
In silico prediction and biological
assessment of novel angiogenesis
modulators from traditional
Chinese medicine

Yingli Zhu1,2,3, Hongbin Yang2, Liwen Han4,5, Lewis H. Mervin2,
Layla Hosseini-Gerami2, Peihai Li4, Peter Wright2,
Maria-Anna Trapotsi2, Kechun Liu4, Tai-Ping Fan3* and
Andreas Bender2*
1Department of Clinical Chinese Pharmacy, School of Chinese Material Medica, Beijing University of Chinese
Medicine, Beijing, China, 2Department of Chemistry, Center for Molecular Science Informatics, University of
Cambridge, Cambridge, United Kingdom, 3Department of Pharmacology, University of Cambridge,
Cambridge, United Kingdom, 4Engineering Research Center of Zebrafish Models for Human Diseases and
Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy
of Sciences, Jinan, China, 5School of Pharmacy and Pharmaceutical Science, Shandong First Medical
University, Shandong Academy of Medical Sciences, Jinan, China

Uncontrolled angiogenesis is a common denominator underlying many deadly and
debilitating diseases such as myocardial infarction, chronic wounds, cancer, and
age-related macular degeneration. As the current range of FDA-approved
angiogenesis-based medicines are far from meeting clinical demands, the vast
reserve of natural products from traditional Chinese medicine (TCM) offers an
alternative source for developing pro-angiogenic or anti-angiogenic modulators.
Here, we investigated 100 traditional Chinese medicine-derived individual
metabolites which had reported gene expression in MCF7 cell lines in the Gene
Expression Omnibus (GSE85871). We extracted literature angiogenic activities for
51 individual metabolites, and subsequently analysed their predicted targets and
differentially expressed genes to understand their mechanisms of action. The
angiogenesis phenotype was used to generate decision trees for rationalising the
poly-pharmacology of known angiogenesis modulators such as ferulic acid and
curculigoside and validated by an in vitro endothelial tube formation assay and a
zebrafishmodel of angiogenesis. Moreover, using an in silicomodel we prospectively
examined the angiogenesis-modulating activities of the remaining 49 individual
metabolites. In vitro, tetrahydropalmatine and 1 beta-hydroxyalantolactone
stimulated, while cinobufotalin and isoalantolactone inhibited endothelial tube
formation. In vivo, ginsenosides Rb3 and Rc, 1 beta-hydroxyalantolactone and
surprisingly cinobufotalin, restored angiogenesis against PTK787-induced
impairment in zebrafish. In the absence of PTK787, deoxycholic acid and
ursodeoxycholic acid did not affect angiogenesis. Despite some limitations, these
results suggest further refinements of in silico prediction combined with biological
assessment will be a valuable platform for accelerating the research and
development of natural products from traditional Chinese medicine and
understanding their mechanisms of action, and also for other traditional
medicines for the prevention and treatment of angiogenic diseases.
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1 Introduction

Angiogenesis is the physiological process of new blood vessel
formation. Excessive or insufficient angiogenesis occurs in more than
70 diseases such as cancer, endometriosis, chronic wounds, and stroke
(Fan et al., 2006). Excessive angiogenesis occurs when diseased cells
produce abnormally large amounts of pro-angiogenic factors (e.g.,
vascular endothelial growth factor VEGF, and interleukin-8 IL-8)
overwhelming the effects of endogenous inhibitors (e.g.,
angiostatin, platelet factor 4) (Ferrara and Henzel, 1989;
Heidemann et al., 2003; O’Reilly et al., 1994; Bikfalvi, 2004). In

these conditions, the new blood vessels feed the diseased tissues
and destroy normal tissues or interfere with their functions. In
contrast, inadequate blood vessel growth results in circulatory
inefficiency leading to the risk of tissue death (Carmeliet, 2005).

The discoveries of endogenous pro-angiogenic and anti-angiogenic
molecules and elucidation of their respective signalling pathways have
led to the development of clinically effective anti-angiogenesis drugs
such as monoclonal antibodies (Krasnoperov et al., 2010), small
molecule tyrosine kinase inhibitors (Watanabe et al., 2021) and
mTOR inhibitors (Roy et al., 2013), as well as recombinant human
proteins (Jung et al., 2002). The vast reserve of natural products and

FIGURE 1
This study compromises three main parts. (A) Literature assessment of angiogenesis-modulating individual metabolites from TCM, (B)Decision tree and
clustering analysis to validate known mechanisms, and (C) Identification and assessment of new small-molecule modulators of angiogenesis in vitro and in
vivo.
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herbal medicines offers a source for developing anti- or pro-angiogenic
agents. For example, combretastatin and paclitaxel, derived from
African bush willow tree and Pacific yew tree respectively have been
developed into angiogenesis inhibitors (Wang et al., 2003; Sengupta
et al., 2004). Both target microtubules and are categorized as vascular
targeting agents to eradicate tumour vasculature (Pasquier et al., 2007).

In traditional Chinese medicine (TCM), many botanical drugs are
used in the treatment of angiogenic diseases by modulating
angiogenesis-related targets or pathways (Fan et al., 2006).
However, studies have revealed that some medicinal plants can
contain both pro- and anti-angiogenic phytochemicals. For
example, ginseng contains ginsenosides that exert opposite effects
on angiogenesis (Sengupta et al., 2004), with Rg1 having a pro-
angiogenic effect (Leung et al., 2006), while Rb1 and its metabolite
Rg3 have been shown to have anti-angiogenic effects (Yue et al., 2006;
Leung et al., 2007). Likewise, Radix Angelica sinensis also possesses
opposite angiogenesis-modulating components in its aqueous and
volatile components. Aqueous extract of it promotes angiogenesis
(Lam et al., 2008). In contrast, a volatile component
n-butylidenephthalide derived from it inhibits angiogenesis (Yeh
et al., 2011). These results highlight the importance of identifying
pro- and anti-angiogenic substances in medicinal plants as well as
elucidating their mechanism of action (MoA), not only for the
development of novel agents for the treatment of angiogenic
diseases, but also to ensure their proper and safe uses as
nutraceuticals. Therefore, elucidation of MoA is of relevance to the
current work, aiming to use TCM and medicinal plants from different
ethnic origins as a source of angiogenesis modulators.

Ligand-based target prediction methods rely on the principle of
chemical similarity, which assumes that compounds with similar
chemical structure should exhibit similar biological effects (Mervin
et al., 2018a; Mervin et al., 2018b; Mervin et al., 2020). While this
principle generally holds across large datasets, it is not always valid,
e.g., due to “Activity Cliffs,” where the activity of a compound changes
abruptly, despite only minor changes in the chemical structure (Young
et al., 2008; Stumpfe et al., 2019). Likewise, chemical space coverage with
annotated target bioactivity information is sometimes sparse (particularly
for natural products), and hence accurate prediction of targets will not be
possible for a model for all chemical space, and across all protein targets.

Existing methods used to provide hypotheses for the MoA of
compounds (Trapotsi et al., 2021) involve analysing chemical
structures and their protein targets (Byrne and Schneider, 2019)
transcriptional responses following treatment (Ravindranath et al.,
2015) and text mining (Trapotsi et al., 2021). Target prediction in silico
is a well-established computational technique capable of inferring the
MoA of putative compounds by utilizing known bioactivity
information (Mohamad Zobir et al., 2016). This technique is used
for the deconvolution of phenotypic screens (Ehrman et al., 2007a)
and has been applied to TCM by Ehrman et al. (2007b) who used
Random Forest Classifier to screen 8,264 individual metabolites from
242 TCM botanical drugs in silico. Of particular interest, a relatively
large number of botanical drugs were predicted to inhibit multiple
targets, as well as the same target from different phytochemical classes
(Ehrman et al., 2010; Barlow et al., 2012). Mohd Fauzi et al. reported
that the MoA of the individual metabolites from the “tonifying and
replenishing medicinal” class from TCM known to exhibit a
hypoglycemic effect can be related to the activity of their
ingredients against the sodium-glucose linked transporters (SGLT)
1 and 2 as well as protein tyrosine phosphatase (PTP).

