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Neuroblastoma is one of the most common pediatric solid tumors that threaten
the health of children, accounting for about 15% of childhood cancer-related
mortality in the United States. Currently, multiple therapies have been developed
and applied in clinic to treat neuroblastoma including chemotherapy,
radiotherapy, targeted therapy, and immunotherapy. However, the resistance
to therapies is inevitable following long-term treatment, leading to treatment
failure and cancer relapse. Hence, to understand the mechanisms of therapy
resistance and discover reversal strategies have become an urgent task. Recent
studies have demonstrated numerous genetic alterations and dysfunctional
pathways related to neuroblastoma resistance. These molecular signatures may
be potential targets to combat refractory neuroblastoma. A number of novel
interventions for neuroblastoma patients have been developed based on these
targets. In this review, we focus on the complicated mechanisms of therapy
resistance and the potential targets such as ATP-binding cassette transporters,
long non-coding RNAs, microRNAs, autophagy, cancer stem cells, and
extracellular vesicles. On this basis, we summarized recent studies on the
reversal strategies to overcome therapy resistance of neuroblastoma such as
targeting ATP-binding cassette transporters, MYCN gene, cancer stem cells,
hypoxia, and autophagy. This review aims to provide novel insight in how to
improve the therapy efficacy against resistant neuroblastoma, which may shed
light on the future directions that would enhance the treatment outcomes and
prolong the survival of patients with neuroblastoma.
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1 Introduction

Neuroblastoma (NB) is one of the most common pediatric solid tumors originated
from the sympathetic nervous system. It accounts for 8%–10% of all pediatric cancers
and approximately 15% of all childhood cancer-related deaths in the United States
(Colon and Chung, 2011; Zafar et al., 2021). There are some racial differences in NB,
with the disease being more common in those with European descent, and African-
American children are inclined to represent higher-risk disease (Henderson T. O. et al.,
2011b). The morbidity of NB ranks third in children with cancer, only second to
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leukemia and brain cancer. The incidence of NB was age-related,
with an average age of 17.3 months at the time of clinical
diagnosis, and 40% of children were diagnosed before 1 year
of age (Whittle et al., 2017). NB has great differences in tissue
distribution, clinical features, and pathological molecular
biology. In terms of survival rate, 85%–90% of low-and
intermediate-risk patients can be cured, while high-risk NB
patients have very poor outcomes, with a 5-year survival rates
below 50% (Pudela et al., 2020). About half of high-risk patients
do not respond to first-line treatment options or relapse in
2 years. The prognosis of NB patients varies widely, depending
on the age of the child, the tumor grade at diagnosis, and various
molecular pathological features, especially the amplification of
the MYCN oncogene (Whittle et al., 2017). Current therapies for
NB include chemotherapy, radiotherapy, targeted therapy, and
immunotherapy. The chemotherapeutic drugs used in the
treatment of NB include vinca alkaloids, anthracyclines,
epipodophyllotoxins, camptothecin, and others, all of which
can cause apoptosis by destroying nucleotides or inhibiting
mitosis (Pearson et al., 2008; Aktas et al., 2010). NB is
sensitive to radiotherapy, and almost all children in the high-
risk group need to receive radiotherapy for the tumor bed after
intense chemotherapy (Matthay et al., 2012). The current
targeted therapies for NB include targeting genetic
aberrations, targeting disrupted signaling molecules, targeting
norepinephrine and somatostatin receptors by
radiopharmaceutical (Zafar et al., 2021). Immunotherapy,
which can improve survival and quality of NB patients by
reducing exposure to cytotoxic drugs, has been incorporated
into first-line treatment protocols. Unfortunately, the therapy
resistance often leads to treatment failure, manifested as tumor
growth or recurrence, which is responsible for increasing cancer-
related mortality (Li Y et al., 2017). Various signaling molecules
or pathways were confirmed to participate in the initiation of
therapy resistance of cancer, but there is a lack of review to
summarize recent progress on the mechanism study and reversal
strategies of NB resistance. In this review, we focus on the
mechanisms of therapy resistance in NB and discuss multiple
approaches to reverse resistance with a view to discovering more
possibilities for NB treatments.

