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Background: Recently, PANoptosis has aroused the interest of researchers for its
role in cancers. However, the studies that investigated PANoptosis in lung cancer
are still few.

Methods: The public data were mainly collected from The Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus database. R software was utilized for the
analysis of public data. Quantitative real-time (qRT) polymerase chain reaction
(PCR) was used tomeasure the RNA level of FADD. The cell proliferation ability was
evaluated using the CCK8, colony formation, and 5-ethynyl-2′-deoxyuridine
(EdU) assays. Western blot was used to detect the protein level of specific
molecules. Flow cytometry analysis and TUNEL staining were used to evaluate
cell apoptosis.

Results: In our study, we collected the PANoptosis-related genes from previous
studies. Through series analysis, we identified the FADD, an adaptor of PANoptosis
and apoptosis, for further analysis. Results showed that FADD is one of the
prominent risk factors in lung cancer, mainly localized in nucleoplasm and
cytosol. We next performed immune infiltration analysis and biological
enrichment to illustrate the underlying cause of FADD in lung cancer.
Subsequently, we discovered that the patients with a high level of FADD might
respond worse to immunotherapy but better to AICAR, bortezomib, docetaxel,
and gemcitabine. In vitro experiments indicated that inhibiting FADD could reduce
significantly the ability of cancerous lung cells to proliferate. Meanwhile, we found
that the knockdown of FADD promotes the apoptosis and pyroptosis. Ultimately, a
prognosis signature was identified based on the FADD-regulated genes, which
showed satisfactory prediction efficiency on patients with lung cancer.

Conclusion:Our result can provide a novel direction for future studies focused on
the role of PANoptosis in lung cancer.
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Introduction

According to International Agency for Research on Cancer
(IARC), lung cancer has the highest mortality rate and the second-
highest incidence rate among all cancers (Sung et al., 2021). About
2million people are annually diagnosed with lung cancer globally, and
over 85% of them are diagnosed with the most prevalent pathological
subtype, i.e., non-small cell lung cancer (NSCLC) (Molina et al., 2008;
Sung et al., 2021). As a result of current advances in diagnostic
techniques and treatment protocols, such as the widespread
availability of chest computed tomography and the clinical
application of targeted therapies and immunotherapy, survival
rates have improved for some patients (Aberle et al., 2011; Reck
et al., 2022; Tan and Tan, 2022), but there are still 1.76 million lung
cancer deaths worldwide each year (Sung et al., 2021). Therefore, it is
necessary to conduct further research on lung cancer.

Cell death is a widespread phenomenon in living organisms and
is essential for maintaining homeostasis in the organism.
Programmed cell death (PCD) is a genetically determined mode
of active cell death that includes pyroptosis, apoptosis, and
necroptosis, which was tightly correlated with both homeostasis
and disease (Malireddi et al., 2021). The crosstalk in pyroptosis,
apoptosis, and necroptosis pathways led to the establishment of the
concept of PANoptosis, defined as an inflammatory PCD pathway
regulated by the PANoptosome complex with key features of
pyroptosis, apoptosis, and/or necroptosis that cannot be
accounted for by any of these PCD pathways alone (Wang et al.,
2022a). Li et al. found that the complex formed by AIM2, pyrin and
ZBP1 could drive PANoptosis and host defense (Lee et al., 2021).
Recently, researchers began to pay attention to the role of
PANoptosis in diseases. Karki et al. noticed that the
ADAR1 could restrict the PANoptosis and ZBP1-mediated
immune response to facilitate tumorigenesis (Karki et al., 2021).
Karki et al. revealed that the IFN therapeutic efficacy could be
disrupted by PANoptosis, ZBP1-dependent inflammation, and
cytokine storm during COVID-19 infection (Karki et al., 2022).
Wang’s in vivo experiments found that ferroptosis occurring in the
tumor can be regulated by CD8+ T cells, suggesting that ferroptosis
can be involved in anti-tumor immunity (Wang et al., 2019a).
Chemotherapeutic agents can inhibit proliferation and metastasis
by inducing pyroptosis of lung cancer, such as paclitaxel and
cisplatin (Li et al., 2019). PANoptosis, with critical features of
pyroptosis, necroptosis, and apoptosis, has become the focus of
recent cancer research (Wang and Kanneganti, 2021). A growing
number of studies report PANoptosis involvement in multiple
cancer biological processes, like chemotherapy resistance in
colorectal cancer and immunotherapy response in gastric cancer
(Pan et al., 2022a; Lin et al., 2022). Therefore, research on
PANoptosis in tumors has a broad clinical perspective.