Gene expression-based methods for the analysis of MoA (Chen
et al., 2015) use the differential gene expression profile of a compound
in cells upon compound perturbation. Microarrays are capable of
simultaneously providing information on the expression of virtually
the whole transcriptome at a time (Maggiora, 2006). In addition, more
recent methods such as DRUG-Seq (Ye et al., 2018) and RASL-Seq
(Simon et al., 2019) were established, which take advantage of newer
sequencing technologies and thereby aim to increase the information
content and decrease the cost of the data being generated. Using
microarray gene expression profiling with “Connectivity Map”
mining, Jiang et al. reviewed the widely applied Connectivity Map
in TCM to discover the molecular mechanism and for TCM
repurposing (Jiang et al., 2021). However, gene expression is only
one level of information, which represents transcriptional changes in a
model biological system (such as a cell line), and at a given time point
and compound concentration, which may not represent the
therapeutic situation in vivo (Bender and Cortés-Ciriano, 2021;
Bender and Cortes-Ciriano, 2021). Gene expression is not regulated
only by direct compound activity but is also influenced by disease
processes and feedback loops, and hence while its interpretation is
often not straightforward, this more complex biological setup is still
closer to the reality of living systems.

Given the multi-faceted nature of MoAs, we chose to combine
ligand-target predictions and gene expression data for understanding
known angiogenesis modulators from TCM and constructed a
Machine Learning model to predict the angiogenesis-modulating
activities of unknown individual metabolites. The predictions were
then validated by an in vitro endothelial tube formation assay (Bishop
et al., 1999) and a zebrafish model of angiogenesis (Yuan et al., 2018),
which we have previously used to identify individual pro-angiogenic
(Yuan et al., 2018; Liao et al., 2019) or anti-angiogenic compounds
(Han et al., 2012; Han et al., 2013; Li et al., 2021).

2 Materials and methods

2.1 Materials

2.1.1 Individual metabolites from TCM for biological
assessment

Curculigostide (PHL80576, ≥98%), Deoxycholic Acid
(D2510, ≥98%) and Tetrahydropalmatine (SMB00339, ≥98%) were
purchased from Sigma-Aldrich, Gillingham, Dorset, United Kingdom.
Ferulic acid (19,871, ≥98%), Ursodeoxycholic Acid (21,892, ≥98%),
Isoalantolactone (33,838, ≥98%) Cinobufotalin (19,845, ≥98%) and
Ginsenosides Rg1 (15,315, ≥98%), Ginsenosides Rb3 (29,005, ≥98%)
and Ginsenosides Rc (29,088, ≥98%) were purchased from Cayman
Chemical, Ann Arbor, Michigan, United States. 1 beta-
hydroxyalantolactone (RB17897, ≥95%) were purchased from
Bioruler, Connecticut, United States.

2.1.2 In vitro and in vivo materials
Human umbilical vein endothelial cells (HUVECs) and human

dermal fibroblasts (HDFs) were purchased from PromoCell Cells
(Heidelberg, Germany) and were subsequently cultured in
PromoCell’s Endothelial Cell Growth Medium 2 (EGM-2)
containing 2% foetal bovine serum (FBS), human epidermal growth
factor (EGF), human basic fibroblast growth factor (bFGF), insulin-
like growth factor (IGF), human vascular endothelial growth factor
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(VEGF), ascorbic acid and heparin. Endothelial Cell GrowthMedium-
2 as well as their respective bullet kits were purchased from PromoCell.
Trypsin 0.005%/EDTA 0.01% solution, Dulbecco A Phosphate
Buffered Saline (PBS), 1-StepTM NBT/BCIP (Pierce Protein
Research) were purchased from Thermo Scientific, Loughborough,
United Kingdom. Foetal bovine serum (FBS), dimethyl sulfoxide
(DMSO), paraformaldehyde, Triton® X-100, rabbit anti-human von
Willebrand factor antibody (F-3520), and mouse anti-rabbit IgG-
alkaline phosphatase (A9919) were purchased from Sigma-Aldrich,
Gillingham, Dorset, United Kingdom. Human recombinant VEGF
and precast gels were purchased from Invitrogen Life Technologies,
Paisley, United Kingdom. PTK787 (vatalanib dihydrochloride) was
purchased from MedChem Express, Monmouth Junction,
United States. Pronase E were purchased from Solarbio, Shanghai,
China.

2.2 Experiment design

In this study, as shown in Figure 1, we have performed a literature
search to build a database of TCM individual metabolites that promote
or inhibit angiogenesis. Then, we annotated the individual metabolites
with their predicted targets and experimentally measured
Differentially Expressed Genes (DEGs) to rationalize the MoA of
the angiogenesis phenotype and with decision trees aimed to
rationalize the poly-pharmacology of the angiogenesis phenotype.
We subsequently created a Machine Learning model, trained on
both DEGs and protein targets to predict a compound’s ability to
modulate angiogenesis. Finally, the predictions were assessed by an
in vitro endothelial tube formation assay (Bishop et al., 1999; Liao
et al., 2019) and an in vivo zebrafish model (Han et al., 2012; Han et al.,
2013).

2.3 Compound set preparation

The compound data set used for this work comprised 100 active
TCM individual metabolites as published in previous work (Lv et al.,
2017), which were commonly found in TCM botanical drugs, such as
Salvia miltiorrhiza Bunge [Lamiaceae; Salviae miltiorrhizae radix et
rhizoma], Coptis chinensis Franch. [Ranunculaceae, Coptidis
Rhizoma], and Panax ginseng C.A.Mey [Araliaceae, Ginseng Radix
et Rhizama]. These were downloaded from the Gene Expression
Omnibus (GEO) using the accession number GSE85871 (the full
list of individual metabolites with annotations is given in
Supplementary Table S1). Most of these 100 individual metabolites
are reported to be quality-controlled components in the Chinese
Pharmacopoeia and have been selected to represent a wide range
of activities and diverse structures (Lv et al., 2017). According to our
literature review, 51 of the 100 active TCM individual metabolites
studied were known to modulate angiogenesis (Known Angiogenesis
Modulators), while the ability of the remaining 49 individual
metabolitesto modulate angiogenesis was unknown to date. Of the
51 Known Angiogenesis Modulators 19 were known promoters and
32 were known inhibitors. The gene expression data obtained from
GEO used all individual metabolites at either 1 or 10 μM, and DMSO
used as control, tested on MCF7 breast cancer cell lines in duplicate.
Total RNA was extracted and profiled by Affymetrix HG U133 A
2.0 microarray chips. Compound structures, represented by Simplified

Molecular Input Line Entry System (SMILES), were pre-processed
using the open access eTOX standardiser (https://github.com/
flatkinson/standardiser), with the options set to “aromatize,” and
“keep largest fragment.”