2 Current research progress on NB

2.1 The mechanisms of NB occurrence and
development

The neural crest originates from the embryonic ectoderm and
develops from the neural tube after it is closed (Simões-Costa and
Bronner, 2013). The differentiation of neural crest cells into a huge
variety of cells contributes to the emergence of different anatomical
structures due to epithelial-mesenchymal transformation (EMT),
where cells lose polarity and gain less adhesion, which allows neural
crest cells to stratify and migrate from the neural tube. These cells
migrate along fixed paths to many remote parts of the embryo,
where they eventually differentiate into a variety of different cell
types, including melanocytes, craniofacial chondrocytes and bone,
smooth muscle cells, peripheral neurons, and glial cells (Bronner

and Simões-Costa, 2016). Many researchers believe that tumors
originated from the neural crest may be prone to metastatic disease
due to the innate ability of neural crest cells to self-renew and
migrate (Gupta et al., 2005; Bailey et al., 2012). NB usually arises
from the adrenal medulla or paravertebral sympathetic ganglia, with
distinct masses in the chest, neck, pelvis, and/or abdomen, and
occurs during the development and differentiation of neural crest
cells into sympathetic nerve cells (Matthay et al., 2016; Kholodenko
et al., 2018). NB has unique and diverse biological characteristics,
including chromosomal instability, gene variation, stem cell, EMT,
and epigenetic abnormalities (Fusco et al., 2018; Tonini and
Capasso, 2020). Clinically, NB represents a wide range of
phenotypes, ranging from spontaneous regression of disease to
persistent treatment-refractory progression and death from high-
risk metastatic disease. At the cellular level, the heterogeneous
behavior of NBs may stem from the arrest and dysregulation of
normal neural crest development (Tomolonis et al., 2018). Under
genetic, epigenetic, or chemical stress, normal developmental
pathways in the neural crest cells become dysregulated, leading to
NB tumorigenesis (Louis and Shohet, 2015). The differentiation of
sympathoadrenal precursors of the neural crest cells into
sympathetic ganglia cells and adrenal chromaffin cells requires
several factors, including overexpression of nerve growth factor
(NGF) and MYCN, SRY-associated HMG-box gene 10 (Sox10),
and mammalian Achaete-SCUTE homologs 1 (MASH1) induced
through bone morphogenetic proteins (BMPs) (Kholodenko et al.,
2018). Transformation of persistent resting progenitors into NB cells
requires anaplastic lymphoma kinase (ALK) mutation and MYCN
expansion (Kholodenko et al., 2018). Under the pressure of
oncogenic stimuli such as MYCN aberrant expression,
dysregulation of the signaling pathway in neural crest cell may
generate highly malignant NB cancer stem cells (CSC) subsets
(Olsen et al., 2017).

2.2 Current treatments for NB

Current treatments for NB were illustrated in Figure 1.
Treatment of NB depends on the classification of the tumor.

