-way ANOVA with Duncan’s post hoc test.

FIGURE 4
Effects of fermented jellyfish collagen (FJC) and glucosamine sulfate (GS) on triglycerides, total cholesterol level, and high-density lipoprotein
cholesterol (HDL-C) in rats’ plasma after treatment for 6 weeks. Data represent the mean ± SD (n = 7). Different letters indicate (a–c) statistically different
values (p < 0.05) between groups determined using one-way ANOVA with Duncan’s post hoc test.
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3.4 FJC supplementation enhances
antioxidant activities and reduces pro-
inflammatory mediators and cytokines

The OA and OBOA groups showed low antioxidant activities,
such as superoxide dismutase (SOD) and glutathione peroxidase
(GPx), as shown in Figure 5. As a result, these groups possessed

high malondialdehyde (MDA) levels. After 6 weeks of treatment,
medium and high doses of FJC (OBAO + FJC2 and OBAOFJC5,
respectively) significantly (p < 0.05) enhanced the SOD and GPX
activities. Additionally, the MDA level significantly (p < 0.05)
decreased after being treated with FJC. The concentration of
inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2) significantly (p < 0.05) increased in untreated groups (OA

FIGURE 5
Effects of fermented jellyfish collagen (FJC) and glucosamine sulfate (GS) on superoxide dismutase (SOD) activity, glutathione peroxidase (GPx), and
malondialdehyde (MDA) levels in rats’ plasma after treatment for 6 weeks. Data represent the mean ± SD (n = 7). Different letters indicate (a–d) statistically
different values (p < 0.05) between groups determined using one-way ANOVA with Duncan’s post hoc test.

FIGURE 6
Effects of fermented jellyfish collagen (FJC) and glucosamine sulfate (GS) on inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase
(COX)-2, and prostaglandin E2 (PGE2) in rats’ plasma after treatment for 6 weeks. Data are shown as the mean ± SD (n = 7). Different letters indicate (a–e)
statistically different values (p < 0.05) between groups determined using one-way ANOVA with Duncan’s post hoc test.
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and OBOA) when compared to treated groups, as shown in Figure 6.
As a result, the concentration of NO and prostaglandin E2 (PGE2) also
increased in OA andOBOA groups. FJC supplementation significantly
(p < 0.05) reduced these levels after being treated for 6 weeks. The OA
and OBOA groups also showed high-level pro-inflammatory
cytokines such as tumor necrosis factor (TNF)-α and leptin, as
shown in Figure 7. The levels of TNF-α and leptin were
significantly (p < 0.05) reduced after being treated with medium
and high levels of FJC for 6 weeks of treatment.

3.5 Oral supplementation of FJC reduces
matrix metalloproteinases and increases
collagen type II levels

The OA and OBOA groups showed high levels of matrix
metalloproteinases MMP-1 and MMP-3, as shown in Figure 8.
These levels were significantly (p < 0.05) reduced after being
treated with medium and high doses of FJC (OBOA + FJC2 and
OBOA + FJC5, respectively). These treatments also significantly (p <
0.05) increased collagen type II levels.

3.6 FJC supplementation protects against
cartilage degradation

Normal cartilage was observed in the control group, as shown in
Figure 9. However, the OA and OBOA groups showed cartilage
surface disruption. This condition also showed a high loss of
proteoglycans, as indicated by the fading of the red color. After
being treated by FJC for 6 weeks of treatment, the smooth cartilage
surface was identified.

4 Discussion

In this present study, we successfully extracted and fermented the
jellyfish (Rhopilema esculentum) using Bacillus subtilis natto to obtain
fermented jellyfish collagen (FJC). A previous study reported that B.
subtilis natto has been used for fermented collagen production (Hsu
and Chiang, 2009). Additionally, a serine protease (nattokinase) and
collagenase enzyme have been detected in the supernatant of B. subtilis
culture (Nagano and To, 2014; Ju et al., 2019). The jellyfish’s collagen
is composed of a high amount of glycine, proline, and hydroxyproline.

FIGURE 7
Effects of fermented jellyfish collagen (FJC) and glucosamine sulfate (GS) on tumor necrosis factor-alpha (TNF-α), leptin, and adiponectin in rats’ plasma
after treatment for 6 weeks. Data represent the mean ± SD (n = 7). Different letters indicate (a–d) statistically different values (p < 0.05) between groups
determined using one-way ANOVA with Duncan’s post hoc test.