2.4 In silico target prediction and enrichment
calculation for known angiogenesis
modulators

Prediction IncluDinG INactivity (PIDGIN) (version 3) was used
to conduct target prediction for the 100 individal metabolites
mentioned above, by which the probability of the association
between a compound and a drug target could be predicted. We
used the following function options: bioactivity threshold is 10 μM.
A background of 4,041 TCM molecules were selected from the TCM
database at TCM@TAIWAN and SuperTCM (Chen et al., 2021). The
individual metabolites were pre-processed using the same protocol
above. We then used this set of TCMmolecules as a background TCM
chemical space reference set (putative inactive individual metabolites
for the angiogenesis phenotype), which was needed subsequently to
calculate enrichment for the targets more often linked to the promoter
or inhibitor phenotype (Mervin et al., 2018a). In brief, the Fishers
Exact t-Test is performed on the contingency table for the number of
active and inactive target predictions in the promoter or inhibitor set
of individual metabolites (a) and (b), respectively, compared to the
number of active and inactive predictions in the background (putative
inactive) TCM set, (c) and (d), respectively. The output of the
enrichment calculation is the Odds Ratio (OR), defined as:

OR � a/ a + b( )
c/ c + d( ) (1)

An OR score over 1.0 represents enrichment for a target in the
promoter or inhibitor set (i.e., a target of possible relevance for
angiogenesis modulation), whilst a score below 1.0 represents
enrichment in the reference TCM set (i.e., the target is less likely
to be associated with angiogenesis, based on the data analyzed). A
Fishers Exact p-value is generated, where a value below 0.05 indicates
when enrichment can be considered significant, and thus where we
may reject the null hypothesis (that there is no difference in the target
predictions between either promoter or inhibitor set and a background
of 4,041 TCM reference individual metabolites). Given the biases in
chemical space the application of statistical tests needs to be
interpreted with care; however, the above framework provides an
empirical way to prioritize proteins more (and less) likely involved in a
particular MoA, given a set of ligand-target interactions in two
datasets. Target Prediction enrichment profile hierarchical
clustering analysis for MoA hypothesis generation was then
conducted using Seaborn Clustermap (version 0.11).

2.5 Gene expression analysis for known
angiogenesis modulators

Raw CEL data downloaded from GEO were first normalized by
Robust Multiarray Average (Bolstad et al., 2003) using Affymetrix
Power Tools. For data analysis, we collapsed the probe sets
representing the same gene using the maximum expression value
of these probe sets. Gene expression values from the duplicates were
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averaged, and a fold change of 1.5 was used as the thresholds to select
DEGs for each TCM component against DMSO. We used the list of
DEGs as the gene signatures for subsequent bioinformatics analysis.

2.6 Pathway enrichment analysis for known
angiogenesis modulators

We used Over-Representation Analysis (ORA) (Karp et al., 2021)
implemented in clusterProfiler (version 2.1.0) (Yu et al., 2012), an R
package, to perform the analysis of TCM component treatment versus
DMSO gene expression profiles. We used the KEGG gene sets (https://
www.kegg.jp/kegg/) in the analysis and performed pathway
enrichment using limma (version 3.38.3) (Ritchie et al., 2015). As
this is discovery research of gene sets/pathways for TCM Mechanism
of Action (MoA), we considered pathways/gene sets with p < 0.05
(adjusted for multiple testing) as significantly enriched. We kept only
pathways which have significant enrichment (adjusted p ≤ 0.05) in two
or more TCM individual metabolites for visualization. Pathway
enrichment profile hierarchical clustering analysis for MoA
hypothesis generation was then conducted using Seaborn
Clustermap (version 0.11).

2.7 Decision tree generation for visualising
important target proteins and differentially
expressed genes

Wenext trained a decision tree implemented in Scikit-learn (version
0.22) (Abraham et al., 2014) to merge both predicted protein targets of
ligands, as well as dysregulated genes in the form of DEGs after
compound application, to arrive at a joint target protein/gene mode
of action profile of angiogenesis modulators. Both types of information
are of very different nature, but they are complementary in the way they
represent compound action (and the suitability of this type of integrated
mode-of-action representation was one of the aspects of the work we
aimed to explore here). To this end, the Scikit-learn Decision Tree
Classifier was used with the max_depth set to 20, the min_samples_leaf
set to 4, the splitting criterion set to entropy and the class weights set to
balanced. The tree was trained on the exhaustive combinations of target
prediction and DEG profiles across the 100 individual metabolites,
whilst supplying the sample_weight parameter with the weights of the
inhibit and promote individual metabolites from the class_
weight.compute_class_weight.sample_weight function, to correct for
the imbalance between promoting and inhibiting individual
metabolites. The classification decision tree was finally visualised
using the plot_tree function.

2.8 Training a predictive angiogenesis random
forest model and prospective prediction for
unknown angiogenesis modulators

A Random Forest classifier as implemented in Scikit-learn (version
0.22) was trained. Random Forest Classifier (Ravindranath et al., 2015)
function with the “n_estimators” set to “2000” the “class_weight”
parameter set to “balanced.” The model was trained on the set of
features present and absent from either target prediction and/or DEG.
The output of the algorithm is the likelihood ranging from 0.0 to 1.0 that

an input compound will promote or inhibit angiogenesis, respectively.
We used leave-one-out cross validation (CV) to evaluate the model
performance. Considering the imbalanced training data between
angiogenesis promotors and inhibitors, we shifted the probability
threshold from 0.5 to 0.4 according to the CV results, which means
less individual metabolites would be predicted to be promotors. Tree-
based machine learning algorithms were used because these methods
provided better interpretability and the importance of the features could
be obtained (Breiman, 2001). By analyzing the different decision tree
models in the random forest model, we found that most trees used less
than 10 features. Therefore, we only select the best 10 targets or DEGs to
build the explainable models. As for the final models that were used to
predict the unknown TCM individual metabolites, Random Forest model
was choosen due its high predictive performance and less risk of over-
fitting relative to a single decision tree.

2.9 Identification of novel angiogenic TCM
metabolites

To test the general applicability of the above Machine Learning
model, we used an in vitro tube formation assay (Choi et al., 2021) and
in vivo zebrafish model (Liao et al., 2019) to validate the predicted
novel individual angiogenic metabolites as described in detail in the
following section.

2.9.1 In vitro endothelial tube formation assay
In the 12-days co-culture model, when human fibroblasts are co-

cultured with endothelial cells, the fibroblasts secrete the necessarymatrix
components that act as a scaffold for tube formation (Bishop et al., 1999).
In contrast to the 6 hMatrigel assay, this 12-days assay has been shown to
produce tubes that contain lumen, and a more heterogeneous pattern of
tube lengths that more closely resemble capillary beds in vivo (Karp et al.,
2021). Briefly, HUVECs and HDFs were cultured in EGM-2, until sub-
confluent. Cells were then seeded in 96-well flat-bottom plates at a 1:
20 ratio cells per well, cultured in EGM-2 medium. After 2 days, media
was replenished, and on day 4, EGM-2 was titrated 10-fold with its basal
medium (EBM-2) and 2% FBS. Individual Metabolites treatment in new
medium were replenished every 2 days before staining on day 12. At Day
12, cells were fixed with 10% formalin, incubated with a rabbit anti-
human-von Willebrand factor (vWF) monoclonal IgG (1:1,000; Sigma-
Aldrich, Gillingham, United Kingdom; Cat# F3520), and then a mouse
anti-rabbit alkaline phosphatase conjugated IgG (1:1,000; Sigma-Aldrich;
Cat# A9919). Following washes, one-Step TM NBT/BCIP kit (Thermo
Scientific, Loughborough, United Kingdom) was applied until a suitable
signal was developed. Images of two fields of view were taken per well.
The total tube area and average tube size of vWF-positive endothelial cells
forming capillary-like tubes were quantified by the ImageJ software
(https://imagej.nih.gov/ij/).