According to the degree of tumor cell differentiation, presence or
absence of stroma, mitotic nuclear rupture index, patient age,
histological type, MYCN oncogene status, DNA ploidy, and
chromosome 11q status, NB patients were classified as very low
risk, low risk, intermediate risk, or high risk, respectively (Valter
et al., 2018). For very low-risk and low-risk NB, intensive treatment
is not required because the tumors are likely to disappear on their
own. For some smaller tumors which are generally easier to remove,
surgery may be the best option for these patients. Chemotherapy can
be applied after surgery, but is most commonly used to monitor
patients for recurrence (Cohn et al., 2009). Common chemotherapy
regimens such as carboplatin, cyclophosphamide, doxorubicin, and
etoposide will be applied if the majority of the tumor cannot be
removed surgically. Current chemotherapy approaches include
induction chemotherapy and high-dose chemotherapy. The
primary goal of induction chemotherapy is to reduce the initial
metastatic tumor burden and subsequently increase the likelihood of
successful surgery, stem cell transplantation, or other further
treatments. Platinum compounds (cisplatin and carboplatin),
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topoisomerase inhibitors (topotecan and etoposide), and other
chemotherapeutic compounds (cyclophosphamide, vincristine,
and anthracyclines) are commonly applied in induction
chemotherapy to induce a response (Park et al., 2011).
Myeloablative high-dose chemotherapy has been reported to
improve survival in patients with high-risk metastatic NB
compared with non-myeloablative maintenance chemotherapy
(Berthold et al., 2005). However, treatment with high-dose
chemotherapy may increase the risk of acute and chronic organ
toxicity. Radiation therapy is also an option if the patient does not
respond adequately to chemotherapy. As a local treatment,
radiotherapy has a clear role in improving the local control rate
and alleviating symptoms such as tumor compression, bleeding, and
pain in advanced children. Radiation therapies including external
radiation and isotope radiation are the main strategies for the
treatment of high-risk NB patient. 131I-MIBG
(methylphenylguanidine) therapy is an isotope radiotherapy
targeting NB tissue. MIBG is a noradrenergic analog that targets
90% of the noradrenergic receptors expressed in NB cells. Currently,
131I-MIBG therapy is commonly used for refractory and recurrent
NB (Matthay et al., 2012). Although radiation therapy is
recommended for nearly all high-risk NB patients, there is a lack
of evidence to support its long-term application since its long-term
side effects are already evident (Arumugam et al., 2019).

Currently, clinically available therapies for high-risk
populations are multimodal treatments, including
chemotherapy, stem cell transplantation, surgery, radiation
therapy, retinoid therapy, and immunotherapy (Pezeshki
et al., 2021). The current targeted therapies for NB include
targeting genetic aberrations, targeting disrupted signaling
molecules, immunology-based approaches, targeting
norepinephrine and somatostatin receptors by
radiopharmaceutical, targeting epigenetic modulators, and
targeting Bcl-2 family proteins (Zafar et al., 2021). In recent
years, the research on the molecular mechanism of NB
pathogenesis has gradually increased. Ongoing studies have
identified several signaling pathways required for NB growth
and development, including the PI3K/Akt/mTOR pathway, p53-
mouse double minute 2 homolog (MDM2) pathway (Lu et al.,
2016), RAS/MAPK signaling pathway, and ALK signaling
pathway (Infarinato et al., 2016), which may contribute to
resistance of NB to conventional treatments. These aberrantly
expressed genes and proteins may be the potential therapeutic
targets for NB. Several inhibitors including TRK, MYCN, and
VEGF inhibitors have been used in clinic (Muller et al., 2014; Iyer
et al., 2016). Some clinical trials of small molecule inhibitors are
under way. For example, ALK inhibitors, MDM2 inhibitors,
RAS-MAPK and MEK inhibitors, and PI3K/AKT/mTOR