The rapid development of next-sequence technology help
researchers better understands diseases (Yin et al., 2020; Wei
et al., 2021; Gu et al., 2022). In our study, we collected the
PANoptosis-related genes from previous studies. Through series
analysis, we identified the FADD, an adaptor of PANoptosis and
apoptosis, for further analysis. Results showed that FADD is a risk
factor for lung cancer and is mainly localized in nucleoplasm and
cytosol. We next performed biological enrichment and analysis of
immune infiltration to illustrate the possible effect of FADD on lung

cancer. Subsequently, the results showed that high levels of FADD in
patients may lead to reduced immunotherapy efficacy but help in
treatment with AICAR, bortezomib, docetaxel, and gemcitabine.
Further, the inhibition of FADD by in vitro experiments reduced the
proliferation capacity of lung cancer cells. Ultimately, a prognosis
signature was identified based on the FADD-regulated genes, which
showed satisfactory prediction efficiency on the patient’s OS in
internal and external validation cohorts and the training cohort.

Methods

Public data collection

The public data were mainly collected from Gene Expression
Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases.
Extensive expression profiles and associated clinical data were
obtained from the TCGA-GDC program and subsequently
incorporated into the TCGA database (TCGA-LUSC and TCGA-
LUAD projects). The “STAR-Counts” format was used for each
patient’s expression file, whereas the “bcr xml” format was used for
clinical information. The perl and R codes of the authors were
utilized for data collation. The probe annotation used the
GRCh38.p13.gtf, which can be downloaded from the Ensembl
website and corresponds to the human genomic reference file.
The genes with a median value <0.1 were removed. Meanwhile,
the gene expression value was converted into log2 to reduce the
impact of extreme value. For the GEO database, the GSE30219 was
selected, whose annotation platform is GPL570 [HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array. Patients’
expression profiles and clinical information in GSE30219 were
downloaded from the link “Series Matrix File(s).” Before analysis,
the expression profile data of GSE30219 were pro-precessed using
the limma package, including missing value completion, correction,
normalization, and so on. Human Protein Altas (HPA) project can
provide representative immunohistochemical data and
corresponding protein level evaluation of encoding genes. The
immunohistochemical image of FADD and its subcellular
localization information was obtained from the HPA website
through online searching. The expression data of FADD in pan-
cancer was downloaded from the website USCS-Xena (https://
xenabrowser.net/datapages/). The limma package was utilized to
identify differentially expressed genes (DEGs) (Ritchie et al., 2015).
For DEGs analysis between patients with high and low FADD
expression, the threshold was set as |logFC| > 0.6 and p-value <0.05.

Collection of the molecules involved in the
PANoptosis process

The genes involved in the PANoptosis process were collected
from previous studies, including ADAR, MEFV, AIM2, NLRP1,
NLRC4, NLRP9, NLRP3, ZBP1, TNFRSF1A, PYCARD, FADD,
CASP10, CASP1, CASP2, CASP12, CASP4, CASP3, CASP6,
CASP5, CASP7, DFNA5, CASP8, MLKL, GSDMD, RIPK3,
RIPK1, NAIP, TNF, NLRP6, GSDMA, GSDMC, GSDMB,
APAF1, BAK, BAX, DIABLO, DCN, CASP9, and FAS (Wang
and Kanneganti, 2021).
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Protein-protein interaction (PPI) network

The STRING database (https://cn.string-db.org/) was used to
construct the PPI network. Herein, the “Organism” used was
“Homo,” and the “minimum required interaction score” was
“medium confidence.” Cytoscape was used for visualization of
the PPI network. Cytoscape software was used for visualization
and clueGO plug-in was used for the biological enrichment analysis
of nodes (Shannon et al., 2003).

Clinical and prognosis analysis

The prognosis difference between the two groups was compared
using the KM (Kaplan-Meier) survival curves and p< 0.05was regarded
as statistically significant. We used univariate and multivariate logistic
regression to identify variables that can independently affect patients’
survival (p < 0.05 was regarded as statistically significant).