2.9.2 In vivo zebrafish assays
Transgenic zebrafish (Tg [vegfr2: GFP]) were maintained in 3 L

polystyrene aquarium tanks with constant aeration and flow water
systems at 28°C ± 1°C under a 14-hr light/10-hr dark photoperiod.
Food with brine shrimp was fed twice per day. For breeding, adult
zebrafish were placed in 1.5 L breeding tanks overnight and were
separated by a transparent barrier that was removed on the following
morning. Zebrafish embryos were raised in culture water (containing
5.00 mM NaCl, 0.17 mM KCl, 0.44 mM CaCl2, 0.16 mM MgSO4).
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Healthy, hatched zebrafish embryos were picked out and staged by
time and morphological criteria (Cannon, Upton, Smith, and Morrell,
2010). Randomization was used to assign embryos to different
experimental groups and to the drug treatment.

In the experiments for testing anti-angiogenic activities (Han et al.,
2012; Han et al., 2013), the test individual metabolites (deoxycholic
acid and ursodeoxycholic acid) were dissolved in DMSO and then
further diluted in culture water to the required concentrations. The
zebrafish embryos of test groups were treated with test compound
samples, without PTK787. Positive control embryos were treated with
0.2 μg/mL PTK787. Other procedures were the same as in the pro-
angiogenic assay.

In pro-angiogenic experiments (Yuan et al., 2018; Liao et al.,
2019), the individual metabolites selected for in vivo assessment,
PTK787, ginsenoside Rg1, Ferulic acid, Curculigoside,
Tetrahydropalmatine, 1-Beta-Hydroxyalantolactone, Cinobufotalin,
Isoalantolactone, Ginsenosides Rb3 and Rc were dissolved in
DMSO and then further diluted in culture water to the required
concentrations. 24 h post-fertilization (hpf) embryos were
dechorionated with 1 mg/mL of Pronase E before treatment.
Control embryos were treated with the equivalent amount of
DMSO solution (final concentration: 0.1% DMSO [v/v]). Model
embryos were treated with 0.2 μg/mL PTK787. Positive control
embryos were treated with 0.2 μg/mL PTK787 and 40 μM
ginsenoside Rg1. The zebrafish embryos of test groups were treated
with 0.2 μg/mL PTK787 and test compound samples. After 24 h of
incubation at 28.0°C ± 1°C with a 14-hour light/10-hour dark cycle,
embryos were anaesthetized with 0.02% tricaine methane sulfonate
and photographed under a fluorescence microscope (Olympus SZX16,
Tokyo, Japan). The length of intersegmental vessels (ISVs) between
the trunk and tail of each embryo was measured with the Image Pro
Plus 5.0 by a user blinded to the exposure groups.

The experiment procedures were conducted according to the
standard ethical guidelines that were approved by the Ethics
Committee of the Biology Institute of Shangdong Academy of
Science (SWS20210306).

2.10 Statistical analysis

All in tube formation assay data were rendered as means ± SEM
and the statistical results were analysed by a one-way ANOVA in
SPASS 20.0 (https://www.ibm.com/products/spss-statistics). p-Values
below 0.05 were considered as statistically significant. All zebrafish
data were processed by GraphPad Prism 6.0 software (https://www.
graphpad.com/). After statistical analysis data were shown as mean ±
SEM. The comparison between groups was performed by student’s
test. p-values below 0.05 were considered as statistically significant.

3 Results

3.1 Enriched prediction targets for known
angiogenesis modulators

First of all, the 51 individual TCM metabolites with known
angiogenesis activities were subjected to bioactivity prediction and the
subsequent calculation of enrichment metrics when compared to
4,041 TCM compound predictions. Enrichment analysis was

performed to select significant proteins, which are more likely to be
related to themode of actions of angiogenesis. Table 1 shows the predictive
bioactivities between the 51 TCM individual metabolites and the
20 proteins with high enrichment factors (odds ratio’s) and low
p-values. It can be seen that these proteins including CYP450 2C19,
Maltase-glucoamylase, Galectin-9,Microtubule-associated protein tau and
Carbonic anhydrase IV are significantly related to angiogenesis promotion
with enrichment factors ranging from 2.93 to 8.18 and Fisher’s Test
p-values below 0.03. These are consistent with our literature review. For
example, Macrophage migration inhibitory factor (Shimizu et al., 1999;
Ogawa et al., 2000) and P-selectin (Egami et al., 2006) frequently play an
essential role in the formation of new blood vessels.

Hierarchical clustering was next conducted to further understand
the potential mode of actions of these 51 TCMmetabolites, resulting in
three mode-of-action classes (MoA1-MoA3) and four clusters of
metabolites (C1-C4), shown in Figure 2.

Six targets are clustered in MoA1 of which metabolites in cluster
2 observed high predicted bioactivities. This indicates that the
angiogenic activity of these metabolites may be a result their
interaction with this set of proteins. For example, ferulic acid has
been reported to stimulate or inhibit angiogenesis depending on the
experimental model used. For example, it has been reported to augment
angiogenesis, both in vitro and in vivo, through the modulation of
VEGF, platelet-derived growth factor (PDGF) and hypoxia-inducible
factor-1 alpha (HIF-1α) (Lin et al., 2010). However, other studies
showed that ferulic acid inhibits endothelial cell proliferation
through nitric oxide (NO), and by downregulating the extracellular-
regulated protein kinases1/2 (ERK1/2) pathway (Hou et al., 2004). More
recently, Yang et al. (2015) showed that ferulic acid targets the FGFR1-
mediated PI3K-Akt signaling pathway, leading to the suppression of
melanoma growth and angiogenesis. Overall, we observe that the
protein target prediction profiles in MoA1 are significantly enriched
with metabolites that inhibit/promote angiogenesis and have been
traditionally used in the modulation of angiogenesis.

Of the targets in MoA2 there is a pronounced pattern in compound
cluster 2, where all the five constituent metabolites (Hydroxysafflor
yellow A, Salidroside, Puerarin, Paeoniflorin, Curculigoside) have high
predicted bioactivities for Galectin-3 and Galectin-9 both of which have
been shown to be relevant to angiogenesis. Galectin-3 protects against
ischemic stroke by promoting neuro-angiogenesis (Wesley et al., 2021).
While Galectin-9 is amammalian lectin secreted by endothelial cells and
induces the phosphorylation of Erk 1/2, p38, and JNK to mediate
angiogenesis (O’Brien et al., 2018). The targets involved in angiogenesis
are likely to be proteins that influence either their production or
associated signalling (Heng et al., 2013).

Seven targets are clustered in MoA3 of which the three bile acid
metabolites in cluster 1 (Deoxycholic acid, Ursodeoxycholic acid,
Chenodeoxycholic acid) observed high predicted bioactivities. The
targets present in MoA3 have known association with angiogenesis.
For example, G-protein coupled bile acid receptor 1 (GPBAR) can
influence angiogenesis through suppressing the proinflammatory
cytokine production and phagocytic function of macrophages, and
by enhancing the barrier function via cAMP/protein kinase A (pkA)/
Rac1-dependent signal pathway (Chung et al., 2009; Kida et al., 2014).
Next, the Vitamin D receptor can stimulate the proliferation and
development of capillary-like tubules of endothelial colony-forming
cells, and has been shown to inhibit developmental angiogenesis in the
zebrafish larval eyes leading to abnormal tumor angiogenesis
(Merrigan and Kennedy, 2017). Finally, the bile acid transporter
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and the ileal bile acid transporter both play an important role in
sodium-dependent reabsorption of bile acids from the lumen of the
small intestine (Alam et al., 2014).