FIGURE 1
Current methods of NB therapy.
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pathway inhibitors have been identified (Peirce et al., 2011;
Kushner et al., 2017; Arumugam et al., 2019; Pezeshki et al.,
2021). ALK inhibitors are clinically available and have been
proved safe and effective in patients with recurrent and/or
refractory NB (Qiu and Matthay, 2022). Effective
immunotherapy can improve the survival rate and quality of
NB patients by reducing exposure to cytotoxic agents. GD2, a
surface glycolipid, is the most common target of immunotherapy
(Sait and Modak, 2017; Jin et al., 2020). However, when anti-GD2
monoclonal antibody was integrated into the standard upfront
treatment regimen, the 5-year survival rate for NB patients is
only about 50%. In the past few years, chimeric antigen receptor
(CAR)-T cell therapy has shown its potential in the treatment of
NB (Yan et al., 2019; Zhao and Cao, 2019). CAR-T cell therapy is
to use the patient’s own T lymphocytes, transform them in the
laboratory, load receptors and co-stimulatory molecules that can
recognize tumor antigens, expand in vitro, and then reinject
them into the patient’s body to recognize and attack its own
tumor cells (Akhavan et al., 2019; Yadav et al., 2020). Currently,
in terms of solid tumors, only NB patients have shown a good
response to CAR-T cell therapy (Ma et al., 2019). The developed
CAR-T cell surface targets for NB are GD2, L1-CAM, GPC2,
B7H3, ALK, and NCAM. ALK CAR-T can target wild-type and
mutant ALK, and CAR-T cells targeting GD2 and L1-CAM are
currently in clinical trials (Richards et al., 2018). Differentiation
therapy, as a new treatment method, has made some progress in
the maintenance treatment of high-risk NB patients in recent
years. The differentiation therapy involves reactivating the
intrinsic differentiation program in cancer cells and forcing
them to differentiate into mature, supposedly more benign
cells (Jin et al., 2020). Retinoic acid is one of the
differentiation modulators in cancer therapy (Brodeur and
Bagatell, 2014). As a vitamin A derivative, retinoic acid has
been shown to play a positive role in embryonic development,
vision, metabolism, energy homeostasis, immune function,
neural differentiation, and axonal growth (Janesick et al.,
2015; Uray et al., 2016; de The, 2018). Retinoic acid can
trigger differentiation by attaching to retinoic acid nuclear
receptors, including retinoic acid receptors (RARs) and
retinoic X receptors (RXRs). This complex in turn affects
retinoic acid response elements, which are response genes
regulating cell growth, differentiation, and apoptosis (Khalil
et al., 2017). Studies have suggested that factors associated
with retinoic acid uptake and storage by regulating
intracellular retinoic acid may be targets for novel retinoic
acid-based therapeutic strategies (Moise et al., 2007). At
present, there is a lack of clinical studies on the stem cell
transplantation in the treatment of recurrent and refractory
NB in China. The existing small-scale studies demonstrated
different efficacy of stem cell transplantation, which needs
further clarification. If autologous stem cell collection meets
the needs of transplantation, then the transplantation can be
considered. For allogeneic hematopoietic stem cell
transplantation (HSCT), unrelated ligand HSCT or hemiphase
ligand HSCT can be considered according to the circumstances
(Suh et al., 2020; Seo et al., 2022). At present, unified consensus
has not been reached on the indications, timing selection, donor
selection and preconditioning of HSCT in NB treatment, and

more powerful data support needs to be provided by multi-
center clinical studies with larger sample size.

3 Underlying mechanisms of therapy
resistance in NB

Despite significant medical advances in NB treatment, therapy
resistance is a major barrier to access to curative cancer treatments.
Hence, there is an urgent need to reveal the mechanisms of therapy
resistance in NB. Cancer cells may either exhibit a significant
primary resistance to drugs (primary resistance), or acquire
characteristics of multi-drug resistance (MDR) after long-term
chemotherapy (acquired resistance). NB exhibits inter- and intra-
tumor genetic heterogeneity characterized by abnormal telomere
maintenance mechanisms, MYCN amplification, and mutations in
the RAS and/or p53 pathways, resulting in poor prognosis (Salemi
et al., 2022). NB is composed of two epigenetically distinct cell types:
undifferentiated mesenchymal cells (MES) and committed
adrenergic cells (ADRN). MES cells expressing the stem cell
marker CD133 are highly migratory and more resistant to
chemotherapy, and are more common in tumors that recur after
chemotherapy (Huang Y et al., 2021). Resistance of NB cells is
usually caused by comprehensive mechanisms (Figure 2). In
addition to genetic (mutation, amplification) and epigenetic
changes (DNA hypermethylation, histone modifications), several
mechanisms are involved: Overexpression of drug efflux
transporters, aberrant expression of microRNAs (miRNAs),
cancer cell stemness, autophagy, tumor microenvironment,
extracellular vesicles, MEK/ERK signaling hyper-activation, and
anti-disialoganglioside antibody internalization.