FIGURE 8
Effects of fermented jellyfish collagen (FJC) and glucosamine sulfate (GS) onmatrix metalloproteinase (MMP)-1, MMP-3, and collagen type II level in rats’
plasma after treatment for 6 weeks. Different letters indicate (a–e) statistically different values (p < 0.05) between groups determined using one-way ANOVA
with Duncan’s post hoc test.
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These amino acids are the major amino acids (57%) in the collagen
structure (Li and Wu, 2017). The FT-IR analysis showed five amide
peaks: amide A, amide B, amide I, amide II, and amide III. A previous
study reported that five amide peaks usually portray collagen
characteristics (Seixas et al., 2020). The amide A band between
3,310 cm−1 and 3,270 cm−1 was associated with N–H stretching
(Barth, 2007). Additionally, the band from 3,080 cm−1 to
2,889 cm−1 (amide B) was also related to N–H stretching (Riaz
et al., 2018). The amide I band around 1,600 cm−1 indicated C = O
stretching on proteins (de Campos Vidal and Mello, 2011), whereas
N–H bending was represented by the amide II band (from 1,580 to
1,500 cm−1) (Murphy et al., 2014). The amide III band between
1,200 cm−1 and 1,350 cm−1 indicated C–N stretching and N–H
bending (Cai and Singh, 2004).

An in vivo study demonstrated the ameliorative effects of FJC on
surgically induced knee osteoarthritis (OA) in an obese rat model. A
previous study also reported that cannonball jellyfish collagen reduced
the pathogenesis of adjuvant arthritis in a rat model (Wood et al.,
1969). The obesity condition has been considered an OA risk factor
due to mechanical force in knee OA and proinflammatory production
(Divella et al., 2016; Sudirman et al., 2022). Therefore, reduction of
body weight or weight loss is a non-pharmacological OA treatment
due to a decreased weight-bearing joint loading (Messier, 2008).
Obesity is characterized by a high accumulation of adipose tissues
or fats (Longo et al., 2019). The untreated OBOA group showed a high
accumulation of fats, including epididymal and abdominal fats. This
group also showed high levels of triglycerides (TG) and total
cholesterol (TC). A previous study also reported that high levels of
TG and TC were observed in obese conditions (Klop et al., 2013). The
FJC showed anti-obesity properties by reducing the fat weight and TG
and TC levels. Additionally, FJC treatment also increased the level of
high-density lipoprotein cholesterol (HDL-C), whereas this level

decreased in the obesity stage, as reported by a previous study
(Wang and Peng, 2011). Previous studies also reported that marine
collagen from the skin of skate (Raja kenojei) reduced the plasma
LDL-C level and non-esterified free fatty acids (NEFAs) and increased
the level of HDL-C. This marine collagen also downregulated the
expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase
(ACC) in the animal model (Woo et al., 2018; Woo and Noh, 2020).

Low activity of enzymatic antioxidants such as superoxide dismutase
(SOD) and glutathione peroxidase (GPx) was shown in OA and OBOA
groups. Increasing themalondialdehyde (MDA) level was also observed in
these groups. The MDA level was used as an indicator of the lipid
peroxidation level and was also associated with an increase in free radical
production (Mas-Bargues et al., 2021). In the case of surgically induced
knee OA, oxidative stress also increased due to mechanical force (Yui
et al., 2016). Also, oxidative stress was associated with an elevated level of
obesity due to the presence of immoderate adipose tissue (Pottie et al.,
2006). In the present study, we observed that the OBOA group shows a
high level of oxidative stress, as indicated by the low activity of SOD and
GPx and a high level ofMDA. This condition due to obesity also increased
free radical production. A previous study reported that obesity was
observed in the reduction of SOD and GPx activities and was also
associated with oxidative stress (Pandey et al., 2015; Masschelin et al.,
2020). Additionally, the MDA level also increased in this condition (Jia
et al., 2019). Oral supplementation of FJC showed antioxidant properties
by enhancing enzymatic antioxidant activities and reducing MDA levels.

Nitric oxide (NO) is considered a proinflammatory mediator and
is also associated with oxidative stress. This level increased in OA and
OBOA groups. Increasing the NO level shows a positive correlation
with the level of inducible nitric oxide synthase (iNOS). A previous
study reported that iNOS synthesized NO from l-arginine and oxygen
in chondrocytes (Ahmad et al., 2020). Additionally, chondrocyte
apoptosis and cartilage degradation might be caused by NO