Bile acids themselves have been shown to induce
overexpression of homeobox gene CDX-2 and vascular
endothelial growth factor (VEGF). Studies have also
demonstrated that bile acids can induce endothelial dysfunction
by enhancing expression of intercellular adhesion molecule 1
(ICAM-1), vascular cell adhesion protein 1 (VCAM-1), and
E-selectin via stimulation of the NF-κB (nuclear factor kappa of
activated B cells) and p38 MAPK pathways (Soma et al., 2006).
Hydrophilic bile acids such as Chenodeoxycholic acid plays a
potential role in hepatic tissue regeneration by enhancing
angiogenesis, whereas at higher concentrations, hydrophobic
bile acids could lead to vascular damage (Zhao and Adjei, 2015).

3.2 Analysis of gene expression enrichment
for known angiogenesis modulators

We next analysed the biological pathway(s) transcriptionally
modulated after administration of TCM metabolite in MCF7 cells
using Over-Representation Analysis (ORA). Figure 3 shows the
heatmap of enriched pathways for individual TCM metabolites
using KEGG gene sets as described in Materials and Methods.

The heatmap shows 5 MoA clusters; Cluster 1 and 2 have very
well-defined similarities in pathway activity whereas Clusters 3, 4, and
5 are smaller and less well-defined, although we were still able to find
literature evidence for inhibiting or promoting angiogenesis.

Cluster 1 metabolites have activity toward a range of angiogenesis
pathways especially related to cancer and the immune system. Firstly,
the B cell receptor signalling pathway which describes the role of
B cells in immunity. The role of B cells in tumour initiation,
progression, and angiogenesis is still debated. However, there is
clinical evidence regarding their association with good prognosis of
cancer patients and potential anti-tumour effect (Naserian et al.,
2020). Secondly, the TNF signalling pathway is particularly relevant
as TNF-alpha is known to drive remodelling of blood vessels and has
multiple roles in angiogenesis, which is known to be related to cancer
and immunity (Hu et al., 2019). Next, the Toll-like receptor signalling
pathway encompasses signalling of various Toll-like receptors which
play a key role in the immune system (Xu et al., 2013), and Toll-like
receptor 2 and 4 have been found to induce angiogenesis (Sun et al.,
2016; Potente and Carmeliet, 2017). Finally, the Relaxin signaling
pathway was identified. Relaxin is a hormone which stimulates
angiogenesis by up-regulating VEGF (Neschadim et al., 2015).

The pathways enriched in metabolites cluster 2 are related to the
metabolism of various chemicals including glycerolipid, galactose,
beta-alanine and alpha-linolenic acid. Angiogenesis has
traditionally been viewed from the perspective of how endothelial

TABLE 1 Tenmost enriched predicted protein targets in either pro-angiogenic or anti-angiogenic metabolites from TCM. Predicted protein targets selected and ranked
by Fisher’s exact test p values.

Uniprot Name Fishers test p-value Odds ratio

PROMOTE P33261 Cytochrome P450 2C19 0.00791 4.84

O43451 Maltase-glucoamylase 0.00943 4.05

O00182 Galectin-9 0.0113 8.18

P10636 Microtubule-associated protein tau 0.0144 4.13

P22748 Carbonic anhydrase IV 0.0187 2.93

P16109 P-selectin 0.0234 4.24

P14174 Macrophage migration inhibitory factor 0.0355 2.91

P17931 Galectin-3 0.0421 3.35

P30305 Dual specificity phosphatase Cdc25B 0.0423 3.03

P05067 Beta amyloid A4 protein 0.0464 2.95

INHIBIT P54707 Potassium-transporting ATPase alpha chain 2 0.00122 55.1

P80365 11-beta-hydroxysteroid dehydrogenase 2 0.00206 3.77

P07478 Trypsin II 0.00209 39.2

P36873 Serine/threonine protein phosphatase pP1-gamma catalytic subunit 0.00247 12.9

Q8TDU6 G-protein coupled bile acid receptor 1 0.00385 5.45

Q14973 Bile acid transporter 0.00482 23.5

Q12908 Ileal bile acid transporter 0.00482 23.5

P11473 Vitamin D receptor 0.0120 13.8

P28845 11-beta-hydroxysteroid dehydrogenase 1 0.0146 12.3

P14410 Sucrase-isomaltase 0.0493 3.14
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cells (ECs) coordinate migration and proliferation in response to
growth factor activation to form new vessel branches (Shimo et al.,
1999). However, ECsmust also coordinate their metabolism and adapt
metabolic fluxes to the rising energy and biomass demands of
branching vessels. Recent studies have highlighted the importance
of such metabolic regulation in the endothelium and uncovered core
metabolic pathways and mechanisms of regulation that drive the
angiogenic process (Moccia et al., 2019). Additionally, this cluster
contains the Chemokine signalling pathway. Chemokines, a large
family of inflammatory cytokines, have been shown to play a
critical role in the regulation of angiogenesis during several
pathophysiologic processes, such as tumour growth, wound
healing, and ischemia (Pozzobon et al., 2016).

As previously mentioned, clusters 3, 4, and 5 are less well-defined
but nevertheless show pathway activity for several processes relevant
to angiogenesis. This includes the p53 signalling pathway which
modulates angiogenesis in multiple ways, such as via promotion of
VEGF expression (Farhang Ghahremani et al., 2013), inhibition of
proangiogenic factors (Pfaff et al., 2018) and interference of central
regulators of hypoxia that mediate angiogenesis (Sethi et al., 2019).
Also enriched is the Wnt signalling pathway, which has been linked to
proper vascular growth in murine and human retina (Wang et al.,
2019). Additionally, the angiogenic factor Norrin acts through the
Wnt receptor, Frizzled 4 (Sethi et al., 2019).

Overall, this analysis identified distinct pathways modulated by
individual metabolites with angiogenic activity based on the
transcriptional changes they induce. This also implies that these
signatures can be used to predict whether an individual TCM
metabolite can promote or inhibit angiogenesis.

3.3 Explanation of the machine learning
model

To gain further insight into theMoA of angiogenesis modulators we
next generated decision tree and Random Forest classificationmodels to
predict angiogenic activity. Decision trees were utilised due to their
interpretability and visualization (Figure 4), and Random Forests were
used due to their enhanced predictive power. To this end, three sets of
descriptors were used: in silico protein bioactivity predictions
(Supplementary Figure S1), Differentially Expressed Genes (DEGs;
Supplementary Figure S2), and a combination thereof (Figure 4)
based on the ten most important features from either input space
ranked by Gini importance (details shown in Supplementary Table S2).

In the Random Forest model utilising protein bioactivities
Ribosomal protein S6 kinase alpha 5 (RPS6KA5) had the highest
importance score by Gini importance (Supplementary Table S1).
This protein was also at the top level in the decision tree built with
protein bioactivities with seven known angiogenesis promoters being
predicted as active. RPS6KA5 may be related to inhibition of
angiogenesis, which is involved in the MAPK signalling pathways
(Dong et al., 2019) to suppress angiogenesis (Yang et al., 2018).
Endoplasmic reticulum aminopeptidase 1, which is listed as the
second most important target in Supplementary Table S2, may also
be related to angiogenesis because the 5 individual metabolites which
were predicted to be active against this protein are known angiogenesis
promoters (Cifaldi et al., 2012). On the other hand, sodium/glucose
cotransporter 2 (Kaji et al., 2018) may be related the promotion of
angiogenesis, because three individual metabolites that were predicted
to be active against this protein are known angiogenesis promoters.

FIGURE 2
Protein bioactivities predicted by PIDGIN between individual TCM metabolites and most enriched targets. Individual metabolites were clustered based
on the profile of target prediction (C1–C4); pink and green represent literature evidence for inhibition (INHIBIT) and promotion (PROMOTE) of angiogenesis,
respectively, whilst the enriched anti-angiogenic (INHIBIT) and pro-angiogenic (PROMOTE) protein targets are shown in the MoA column on the right,
respectively.
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Therefore, we can conclude that the machine learning models using
target prediction descriptors is able to identify important target proteins
related to angiogenesis.