3.1 Drug export modulations mediated by
the ATP-binding cassette genes

One of the most direct ways for tumors to become resistant to
drug therapy is through physical mechanisms to block or restrict
drug access to the site of action, one of which is by increasing the
expression of ATP-binding cassette (ABC) transporter family
proteins. An effective drug must be able to pass through the cell
membrane and avoid being expelled out of the cell by efflux
transporters. Overexpression of efflux transporters is associated
with resistance to a large number of chemotherapeutic drugs,
such as vinblastine, vincristine, doxorubicin, daunorubicin, and
paclitaxel (Fletcher et al., 2016). The ABC transporter
superfamily consists of 48 genes and is subdivided into
7 subfamilies, ranging from ABCA to ABCG (Dean, 2005b).
Compelling evidence currently supports that three of these ATP-
driven efflux transporters are responsible for chemoresistance in
vivo, including ABCB1 (P-glycoprotein (P-gp)/MDR1), ABCG2
(Breast Cancer Resistance Protein/BCRP), and ABCC1
(Multidrug Resistance Protein 1/MRP1) (Fletcher et al., 2016).
Previous studies have demonstrated the direct contribution of
MRP1 to tumor responsiveness to chemotherapy in a MYCN
amplified NB (Burkhart et al., 2009). Many of the first-line drugs
used in NB treatment are MRP1 substrates, including etoposide,
doxorubicin, vincristine, and irinotecan. In addition to P-gp, BCRP,
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and MRP1, other ABC transporters are also capable to affect
chemotherapy response in vitro, including several members of
the ABCA and ABCB subfamilies and most members of the
ABCC subfamily (Keppler, 2011). Some of the most compelling
evidence for the participation of ABC transporters in cancer biology
comes from NB. Several ABC transporters, including ABCC1,
ABCC3, and ABCC4, are under direct transcriptional control of
MYCN, and their expression is closely related to patient prognosis
(Henderson M. J. et al., 2011a). Unlike ABCC1 and ABCC4, ABCC3
is negatively regulated by MYCN and its expression is usually very
low in NB. ABCC4 (multidrug resistance protein 4, MRP4) is
transcriptionally regulated by MYCN, a driver of NB
tumorigenesis and a recognized poor prognostic factor (Murray
et al., 2017). High ABCC4 mRNA expression strongly predicts poor
clinical outcome (Henderson M. J. et al., 2011a). In cultured cells,
ABCC4 causes resistance to several anticancer drugs, including
camptothecin and irinotecan (Bagatell et al., 2011).

3.2 Abnormal expression of microRNAs

Accumulating evidence indicated that microRNAs (miRNAs)
play an important role in drug resistance in a variety of cancers
(Giovannetti et al., 2012). MiRNAs are small (~22 nucleotides) non-
coding RNA molecules that regulate the expression of genes at the
post-transcriptional level by either directly inhibiting the translation

of target mRNA or accelerating its degradation (Chen and Hu,
2012). Genome-wide miRNA profiling revealed aberrant
expressions in the majority of human cancers, suggesting an
important role of miRNAs in carcinogenesis and tumor
progression by acting as oncogenes or tumor suppressors (Kong
et al., 2012). Several studies have shown that aberrant expression of
certain miRNA is associated with poor clinical outcomes in NB
(Buechner and Einvik, 2012), and the contribution of different
miRNAs to NB resistance was also emphasized (Table 1). MiR-
17–5p was found for the first time to be associated with drug
resistance in NB. MiR-17–5p directly targets the tumor
suppressor gene P21 and the apoptotic BIM gene to promote
NB cell proliferation and therapy resistance (Fontana et al., 2008;
Galardi et al., 2018). MiR-204 binds to the 3′-untranslated region
(UTR) of the anti-apoptotic gene BCL2 and the oncogene NTRK2,
both of which are associated with poor survival in drug-resistant NB
patients (Ryan et al., 2012). This cluster represses the p21 gene
responsible for cell cycle progression and apoptosis, which
subsequently renders them more resistant to chemotherapy in
MYCN-amplified NB cells (Fontana et al., 2008). MiR-21 is
upregulated in cisplatin-resistant SH-SY5Y and BE (2)-
M17 NB cells compared with parental cells. In addition, ectopic
expression of pre-miR-21 in parental cells resulted in increased drug
resistance and proliferation rates since PTEN is the target of miR-21
(Chen et al., 2012; Buhagiar and Ayers, 2015). The expression of
miR-137 and the constitutive androstane receptor (CAR) was