Identification of prognosis signature

Using univariate cox-regression, prognosis-related genes were
determined for use as the input genes. Subsequently, the LASSO
regression analysis was applied to reduce data dimension and
identify optimization variables. Finally, the multivariate Cox
regression was utilized for signature identification of prognosis
with the following equation “Risk score = (GeneA × A) +
(GeneB × B) + (GeneC × C) + (. . .) + (GeneN × N), where A-N
are the coefficients” (Wu et al., 2021). KM and receiver operating
characteristic (ROC) curves were utilized to evaluate the prognosis
prediction efficacy. For TCGA cohort, the patients were randomly
divided into training and validation cohort in proportion of 1:1. The
GSE30219 was selecte as the external validation corhort.

Nomogram plot

The rms R package was utilized to establish a nomogram plot
combining clinical parameters and the risk score. To evaluate the fit
between the actual survival and nomogram-predicted survival, the
calibration and decision curve analysis (DCA) were generated.

Biological enrichment analysis

Gene Ontology (GO) analysis was conducted using the
clusterprofiler software (Yu et al., 2012). The biological variations
between the two groups were determined using Gene Set
Enrichment Analysis (GSEA) on the basis of the set pathway
reference set (Subramanian et al., 2005). The terms with p <
0.05 were regarded as statistically significant.

Immune infiltration analysis

On the basis of gene expression profile, the tumor immune
microenvironment of patients with lung cancer was quantified

using multiple algorithms, including CIBERSORT, EPIC,
MCPCOUNTER, QUANTISEQ, TIMER, and XCELL
algorithms (Chen et al., 2018; Plattner et al., 2020; Racle and
Gfeller, 2020).

Immunotherapy and drug sensitivity analysis

Patient immunotherapy responses were assessed utilizing the
TIDE (Tumor Immune Dysfunction and Exclusion) program (Fu
et al., 2020). Each patient was given a TIDE score, with
scores >0 indicating poor immunotherapy response (or
responders) and a score <0 indicating no success (non-
responders). Drug sensitivity testing was performed using the
Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang
et al., 2013).

Cell culture

The BEAS-2B, A549, H1299, and H441 cells were routinely
stored in the laboratory. The cell line authentication was carried out
using STR detection. They were cultured in the 10% heat-inactivated
fetal bovine serum at 37°C with 5% CO2. Depending on the
confluence of the cells, the cells were passaged every 3-4 days.

Quantitative real-time (qRT) PCR

Utilizing an RNA extraction kit (TaKaRa Bio), total RNA was
isolated. Then, cDNA was synthesized by reverse-transcribing
utilizing a high-capacity cDNA Reverse Transcription Kit. Using
TB Green Premix Ex Taq, we performed RT-PCR to measure the
levels of mRNA expression levels. The PCR primers were
synthesized by Tsingke (Beijing, China). The sequence of
primers was as follows: FADD, forward, 5′-GTGGCTGAC
CTGGTACAAGAG-3′, reverse, 5′-GGTAGATGCGTCTGA
GTTCCAT-3′; GAPDH, forward, 5′-TTGTCTCCTGCGACT
TCAACAG-3′, revers, 5′-GGTCTGGGATGGAAATTGTGA
G-3′.

Cell transfection

GenePharma Co., Ltd. generated both FADD knockdown
plasmids and control plasmids. H1299 (5 × 105) cells on a 6-well
plate were plated and cultured at 37°C overnight using RPMI-1640.
These cells were incubated in serum-free Gibco™-OptiMEM (from
Thermo Fisher Scientific, Inc.) for 6 h at 37°C after being treated
with shRNA and Lipofectamine®2000 Reagent (from Invitrogen,
Thermo Fisher Scientific, Inc.). The cells were then added with Fresh
RPMI-1640 containing 10% FBS. For the effect of FADD on the
proliferation of H1299, the concentrations of FADD siRNA were 0,
10, 25, 50, 100, and 200 nM, and the concentrations of the total
shRNA were made up to 200 nM with NC shRNA for those
transfections with a FADD shRNA concentration <200 nM. After
48 h of shRNA transfection, H1299 cells were treated with
Adriamycin to observe the effect of FADD on the cells’ drug
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resistance, where the concentration of FADD shRNA used was
100 nM.