FIGURE 9
Representative of the Safranin O staining difference of the knee joint of each group after treatment for 6 weeks. Cartilage (orange to red) and nuclei
(black).
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produced in joints (Robinson et al., 2016). The level of prostaglandin-
E2 (PG-E2) also increased in OA and OBOA groups. A high level of
PG-E2 in the OA condition was associated with inflammation signs
and progression, such as redness and pain. PG-E2 was also considered
a proinflammatory mediator and was synthesized by cyclooxygenase
(COX)-2 from arachidonic acid (Ricciotti and FitzGerald, 2011; Wang
and DuBois, 2013). Additionally, COX-2 also was observed to increase
in this present study. Previous studies also reported that the NO and
PG-E2 levels also increased in the OA condition (Studer et al., 1999;
Fermor et al., 2005). Some proinflammatory cytokines also were
observed to be elevated in OA and OBOA groups, such as tumor
necrosis factor-alpha (TNF-α) and leptin. A previous study reported
that TNF-α and adipokines, such as leptin, are secreted by adipocytes
and preadipocytes in the obese stage, and they indicated a state of
chronic inflammation (Fernández-Sánchez et al., 2011). Additionally,
elevated TNF-α and leptin are involved in the OA progression (Li
et al., 2018; Yan et al., 2018). In the present study, fermented collagen
from jellyfish shows anti-inflammatory activity by reducing some
proinflammatory mediators and cytokines. A previous study also
reported that marine collagen from skate reduced the leptin level
in an animal model of obesity (Woo et al., 2018).

On the other hand, the p38/c-Jun N-terminal kinase (JNK) and
mitogen-activated protein kinase (MAPK) pathways may be stimulated
by inflammatory cytokines such as TNF-α to synthesize matrix
metalloproteinase-1 (MMP-1) and MMP-3 (Vincenti and
Brinckerhoff, 2002; Martin et al., 2003). Additionally, leptin also
significantly induced MMP expression by activating AP-1 via the
leptin receptor/MAPK/ERK signal transduction pathways (Liu et al.,
2018). Therefore, the levels of MMP-1 and MMP-3 increased in the
OA and OBOA groups. These enzymes are produced by synovial lining
cells in arthritis conditions (Yoshihara et al., 2000). MMP-1, also known
as collagenase-1, is a collagenase enzyme that is involved in the
degradation of interstitial collagen (collagen types I, II, and III) and
aggrecan (Burrage, 2006). Therefore, elevated MMP-1 is associated with
cartilage degradation and OA progression (Wu et al., 2008). Additionally,
MMP-3 could also be used as a potential biomarker for knee OA (Pengas
et al., 2018). MMP-3, also known as stromelysin-1, is a neutral protease
that is involved in the destruction of cartilage due to its capability of
degrading some extracellular matrix components such as collagen
(collagen types II, IX, X, and XI) and aggrecan (Naito et al., 1999).
Therefore, inhibition of MMPs also is a key treatment for OA
management due to cartilage composed of collagen (especially type II)
and proteoglycans (especially aggrecan) (Fox et al., 2009). In this study, we
observed that collagen type II increased after being treated with fermented
jellyfish collagen (FJC) when compared to OA and OBAO groups. This
condition indicated that FJC significantly protected collagen degradation
during the treatment.

Under Safranin-O staining observation, we found that OA and
OBOA groups show a high progression of OA development.
According to a previous study, this staining result shows the nuclei
(black), cartilage matrix (orange to red), and cytoplasm (bluish or
gray-green). In this case, the loss of proteoglycans or cartilage is
indicated by the loss of staining intensity (Schmitz et al., 2010). This
condition may be caused by the activation of cartilage-degrading
enzymes such as MMP-1 and MMP-3 by activation of the same
transcription factor by proinflammatory cytokines (Pritzker et al.,
2006). Additionally, oxidative stress is also involved in cartilage type II
degradation (Henrotin et al., 2005; Pritzker et al., 2006). After being
treated with FJC, we found that FJC treatment successfully protects

cartilage degradation and suppresses OA development. A previous
study reported that healthy cartilage is recognized by a smooth
cartilage layer and associated chondrocytes present in well-ordered
zones (Pritzker et al., 2006).

5 Conclusion

Fermented collagen from jellyfish (Rhopilema esculentum) showed
the ameliorative effects of surgically induced osteoarthritis in obese
rats. Oral supplementation of fermented collagen decreased body
weight, triglyceride, and total cholesterol levels in obese rats. It also
downregulated the expression of some proinflammatory cytokines,
including tumor necrosis factor-α, cyclooxygenase-2, and nitric oxide;
suppressed leptin and adiponectin expression; and attenuated cartilage
degradation. Fermented jellyfish collagen also decreased the activities
of matrix metalloproteinase (MMP)-1 and MMP-3. These results
demonstrated that fermented jellyfish collagen showed a protective
effect on articular cartilage and also suppressed the degradation of
cartilage in an animal OA model, suggesting its potential efficacy as a
promising candidate for OA treatment.
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