FIGURE 2
Mechanisms of therapy resistance of NB.
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negatively correlated in parental and doxorubicin-resistant NB cells,
and miR-137 was downregulated in doxorubicin-resistant cells.
Therefore, reinforcement of miR-137 suppressed CAR expression
and re-sensitized NB cells to doxorubicin (Takwi et al., 2014). MiR-
497 may regulate proliferation, survival, and tumor vascular
permeability of chemoresistant NB cells possibly by targeting
genes involved in DNA damage response (WEE1 and CHEK1),
cell growth and survival (AKT3 and BCL2), and angiogenesis
(VEGFA) (Soriano et al., 2016). In NB model cell lines,
etoposide-resistance was associated with mono-allelic deletion of
13q14.3 and downregulation of miRNA-15a/16–1 (Marengo et al.,
2018). Wang et al. demonstrated that non-coding RNA activated by
DNA damage (NORAD) promoted the progression and DOX
resistance of NB through miR-144–3p/HDAC8 axis in vitro and
in vivo (Wang S. Y et al., 2020). In non-MYCN amplified NB cells,
neural apoptosis inhibitory protein (NAIP) was reported to
contribute to drug resistant phenotype by apoptosis inhibition.
The increased NAIP level in NB cells resistant to cisplatin and
etoposide partially resulted from the decreased level of miR-520f
(Harvey et al., 2015). As a tumor suppressor, miR-34a also
participates in the therapy resistance of progressive NB since it
targets crucial players of therapy resistance including N-MYC, E2F3,
BCl2, CCND1, and CDK6 (Sun et al., 2008; Wei et al., 2008).

3.3 Involvement of cancer stem cells

Cancer stem cells (CSCs) are a small subpopulation of cancer
cells with stem cell-like characteristics such as self-renewal and
multi-directional differentiation ability (Yang et al., 2020). Stem cells
come from three sources: the inner cell mass of embryos, induced
pluripotent from normal somatic cells, and somatic adult stem cells
(Takahashi et al., 2007). In 1994, CSCs were discovered in leukemia,
and since then, they have been found in other solid tumors (Lapidot
et al., 1994). Accumulating evidence suggests that CSCs play a key
role in tumorigenesis, progression, metastasis, and recurrence
(Veschi et al., 2019). These CSCs have the ability to generate

cells that differentiate into tumor conditions with multidrug
resistance properties (Borst, 2012). The high-risk NBs consist of
small populations of cells with retained stem cell characteristics.
These clones show the ability to form highly resistant tumorspheres
with high metastasis potential (Hansford et al., 2007). The presence,
clonal selection, and enrichment of CSCs contribute to NB
progression, resistance to therapeutic measures, and poor
prognosis. This function is caused by a variety of mechanisms,
including inhibition of apoptosis, increased repair of DNA damage,
conservation of dormancy, and altered drug response (Dean, 2005a).
Due to the resistance of CSCs to chemotherapy, many scholars
believe that CSCs are the main cause of NB recurrence and poor
survival rate (Hansford et al., 2007). Discriminating the surface
expression of select CSC markers clearly provides the basis of the
CSC composition in NB as such and for drug reaction. Identification
of specific surface markers facilitates characterization of CSCs,
examination of NB biology/evolution and therapeutic targeting
(Aravindan et al., 2019). So far, many cell surface CSC markers,
including CD133, frizzled class receptor 6 (FZD6), leucine rich
repeat containing GPCR 5 (LGR5), aldehyde dehydrogenase
(ALDH), ALDH1A2, ALDH1A3, cluster of differentiation 114
(CD114), and cluster of differentiation 117 (C-kit), have been
identified in NB (Shohet et al., 2011). These markers were
confirmed to play a role in the initiation of NB therapy
resistance. CD133 (Promin-1) is a transmembrane protein
expressed in neural stem cells and has been shown to be a
marker of tumor initiating cells (Li, 2013). Studies have shown
that CD133+ NB cells can efficiently form tumor spheres and exhibit
high resistance to doxorubicin treatment by upregulating ABCG2
(Mahller et al., 2009; Zhong et al., 2018). The FZD6 is negatively
related to OS in patients with NB (Cantilena et al., 2011). Similarly,
LGR5, a WNT-reactive G-protein-coupled receptor (GPCR)
protein, was significantly associated with event-free survival
(EFS) in high-risk NB subpopulations (Vieira et al., 2015). LGR5
is specifically expressed in CSCs and is known to support the WNT/
β-catenin signaling pathway as R-spondins receptors and promote
tumorigenesis (Forgham et al., 2015). Elevated LGR5 levels in