Cell proliferation assay

The assessment of cell proliferation ability was conducted
using the CCK8, colony formation, and 5-ethynyl-2′-
deoxyuridine (EdU) assays. To perform the CCK8 assay, cell
culture media was introduced with CCK-8 reagent at a mixed
ratio of 1:10 (Beyotime, Shanghai, China). Cell proliferation was
assessed by measuring absorbance at wavelength 450 nm
immediately after incubation at 37°C for 2 h. Colony
formation assays involve cultivating lentivirus-infected cells
for 14 days after seeding 2000 of them into six-well plates.
After 10 min of treatment in 4% paraformaldehyde, the cells
were stained for 30 min with crystal violet (from Beyotime,
Shanghai, China). For the EdU assay, cells were inoculated on
coverslips of 12-well plates at suitable cell numbers. The

following day, EdU working solution was co-cultured with the
cells for 2 h. Subsequent fixation and staining were performed
according to the EdU (from Beyotime, Shanghai-China)
instructions and photographed by fluorescent microscope.

Flow cytometry analysis

According to the manufacturer’s instructions, the cells were
stained with annexin V/fluorescein isothiocyanate (FITC) kit (BD
Biosciences, Franklin Lakes, NJ, United States). In short, H299 cells
were cultured in 6-well plates. We collected cells and added 100 μL
combined buffer and 5 μL fluorescein isothiocyanate (FITC) labeled
annexin V (20 μ G/mL) and incubate at room temperature in the
dark for 15 min. Then, the mixture were added 5 μL propidium
iodide (PI, 50 μ G/mL) and incubated in the dark for 5 min. After
that, we added 400 μL combined with buffer solution and
immediately performed FACscan for quantitative detection by
flow cytometry.

FIGURE 1
Identification of PANoptosis-related genes in lung cancer. Notes: (A) The PANoptosis-related genes collected fromprevious studies; (B) PPI network
of these PANoptosis-related genes; (C)GOanalysis of these PANoptosis-related genes; (D)Univariate Cox regression of these PANoptosis-related genes;
(E) The expression level of CASP4, CASP9, FADD, MLKL and TNFRSF1A in tumor and normal tissue.
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TUNEL staining

TUNEL apoptosis detection kit (SuzhouYuheng Biotechnology Co.,
Ltd.) was used to detect cell apoptosis. Cells (1 × 105) were fixed with 4%
polyformaldehyde, and 0.2%Triton X-100was used for penetration.We
then added 50 μL of TUNEL reaction mixture and incubated it in dark
at 37°C for 60 min, and then used DAPI solution to re-stain the nucleus.
The cells were observed under fluorescence microscope (Zeiss) and the
apoptosis rate was calculated by ImageJ software.

Western blot

Cells were lysed in pre-cooled RIPA lysis buffer (Beyotime) with
freshly added protease inhibitor mixture (Hoffman-La Roche Ltd., Basel,
Switzerland). The protein concentration was determined by the

Dioctanoic acid determination kit (Thermo Fisher Scientific). The
same amount of protein was separated by SDS-PAGE and transferred
to PVDF membrane. The membrane and the first antibody (Bcl-2, Bax,
pro-caspase-1, NLRP3, GAPDH) were incubated at 4°C overnight. After
incubation with HRP-labeled secondary antibody at room temperature
for 2 h, the protein bands were analyzed using ECL Hypersensitive
Chemiluminescence Kit (Beyotime).

Statistical analysis

All the analysis was performed using the R, SPSS, GraphPad
Prism eight and ImageJ software. Statistically significant was reached
when p < 0.05. The t-test was utilized for assessing normally
distributed data. The Mann–Whitney-U test was utilized for
assessing non-normally distributed data.