From the decision tree using both TP and DEGs descriptors
(Figure 4), it can be seen that the most important gene was PHD
Finger protein located at the top of the decision tree. For the
10 individual metabolites which can regulate the expression level of
this gene, 9 are promoters and only 1 is an inhibitor. It could be further
recognized by the protein activity of Ribosomal protein S6 kinase alpha
5, the most important protein in the TP-only decision tree. For the
remaining individual metabolites, their regulation of either “Transducin
beta like 1 X-linked” or “GC-rich sequence DNA-binding factor 2”
indicates the inhibition of angiogenesis. From this analysis we can
conclude that these DEGs play an important role in themodel asmost of
the nodes in the TP and DEG decision tree using both are DEGs.

3.4 Biological assessment of known
angiogenesis metabolites

Having established enriched prediction protein targets (Figure 2) and
gene expression pathway signatures of the 51 known angiogenesis
modulating individual metabolites (Figure 3), we next validated the
angiogenesis-modulating activities of four specific individual
metabolites using an in vitro endothelial tube formation assay (Bishop
et al., 1999) and a zebrafish model of angiogenesis (Han et al., 2012). The
individual metabolites selected were ferulic acid, curculigoside,
deoxycholic acid and ursodeoxycholic acid. These were selected
because of they have all been reported to have modulating activity in
angiogenesis, including two promoters and two inhibitors. As shown in
Figure 5, ferulic acid and curculigostide stimulated endothelial tube
formation significantly compared to the control group at 100 nM (p <

FIGURE 3
Pathway enrichment signatures for individual pro-angiogenic (Promote) or anti-angiogenic (Inhibit) metabolites derived from TCM. Individual
metabolites was clustered into five groups labelled with different colours (Cluster 1–5).
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0.05) and 1 µM (p < 0.05). And results in Figure 6 show that both ferulic
acid and curculigostide stimulated angiogenesis in intersegmental vessels
(ISVs) of zebrafish against PTK787-induced impairment, respectively. In
more detail, ferulic acid significantly promoted angiogenesis in ISVs from
40 to 160 µM (p < 0.01) and curculigoside promoted angiogenesis in ISVs
at 160 µM (p < 0.01). However, despite the reported anti-angiogenic and
anti-tumour activities of a deoxycholic acid derivative (Alam et al., 2014)
and anti-angiogenic activities of ursodeoxycholic acid and its derivatives
in chick embryo chorioallantoic membrane (CAM) assay (Soma et al.,
2006), Figure 7 shows these two bile acids had no effects on angiogenesis
in the ISVs at any of the three doses tested (p > 0.05).

3.5 Prediction of novel angiogenesis
modulators by machine learning and
biological assessment

Next, a Random Forest model was built to distinguish between
promoting and inhibiting effects of individual metabolites with
unknown angiogenic activity (n = 49 out of 100) with which to
subsequently validate through in-vitro and zebrafish assays. The model
was trained using the 51 individual metabolites with literature evidence
of angiogenic inhibition (Supplementary Table S1). One reason for this is
that we did not aim to perform a “virtual screen,” where just activity
against a protein target, or process, is desired—but rather we aimed to
differentiate between functional effects of individual metabolites, namely

those promoting and those inhibiting angiogenesis, which is much more
difficult to elucidate as it is a much more subtle aspect of compound
action. The sensitivity and specificity of the model for promoters were
found to be 0.74 and 0.62, respectively. The overall accuracy was 0.67 and
the area under the receiver operating characteristic area under curve
(ROC-AUC) was 0.64.

Table 2 ranks all the 49 individual metabolites with unknown
angiogenesis-modulating activities according to their respective
probability value (predictions ranged from 0.658 to 0.130) to promote
or inhibit angiogenesis, with values close to 1 for promoters, and values
close to 0 for inhibitors. From this list, we selected eight individual
metabolites (stachydrine hydrochloride, hyperoside, tetrahydropalmatine,
ginsenoside Rb3, ginsenoside Rc, 1-beta-hydroxyalantolactone,
cinobufotalin and isoalantolactone) for biological assessment.

Firstly, stachydrine hydrochloride and hyperoside were tested
using the in vitro endothelial tube formation assay because the
probabilities obtained from the Prediction Gene model (0.620 and
0.536) and Prediction TP model (0.446 and 0.604) indicate that they
are more likely to protome angiogenesis. However, they are both
produced no effect on endothelial tube formation.

Next results shown in Figure 8 confirmed that
tetrahydropalmatine (p < 0.05) at 10 μM and 1-beta-
hydroxyalantolactone (p < 0.05) at 100 nM stimulated endothelial
tube formation, while cinobufotalin (p < 0.05) at 100 nM and
isoalantolactone (p < 0.05) at 1 μM inhibited endothelial tube
formation. Therefore, further experiments were performed to

FIGURE 4
Mode of action analysis of individual pro- and anti-angiogenic metabolites derived from TCM, based on the most important ten predicted targets and
DEGs. The number of metabolites in each node is shown, along with the entropy (the information gain) to denote the quality of each split in the tree. Colour is
used to indicate the purity for PROMOTER (blue) or INHIBITOR (orange) classification ofmetabolites. It can be seen that bothDEGs and Target predictionwere
selected by the decision tree as important features that can distinguish between inhibitors and promoters.
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determine the angiogenic effect of these four individual metabolites in
vivo. The results in Figure 9 show that 1-beta-hydroxyalantolactone
(p < 0.01) at 40 μM and cinobufotalin (p < 0.01) at 20, 40, and 80 μM
restored angiogenesis in ISVs against PTK787-induced impairment.
Tetrahydropalmatine worsened the effect of PTK787. Isoalantolactone
caused lethality at 10 μM and higher concentrations Intriguingly,
cinobufotalin showed contradictory angiogenic activities in vitro
and in vivo (Figure 8 vs. Figure 9). It is possible that the in vivo
experimental results using the simple zebrafish angiogenesis model in
this study differ from those observed using other animal models (e.g.,
chicken embryo chorionic villus experiment, tumour-bearing mice),
and these are worthy of further investigation in the future.

The relatively low probability scores of ginsenosides Rb3 and Rc
from the Prediction Gene model (0.41 and 0.358) and Prediction TP
model (0.242 and 0.210) indicate that they are more likely to inhibit
angiogenesis than to stimulate it. Contrary to the model predictions,
both individual metabolites stimulated angiogenesis in zebrafish
model, overcoming the inhibitory effect of PTK787 (Figure 10).
Hence, these data emphasised the importance of validating
predictions by machine learning algorithms using biological
experiments, as well as highlighting the possible discrepancies in
outcome of such experiments due to non-identical in vitro and in
vivo models used in biological assessment.

4 Discussion

This study represents a novel composite approach to analyse the
mode of action (MoA) of 51 pro- and antiangiogenic individual

metabolites derived from TCM, based on the most important ten
predicted protein targets, Differentially Expressed Genes (DEGs) and
pathway enrichment signatures, culminating in the creation of an
machine learning model to prospectively predict the angiogenic
function of novel individual metabolites. Prior examples of the
concept exist (Iwata et al., 2017), for example (Ravindranath et al.,
2015), analyzed compound structure, gene expression and protein
target in parallel, and were able to show their complementarity for
understanding compound MoA in some situations. Therefore, the use
of protein targets and gene expression is important in the
deconvolution of an MoA as it can provide a more in-depth
understanding and holistic view of natural products.