TABLE 1 miRNAs involved in drug resistance in NB.

Name Drug Sensitivity Target References

MiR-17–5p Not specified Down P21, BIM Fontana et al. (2008), Galardi et al. (2018)

MiR-204 Cisplatin, etoposide Up BCL2, NTRK2 Ryan et al. (2012)

MiR-21 Cisplatin Down PTEN Fontana et al. (2008)

MiR-137 Doxorubicin Up CAR, HDAC8 Takwi et al. (2014)

MiR-497 Cisplatin, etoposide, melphalan Up WEE1, CHEK1, AKT3, BCL2, VEGFA Soriano et al. (2016)

MiR-15a/16–1 Etoposide Down P53 Marengo et al. (2018)

MiR-144–3p Doxorubicin Up HDAC8 Wang B et al. (2020)

MiR-520f Cisplatin, etoposide Up NAIP Harvey et al. (2015)

MiR-34a Not specified Down N-MYC, E2F3, BCl2, CCND1, and CDK6 Sun et al. (2008), Wei et al. (2008)

P21, p21Cip1/Waf1/Sdi1; BIM, Bcl-2 interacting mediator of cell death; BCL2, B-cell Lymphoma 2; NTRK2, Neurotrophin Receptor Kinase 2; PTEN, Phosphatase Tensin Homologue; CAR,

Constitutive Androstane Receptor; HDAC8, Histone Deacetilase 8; WEE1, a nuclear kinase belonging to the Ser/Thr family of protein kinases; CHEK1, Checkpoint Kinase 1; AKT 3, Serine/

Threonine Kinase 3; VEGFA, Vascularendothelial growth factor A; P53, Tumor Protein 53; NAIP, Neural apoptosis inhibitory protein; N-MYC, a protein that in humans is encoded by the

MYCN gene; E2F3, E2 F transcription factor 3; CCND1, cyclin D1; CDK6, cyclin-dependent kinase 6.
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IMCT-resistant cells were associated with aggressive phenotypes,
and cells with high LGR5 levels were highly resistant to
chemotherapy (Forgham et al., 2015). In addition, upregulation
of ALDHs was associated with retinoic acid (RA) tolerance (Marcato
et al., 2011). Recent studies have found that surface expression of
CD114, a G-CSF receptor, as a putative marker for NB-CSCs.
Different from other surface markers, CD114-expressing SP <
1%, and showed a variety of CSC characteristics, its tumorigenic
ability is 10 times that of CSC (Hsu et al., 2013).

As noted above, drug resistance and cancer recurrence are
primarily influenced by preexisting CSCs derived from normal
stem cells in specific settings. The general hypothesis is that these
preexisting CSCs cause therapeutic resistance and/or disease relapse
due to their unique cloning selection, self-renewal, clonal
amplification, stem maintenance, and plasticity. Given the
importance of targeting acquired therapeutic resistance to CSCs
and treating high-risk invasive NB, some recent research has focused
appropriately on developing improved treatment strategies. These
strategies include targeting specific surface markers, modulating
signaling pathways, modulating microenvironmental signals,
inhibiting drug efflux pumps, manipulating miRNA expression,
and inducing apoptosis and differentiation of CSCs (Bahmad
et al., 2018).