FIGURE 2
Clinical role of FADD in lung cancer. Notes: (A) Subcellular localization of FADD; (B) Immunohistochemistry image of FADD in lung cancer tumor and
normal tissue; (C) The OS difference in high- and low-FADD expression patients; (D) The difference in DSS among patients having high and low FADD
expression; (E) The difference in PFI among patients having high and low FADD expression; (F-I): Clinical correlation of FADD; (J-K): Univariate and
multivariate analysis of FADD.
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Results

Role of PANoptosis-related genes in lung
cancer

The flow chart of whole study was shown in Supplementary
Figure S1. According to the previous studies, we collected the
molecules involved in the PANoptosis, which is shown in
Figure 1A. These genes are involved in PANoptosis, Pyroptosis,
Necroptosis, and Apoptosis. The PPI network of these PANoptosis-

related genes is depicted in Figure 1B. GO analysis indicated that
these genes were mainly involved in the execution phase of apoptosis
(GO:0097199), cysteine-type endopeptidase activity (GO:0004197),
endopeptidase activity (GO:0004175), cysteine-type peptidase
activity (GO:0008234), peptidase activator activity (GO:0016504),
positive regulation of cysteine-type endopeptidase activity (GO:
2001056), positive regulation of endopeptidase activity (GO:
0010950), positive regulation of peptidase activity (GO:0010952),
activation of cysteine-type endopeptidase activity involved in the
apoptotic process (GO:0006919), regulation of cysteine-type

FIGURE 3
Biological investigation of FADD in lung cancer. Notes: (A) DEGs analysis of high- and low-FADD patients; (B) ClueGO analysis; (C)GSEA analysis of
FADD; (D-F): GSEA analysis based on GO gene set; (G-I): GSEA analysis based on REACTOME gene set.
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endopeptidase activity (GO:2000116), positive regulation of
cysteine-type endopeptidase activity involved in the apoptotic
process (GO:0043280), inflammasome complex (GO:0061702),
membrane raft (GO:0045121), membrane microdomain (GO:
0098857), membrane region (GO:0098589), cysteine-type
endopeptidase activity involved in the apoptotic process (GO:
0097153) (Figure 1C). Univariate Cox regression analysis was
applied to identify the genes significantly correlated with the
patient’s survival (Supplementary Material S1). The results
indicated that the genes FADD, TNFRSF1A, CASP9, MLKL, and
CASP4 were the risk factor for lung cancer patients (Figure 1D, p <
0.05). Among these genes, FADD had the smallest p-value and
aroused our interest. We noticed that FADD was also highly

expressed in lung cancer tissue compared to paracancerous tissue
(Figure 1E). Meanwhile, it is also an adaptor for PANoptosis and
Apoptosis processes. Therefore, the FADD was selected for further
analysis.

Clinical role of FADD in lung cancer

Subsequently, using the HPA database, we analyzed the
subcellular location of FADD. The result indicated that FADD
was primarily localized in the nucleoplasm and cytosol based on
the A-431 and U-251 MG cell lines (Figure 2A). Representative
immunohistochemistry images obtained from the HPA database

FIGURE 4
Effect of FADD on immune infiltration and function. Notes: (A) The correlation between quantified immune cells and FADD; (B) The activity of
multiple immune functions in high- and low-FADD expression patients.
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indicated a higher protein level of FADD in the lung cancer tissue
(Figure 2B). KM survival curves demonstrated that patients having
higher-level FADD expression tend to have a poor prognosis
performance in terms of disease-free survival (DSS), overall
survival (OS), and progression-free survival (PFI) (Figures 2C–E).
The prognosis prediction efficiency of FADD in OS was shown in
Supplementary Figure S2. Next, we assessed the correlation between
FADD and the clinical stage. The result depicted that the FADD
could be related to the worse N classification but not the T and M
classifications (Figures 2F–I). Statistical univariate and multivariate
regression analyses indicated that FADD is an independent factor of
risk in the prognosis of a lung cancer patient (Figures 2J, K,
Univariate, p = 0.002, Multivariate, p = 0.02). Supplementary
Figure S3 depicts the FADD expression pattern of the pan-cancer.

Biological investigation of FADD in lung
cancer

Then, we evaluated the biological role of FADD in lung cancer.
Firstly, we conducted the DEGs analysis in high- and low-FADD
expression patients with criteria of p < 0.05 and log FC > 0.6
(Figure 3A). ClueGO assessment indicated that these DEGs were
primarily enriched in musculoskeletal movement, negative regulation
in systemic arterial BP, morphogenesis regulation of a branching
structure, response to zinc ion, regulation of organic acid transport,
reflex, and camera-type eye morphogenesis (Figure 3B). GSEA analysis
based on the Hallmark gene set indicated that the pathways of glycolysis,
mitotic spindle, inflammatory response, mTORC1 signaling, interferon-
gamma response, apical junction, TNFA signaling through NFKB, G2M

FIGURE 5
Immunotherapy and drug sensitivity of FADD. Notes: (A) A nomogram plot was constructed based on clinical features and FADD; (B) Calibration
curves; (C) DCA curves; (D) Correlation between TIDE score and FADD; (E) The expression level of FADD in immunotherapy responders and non-
responders; (F) The immune dysfunction and exclusion in high- and low-FADD expression patients; (G) The difference in drug sensitivity among high-
and low-FADD expression patients.