4.1 Enrichment of target proteins and
pathways associated with angiogenic activity

Analysis of the PIDGIN predicted targets and enriched pathways
by clustering (Figures 2, 3) demonstrated that individual metabolites
derived from TCM known to regulate angiogenesis are indeed able to
modulate specific targets and signalling pathways with known
importance in angiogenesis such as Galectin-3, Galectin-9, and
P-selectin, as well as the TNF signalling pathway, Wnt signalling
pathway and p53 signalling pathway. Therefore, the analysis of the
enriched targets and signalling pathways contributes to the elucidation
of the mechanisms by which these individual metabolites modulate the
effects of angiogenesis, and also highlights a key area for future
research where we can select individual metabolites enriched to
specific targets for in-depth study. For example, the results suggest

FIGURE 5
Modulation of endothelial tube formation by ferulic acid (FA) and curculigostide (CUR) in vitro. In a HUVEC-HDF co-culturemodel, ferulic acid stimulated
endothelial tube formation at 10 nM but produced an inhibitory effect at higher concentrations. Curculigostide stimulated endothelial tube formation at
10 nM–1 μM. VEGF was included as the positive control. Statistical analyses were performed by one-way ANOVA followed by Dunnett’s post hoc test. Data
represents mean ± SEM (n = 4–6). Compared with the control group, *p < 0.05, **p < 0.01, ***p < 0.001.
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a high potential for ferulic acid to be enriched in P-selectin targets.
Therefore, the MoA of ferulic acid in regulating angiogenesis
specifically by acting on P-selectin targets and upstream and
downstream signalling pathways can be investigated in depth.

4.2 Biological assessment of individual
metabolites derived from TCM with known
angiogenic activity

In addition to this, through in vivo and in vitro assessment of
four selected individual metabolites derived from TCM known to
have angiogenic modulating effects we were able to show that
although these individual metabolites have been reported in the
literature, they exhibit different activities due to the different
pharmacological models used. For example, deoxycholic acid and
ursodeoxycholic acid did not show angiogenic effects in ISVs or
zebrafish in vivo despite being reported as angiogenic inhibitors in
the literature. It is possible that the in vivo experimental results in
this study using a simple zebrafish model of angiogenesis can differ
from results observed using other animal models (e.g., chick embryo
chorioallantoic membrane assay, tumour-bearing mice) reported in
the literature. However, of the other two individual metabolites

assessed we did report agreement between the prior literature and
the in vivo and in vitro models. For example, ferulic acid and
curculigoside stimulated endothelial tube formation and
intersegmental vessels (ISVs) of zebrafish against PTK787-
induced impairment.

Overall, the results found for deoxycholic acid and
ursodeoxycholic acid signal caution is required when developing
machine learning models based on literature evidence of inhibitory
or pro-angiogenic individual metabolites. Uncertain designations
resulting from contradictory in vitro and/or in vivo biological
activities could detrimentally affect the predictive power of our
first-generation machine learning model of angiogenesis
modulation, leading to the prediction results not fully
corroborating with the angiogenesis phenotype.

4.3 Biological assessment of prospective
machine learning prediction of novel
metabolite angiogenic activity

To understand the potential utility of machine learning to predict
angiogenesis stimulation of inhibition, we developed a Random Forest
model to predict and validate 49 TCM individual metabolites with

FIGURE 6
Ferulic acid (FA) and curculigostide (CUR) stimulated angiogenesis in a zebrafish model. Lateral view of zebrafish embryos treated with DMSO (0.1%,
Control), PTK787 (0.2 μg/mL), PTK 787 plus FA (10, 20, 40, 80, and 160 μM) or CUR (10, 20, 40, 80, and 160 μM) for 24 h. FA (at 40, 80, and 160 μM) andCUR (at
160 μM) restored angiogenesis in ISVs against PTK787-induced impairment. Statistical analysis data were shown as mean ± SEM (n ≥ 8). The comparison
between groups was performed by student’s test. ##p < 0.01 versus Control group; **p < 0.01 versus PTK787-treated group.
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unknown angiogenic activity. Due to the relatively small number of
individual metabolites (n = 51) used in training the model, the
accuracy and applicability of current machine learning protocol is
expected to have certain applicability domain limitations. We then
validated the prospective predictions of select individual metabolites
using in vitro and in vivo assays. To our knowledge, this is the first time
that ginsenosides Rb3 and Rc, cinobufotalin and 1-beta-
hydroxyalantolacton which are present in TCM have been shown
to promote angiogenesis in a zebrafish model. It is noteworthy that
TCM in which the pro-angiogenic individual metabolites are present
have historically been used to promote angiogenesis. For example, the
Shexiang Baoxin pill which contains pro-angiogenic individual
metabolites such as ginsenoside Rg1 (from Panax ginseng C.A.Mey
[Araliaceae, Ginseng Radix et Rhizama]) and cinnamaldehyde (from
Cinnamomum cassia Presl [Lauraceae, Cinnamomi Cortex]), is widely
used for the treatment of stable angina pectoris, chest pain or
discomfort caused by coronary heart disease in China (Hu et al.,
2021). On the other hand, some TCM in which angiogenesis inhibitors
are present are used to inhibit angiogenesis. In 1995 (Mochizuki et al.,
1995), reported that both 20(R)- and 20(S)-ginsenoside-Rg3 possess
an ability to inhibit the lung metastasis of tumour cells, and the

mechanism of their anti-metastatic effect is related to inhibition of the
adhesion and invasion of tumour cells, and also to anti-angiogenesis
activity. The botanical drug Shenyi Jiaonang which contains high level
of ginsenoside Rg3, has been used widely in China for the treatment of
a variety of cancers.

Cinobufotalin is the primary and active component of Chan-Su,
an aqueous extract from the parotoid glands and dried secretion (from
Bufobufo gargarizans Cantor or Bufo melanostictus Schneider
[Bufonidae, Bufonis Venenum]) widely used as a cardiotonic,
diuretic, and hemostatic agent (Meng et al., 2021). Chan-Su
peptides have been reported to have anti-angiogenic effect (Xia
et al., 2019). In our study, cinobufotalin was found to inhibit
endothelial tube formation in vitro, but promoted angiogenesis in
zebrafish. Such contradictory findings suggest that this active
ingredient still has many unknown pharmacological effects and
should be further explored in depth.

Moreover, of interest is 1β-hydroxyalantolactone, (from Inula
japonica Thunb or Inula britannica L. [Compositae, Inulae flos]),
which has been reported in the literature to have alleviated the
progression of pulmonary fibrosis effect (Yu et al., 2021). It is
worth noting that no studies have been conducted on the role of

FIGURE 7
Lack of anti-angiogenic effects of deoxycholic acid (DA) and ursodeoxycholic acid (UA) in a zebrafish model. Lateral view of zebrafish embryos treated
with DMSO (0.1%, Control), PTK787 (0.2 μg/mL), two bile acids added for 24 h. At 16 μM of each bile acids, some deformity was apparent, with the degree of
malformation (yolk sac edema, tail malformation) increased at 20 μM. Compared with the Control group, these two bile acids had no effects on angiogenesis
in the ISVs. In contrast, PTK787 effectively inhibited the growth of the ISVs. Statistical analysis data were shown as mean ± SEM (n ≥ 8). The comparison
between groups was performed by student’s test. ##p < 0.01 versus Control group.
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TABLE 2 Prediction results of 49 individual “unknown metabolites” ranking their probability of being pro-angiogenic or anti-angiogenic by Machine Learning
developed in the current study. Prediction Gene means predicted by gene expression; Prediction TP means predicted by PIDGIN targets; Prediction Both means
predicted by both gene expression and PIDGIN targets. The probability of individual TCMmetabolites being pro-angiogenic or anti-angiogenic is ranked by Prediction
Both, with values close to 1 for promoters, and values close to 0 for inhibitors.