Frontiers in Pharmacology frontiersin.org08

Wei et al. 10.3389/fphar.2023.1115221

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1115221


check-point, epithelial-mesenchymal transition (EMT), and E2F target
were activated in patients with high FADD expression (Figure 3C). Also,
for the GSEA analysis based on GO and REACTOME gene sets, we
noticed that the terms of nail development, hemidesmosome assembly,
keratin filament, keratinization, formation of the cornified envelope,
mitotic spindle check-point were enriched in (Figures 3D–I).

Immune-related analysis

After that, we looked at how FADD affected the immune
microenvironment of lung cancer. The result indicated that FADD
could remarkably affect specific immune cells, including naïve B cells,
plasmaB cells,memory B cells, follicular helper T cells, activatedNK cells,
Tregs, activated mast cells, macrophages, and so on (Figure 4A). For
immune function, we found that the activity of APC_co_stimulation,
APC_co_inhibition, check-point, CCR, parainflammation, MHC_class_
I, and type_I_IFN_response were upregulated in patients with high
FADD expression (Figure 4B).

The effect of FADD on immunotherapy and
drug sensitivity in lung cancer

Then, we construct a nomogram combining the clinical features
and FADD for better prognosis prediction efficiency (Figure 5A). A
good agreement was found between observed and anticipated
survival times using calibration curves based on the nomogram
(Figure 5B). DCA curves showed that combining clinical features
could improve the prediction ability of FADD on patient survival
(Figure 5C). Immunotherapy is a vital therapy choice for lung
cancer. A positive correlation was noticed between the FADD
and TIDE score, indicating that patients with high FADD
expression might respond worse to immunotherapy (Figure 5D).
Meanwhile, we found that the non-responders could have a higher
FADD expression (Figure 5E). Moreover, we found that those
patients who expressed FADD at a higher level may have a
stronger immune exclusion (Figure 5F). High-FADD patients
may respond better to AICAR, bortezomib, docetaxel, and
gemcitabine, as per the drug sensitivity analysis (Figure 5G).

FIGURE 6
FADD enhances the cell proliferation ability of lung cancer. Notes: (A) The mRNA level of FADD in cell lines; (B) Knockdown efficiency of FADD in
lung cancer cells; (C) CCK8 assay was conducted between the control and FADD knockdown cells; (D) Colony formation assay was conducted between
the control and FADD knockdown cells; (E) EdU assay was performed between the control and FADD knockdown cells; (F) The molecules regulated by
FADD; (G) GO and KEGG analysis of FADD-regulated genes.
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FADD promotes the proliferation ability of
lung cancer cells

We next evaluated the biological role of FADD through
experiments. The results from qRT-PCR depicted that the FADD
was overexpressed in the lung cancer cells (Figure 6A). Following
qRT-PCR verification of knockdown efficiency, sh#1 was chosen for
further experiments (Figure 6B). Inhibiting FADD reduced lung cancer
cell proliferation, as assessed by CCK8 and colony formation assays
(Figures 6C, D). EdU assay also demonstrated a lesser percentage of

EdU-positive cells in the cells with FADD knockdown (Figure 6E). We
next identified the molecules regulated by FADD with |Cor| > 0.3 and
p < 0.05, defined as FADD-related regulatory molecules (Figure 6F).
Biological enrichment assessment depicted that FADD-regulated genes
were primarily enriched in the replication of DNA that is DNA-
dependent (GO:0006261), regulation of sister chromatid segregation
(GO:0033045), DNA replication (GO:0006260), sister chromatid
segregation (GO:0000819), condensed chromosome (GO:0000793),
heterochromatin (GO:0000792), centromeric region (GO:0000775),
chromosome, chromosomal region (GO:0098687), Prion disease

FIGURE 7
Knockown of FADD promotes the apoptosis and pyroptosis. Notes: (A) Flow cytometry was performed to detect cell apoptosis between sh-FADD
and control cells; (B) TUNEL staining was performed between sh-FADD and control cells; (C)Western blot was performed to detect the protein level of
specific markers involved in apoptosis and pyroptosis.
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(hsa05020), Cell cycle (hsa04110), apoptosis (hsa04210) and Alzheimer
disease (hsa05010) (Figure 6G).