Compound name Prediction both Prediction gene Prediction TP

1 Stachydrine hydrochloride 0.658 0.620 0.446

2 Aconitine 0.644 0.630 0.506

3 Anhydroicaritin 0.628 0.528 0.734

4 Ephedrine hydrochloride 0.576 0.590 0.504

5 Hyperoside 0.544 0.536 0.604

6 Gastrodin 0.48 0.498 0.396

7 Acteoside 0.462 0.442 0.604

8 Geniposide 0.458 0.418 0.436

9 Gallic acid 0.438 0.448 0.424

10 Lobetyolin 0.43 0.452 0.388

11 Cholic acid 0.406 0.402 0.404

12 Saikosaponin A 0.404 0.432 0.294

13 Tetrahydropalmatine 0.402 0.300 0.666

14 Hyodeoxycholic acid 0.396 0.398 0.372

15 Schisantherin A 0.384 0.280 0.728

16 Schizandrin 0.382 0.290 0.678

17 Benzyl benzoate 0.380 0.380 0.516

18 Ginsenoside Rb3 0.370 0.410 0.242

19 Ginsenoside Rc 0.370 0.358 0.210

20 Liquiritin 0.366 0.404 0.512

21 Bruceine D 0.340 0.374 0.328

22 Santonin 0.338 0.444 0.288

23 Ainsliadimer A 0.338 0.374 0.206

24 Imperatorin 0.320 0.348 0.424

25 Honokiol 0.304 0.314 0.304

26 Isoborneol 0.302 0.314 0.082

27 Sanguinarine 0.294 0.380 0.234

28 Japonicone A 0.282 0.336 0.116

29 L-scopolamine 0.274 0.334 0.262

30 beta-ecdysterone 0.268 0.298 0.298

31 Protocatechuic aldehyde 0.264 0.296 0.536

32 1 beta-hydroxyalantolactone 0.262 0.338 0.100

33 Gentiopicroside 0.258 0.330 0.418

34 Britanin 0.256 0.320 0.142

35 Salvianic acid A sodium 0.252 0.332 0.380

36 Sennoside A 0.248 0.382 0.612

37 Bacopaside I 0.240 0.324 0.248

(Continued on following page)
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TABLE 2 (Continued) Prediction results of 49 individual “unknown metabolites” ranking their probability of being pro-angiogenic or anti-angiogenic by Machine
Learning developed in the current study. Prediction Gene means predicted by gene expression; Prediction TP means predicted by PIDGIN targets; Prediction Both
means predicted by both gene expression and PIDGIN targets. The probability of individual TCM metabolites being pro-angiogenic or anti-angiogenic is ranked by
Prediction Both, with values close to 1 for promoters, and values close to 0 for inhibitors.

Compound name Prediction both Prediction gene Prediction TP

38 Daidzin 0.224 0.350 0.594

39 Benzoylhypaconitine 0.224 0.334 0.300

40 Macrozamin 0.220 0.390 0.368

41 Benzoylaconitine 0.214 0.290 0.372

42 Phillyrin 0.192 0.238 0.366

43 (+) 2-(1-hydroxyl-4- oxocyclohexyl) ethyl caffeate 0.186 0.38 0.398

44 Hypaconitine 0.172 0.316 0.150

45 Cinobufotalin 0.162 0.370 0.230

46 Telocinobufagin 0.16 0.398 0.166

47 Bufotaline 0.154 0.362 0.110

48 Resibufogenin 0.132 0.294 0.166

49 Isoalantolactone 0.130 0.284 0.078

FIGURE 8
Modulation of endothelial tube formation in vitro by tetrahydropalmatine (TET), 1 beta-hydroxyalantolactone (BHA), cinobufotalin (CIN) and
isoalantolactone (ISO) selected by the Machine Learningmodel. Total tube area was shown. Statistical analyses were performed by one-way ANOVA followed
by Dunnett’s post hoc test. Data represents mean ± SEM (n = 4–6). Compared with the control group, *p < 0.05, **p < 0.01, ***p < 0.001.
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Inulae flos in regulating angiogenesis, but pharmacological studies
have shown anti-inflammatory, antitumor, antioxidant, antiallergy,
antidiabetic, blood lipid reduction, skin whitening, liver protection,
anticonstipation, and antinociceptive effects (Yang et al., 2021). Our
results indicate a pro-angiogenic effect of 1β-hydroxyadamantane for
the first time.

However, we did identify individual metabolites such as
tetrahydropalmatine and isoalantolactone which were predicted
to have angiogenic activity by the machine learning model but
produced no inhibitory or pro-angiogenic effects in vivo. Hence,
whether the discovery of the pro-angiogenic individual metabolites
in this study can be translated to stimulate angiogenesis
therapeutically (such as myocardial infarction or chronic
wounds) remain to be confirmed by stringent biological
verification in appropriate animal models of human disease and
rigorous clinical trials.

Overall, the results indicate that, despite the limited data, the
machine learning model in combination with gene expression analysis
and predicted targets was able to predict the angiogenesis effects of
individual metabolites. This is because it is often easier to distinguish
no effect from either effect (so inactive vs. any modulator), than to

classify functional effects (since similar targets are involved, just in
different ways). Moreover, the approach presented here allows for the
preliminary elucidation of individual metabolite’s MoA based on
target proteins, differentially expressed genes, and the final
prospective prediction of the machine learning model. In contrast
to conducting a phenotypic screen, for example, using ISV and
zebrafish assays which were shown to disagree in cases in the
present study, this approach therefore can help advance general
understanding of the biological mechanisms (target proteins, DEGs,
and pathways) underlying compound angiogenic activity and inform
future drug development of TCM metabolites. However, in future
research, more in-depth studies need be carried out based on the
prospective predictions of the machine learning model we developed
with close attention to the choice of pharmacology models used to
validate them.

5 Conclusion

We performed a systematic analysis to explore the molecular
angiogenic mechanisms of 51 TCM metabolites using

FIGURE 9
1-beta-hydroxyalantolactone (BHA) and Cinobufotalin (CIN) stimulated angiogenesis in a zebrafishmodel. Lateral view of zebrafish embryos treatedwith
DMSO (0.1%, Control), PTK787 (0.2 μg/mL), PTK 787 plus ginsenoside Rg1 (Rg1 40 μM, positive control), or PTK 787 plus the test individual metabolites from
TCM (5, 10, 20, 40, and 80 μM) for 24 h. 1-beta-hydroxyalantolactone (BHA) and cinobufotalin (CIN) dose-dependently restored angiogenesis in ISVs against
PTK787-induced impairment. Tetrahydeopalmatine (TET) worsened the effect of PTK787 and isoalantolactone (ISO) caused lethality at 10 μM and higher
concentrations. Quantification of total length of ISVs in different groups from three independent experiments. Statistical analysis data were shown as mean ±
SEM (n ≥ 8). The comparison between groups was performed by student’s test. ##p < 0.01 versus Control group; **p < 0.01 versus PTK787-treated group.
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bioinformatics approaches and assessed the possible angiogenesis-
modulating activities of 49 TCM metabolites by a Machine
Learning model and pharmacological models. Through this
analysis, we identified that many of the TCM components
possess diverse MoAs, and this may explain the applications of
TCM in treating various symptoms and diseases via angiogenesis.
Future studies on the pharmacological mechanisms of modulation
of angiogenesis by TCM should be investigated in depth when they
are conducted. We also identified novel pro-angiogenic TCM
metabolites for further research in the future. The machine
learning approaches applied in this study could be easily
expandable to elucidate molecular mechanisms of other TCM
components and drugs.
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