Knockdown of FADD promotes the
apoptosis and pyroptosis

The result of flow cytometry showed a higher apoptosis ratio of
H1299 cells in sh-FADD cells compared to the control cells,
indicating that the knockdown of FADD could promote
apoptosis process of lung cancer cells (Figure 7A). The result of
TUNEL staining also showed that the same result (Figure 7B).
Subsequently, we further used Western blot assay to detect the
expression level of apoptosis-related markers (Bcl-2, Bax) and
pyroptosis markers (Caspase-1, NLRP3) in H1299 cells. Result
indicated that the expression level of Bcl-2 decreased
significantly, while the expression level of Bax, Caspase-1 and
NLRP3 increased significantly in FADD knockdown cells,
indicating that the inhibition of FADD could promote the
apoptosis and pyroptosis (Figure 7C).

Identification of prognosis signature

Based on the molecule regulated by FADD, we attempted to
identify a prognosis signature effectively depicting the patient’s

prognosis. Univariate Cox regression was first utilized to
determine the prognosis-related genes (Figure 8A, p < 0.1). Then,
LASSO regression was used for data dimension reduction and
optimized variable screening (Figures 8B, C). Ultimately,
multivariate Cox regression unraveled a prognosis signature
consisting of five genes, C11orf24, TMEM250, ANO1, LMNB2,
and PLK1 (Figure 8D). The risk score was evaluated with the
equation below: Risk score = C11orf24 * 0.256 + TMEM250 *
0.229 + ANO1 * 0.102 + LMNB2 * −0.317 + PLK1 * 0.294
(Figure 8D). The result indicated that our signature performed
well in the training cohort. The KM survival curve showed that
the high-risk patients might have a worse OS (Figure 9A). The AUC
values over 1, 3, and 5 years were 0.758, 0.751, and 0.76, respectively
(Figure 9A). The same result was also observed in the internal
validation as well as external validation cohorts (Figures 9B, C,
internal validation cohort: 1, 3, and 5 years were 0.747, 0.771, and
0.74, respectively; external validation cohort: 1, 3, and 5 years were
0.752, 0.76, and 0.68, respectively).

Discussion

There is a growing concern that lung cancer will pose a huge
threat to human health and will further exacerbate the world’s
already high cancer rate (Sung et al., 2021; Pan et al., 2022b).
Despite tremendous human efforts in early prevention, early

FIGURE 8
Identification of the prognosis signature based on the FADD-regulated genes. Notes: (A) Univariate Cox regression based on the FADD-regulated
genes; (B-C): LASSO regression; (D) Multivariate Cox regression based on the genes identified by LASSO regression.
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diagnosis and treatment, and individualized treatment of lung
cancer, millions of lung cancer patients still die worldwide each
year. Therefore, more analyses of the specific causes of lung cancer
and the identification of novel therapeutic targets aimed at
managing this disease remain crucial (Wang et al., 2021).

In our study, we collected the PANoptosis-related genes from
previous studies. Through series analysis, we identified the FADD,
an adaptor of PANoptosis and apoptosis, for further analysis.
Results showed that FADD is a potential risk factor for lung
cancer and is mainly localized in nucleoplasm and cytosol. We
next performed immune infiltration analysis (IIA) and biological
enrichment to illustrate the fundamental effects of FADD on lung
cancer. Subsequently, we discovered that the patients with a high
level of FADDmight respond worse to immunotherapy but better to
AICAR, bortezomib, docetaxel, and gemcitabine. In vitro
experiments indicated that FADD inhibition could remarkably
suppress the proliferation ability of lung cancer tissues.

Ultimately, a prognosis signature was identified based on the
FADD-regulated genes, which showed satisfactory prediction
efficiency on patients’ OS in training, as well as internal
validation and external validation cohorts.

Firstly, we identified five PANoptosis-related genes closely
related to patients’ survival, including FADD, TNFRSF1A,
CASP9, MLKL, and CASP4. These genes have been reported to
be involved in cancer development. For instance, in breast cancer,
Egusquiaguirre et al. found that the TNFRSF1A was a target gene of
STAT3 and could affect cancer development through NF-κB
signaling (Egusquiaguirre et al., 2018). Wang et al. revealed that
the TNFRSF1A might exert as a prognosis and immune infiltration
biomarker for the glioblastoma multiforme (Wang et al., 2022b).
Using a cellular mechanism that involves targeting CASP9 and
enhancing the ubiquitination degradation of p53, Jing et al.
observed the exosome-transmitted miR-769-5p imparts cisplatin
resistance and gastric cancer progression (Jing et al., 2022). Li et al.

FIGURE 9
Assessment of the prognosis signature in lung cancer. Notes: (A) The performance of our signature in the training cohort; (B) The performance of
our signature in the internal validation cohort; (C) The performance of our signature in the external validation cohort.
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revealed that LINC00607 could facilitate thyroid cancer progression
by regulating the CASP9 promoter methylation (Li et al., 2021). Han
et al. indicated that the HSP90 could induce drug resistance in
NSCLC (Han et al., 2018). Wang et al., the upregulated
RIP3 alleviates the progression of prostate cancer through
activating RIP3/MLKL signaling pathway and inducting cell
necroptosis (Wang et al., 2020). Wang et al. showed that
necroptosis could regulate tumor repopulation after radiotherapy
through RIP1/RIP3/MLKL/JNK/IL8 pathway (Wang et al., 2019b).
Our result identified the FADD, TNFRSF1A, CASP9, MLKL, and
CASP4 involved in the PANoptosis process and significantly affect
patient survival, which can provide future direction in cancer
research.

Biological enrichment analysis depicted that the pathways of
glycolysis, mitotic spindle, inflammatory response,
mTORC1 signaling, TNFA signaling via NFKB, apical junction,
G2M check-point, interferon-gamma response, EMT, and E2F
target were activated high FADD expression patients. Glycolysis
has been reported to participate in the progression course of lung
cancer. Lin et al. observed that fascin could enhance lung cancer
growth and metastasis by upregulating glycolysis activity (Lin et al.,
2021). Zhou et al. revealed that glycolysis could be promoted by
circRNA-ENO1 and lung cancer development by upregulating the
host genes ENO1 (Zhou et al., 2019). Moreover, Reddy et al.
indicated that lanatoside C could induce G2/M cell cycle arrest
and restrict cancer cell proliferation by attenuating MAPK, JAK-
STAT, Wnt, and PI3K/AKT/mTOR signaling (Reddy et al., 2019).
Almasi et al. found that in lung cancer tissues, the inhibition of
TRPM2 could lead to G2/M arrest and apoptosis by increasing
intracellular RNS and ROS levels and activating the JNK pathway
(Almasi et al., 2019). Chae et al. also revealed that the EMT signature
could remarkably affect the T-cell infiltration in the lung cancer
microenvironment (Chae et al., 2018). Our result indicated that the
cancer-promoting role of FADD in lung cancer might be exerted by
regulating the above pathways.

The immune-related analysis also indicated that FADD could
affect many immune cells in the lung cancer microenvironment.
Meanwhile, we noticed that the patients with high FADD expression
might respond worse to immunotherapy. Zhang et al. found that the
CCL7 can recruit cDC1 to enhance anti-tumor immunity and
check-point immunotherapy of lung cancer (Zhang et al., 2020).
Moreover, Dai et al. indicated that the USP7 targeting could
modulate the anti-tumor immune response as a result of the
reprogramming of tumor-associated macrophages in lung cancer
(Dai et al., 2020). Our results indicated that FADD might also be an
immune-related gene of lung cancer.

Although our research is based on high-quality analysis, some
limitations still need to be noted. Firstly, the samples we analyzed
mostly come from Western populations. In fact, significant
biological differences exist between different races. It is hard for
our study to avoid the underlying race bias. Secondly, the conclusion
of our result was based on the levels of mRNA but not the protein.
The existence of post-transcriptional modification will reduce the
credibility of our research.
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