3.4 Epithelial-to-mesenchymal transition

EMT is a trans-differentiation process in which epithelial cells lose
intercellular contacts and apical-basal polarity and acquire
mesenchymal fibroblast migration phenotype. EMT plays a key role
in the formation andmigration of neural crest cells, which ismeaningful
in neurodevelopment (Acloque et al., 2009). However, EMT is also
considered to be a pathological mechanism by which tumors acquire
the ability to migrate and invade, leading to disseminated disease
(Thiery, 2002). EMT is an important feature in the development of
therapy resistance inNB (Piskareva et al., 2015). The expression levels of
EMT-related genes were different in resistant NB cells. Decreased
KRT19 expression was significantly associated with NB tumor
progression, MYCN expansion, and poor prognosis. Similarly,
decreased ERBB3 expression was associated with MYCN expansion
and poor survival rate (Nozato et al., 2013). The study of Naiditch et al.
demonstrated that human SK-N-SH and SK-N-BE (2) C NB cells
showed mesenchymal changes and transition to drug resistance
through multiple pathways (Naiditch et al., 2015).

3.5 Autophagy

The complex roles of autophagy in therapy resistance have been
excessively studied. As a pro-death or pro-survival cellular process,
autophagy participates in therapy resistance in various types of cancer
through a bi-directional and context-dependent way (Lei et al., 2022). In
NB treatment, chemotherapy induces autophagy in vitro and in vivo.
Inhibition of autophagy by hydroxychloroquine (HCQ) sensitizes
NB cells to vincristine (Belounis et al., 2016). Similarly, Chen et al.
(2022) reported that chemotherapeutic agents including cisplatin,
cyclophosphamide, and etoposide combined with chloroquine (CQ)
increased the chemotherapeutic sensitivity and cell apoptosis of high-

risk NB cells. These facts indicated that autophagy is closely associated
with chemoresistance and can be a potential target in the treatment of
NB. Various signaling molecules or pathways contribute to the
autophagy-mediated therapy resistance of NB. Wang et al. (2015)
reported that High mobility group box 1 (HMGB1) promotes
resistance of NB cells to doxorubicin, cisplatin, and etoposide by
inducing Beclin-1-mediated autophagy. Additionally, inhibition of
autophagy by galectin-1 knockdown sensitizes NB cells to cisplatin.
Galectin-1 is a member of galectin family. This study suggested that
galectin-1 is a potential target to combat chemoresistance of NB (Gao
and Wang, 2019). Additionally, the resistance of NB cells to cisplatin
was developed following autophagy induction. Silencing of lncRNA
SNHG7 suppressed cisplatin-induced autophagy by regulating miR-
329–3p/MYO10 axis, thus decreasing cisplatin resistance. Hence,
lncRNA SNHG7 was regarded as a potential target to overcome
cisplatin resistance in NB chemotherapy (Wang B et al., 2020).

3.6 Tumor microenvironment

It is well established that the inflammatory and
immunosuppressive tumor microenvironment (TME) is involved
in tumor resistance to multiple therapies (Erin et al., 2020).
Treatment of NB cells with interleukin (IL)-6 rapidly activated
the STAT3 to resist IL-6-induced apoptosis. Moreover, the
soluble IL-6 receptor (sIL-6R) produced by human monocytes
promoted the IL-6-mediated STAT3 activation. This study
demonstrated an IL-6/sIL-6R/STAT3 interactive pathway which
leads to environment-mediated treatment resistance (Ara et al.,
2013). Extracellular vesicles (EVs), such as microvesicles and
exosomes, are important components in TME. EVs are secreted
by various cell types to participate in the intercellular
communication. The recipient cells take up the donor cell-
derived EVs which contain multiple bioactive cargoes such as
microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
circular RNAs (circRNAs), and proteins (Mathieu et al., 2019;
Huang M et al., 2021). In the TME, endothelial cells, immune
cells, fibroblasts, and other cells interact with tumor cells through
EVs. Liu et al. found that NB-derived small EVs promote resistance
of NB cells to dinutuximab by creating an immunosuppressive TME.
Inhibition of small EV secretion by tipifarnib was proposed as a
novel strategy to enhance the efficacy of anti-GD2 immunotherapy
in high-risk NB patients (Liu et al., 2022). A study by Kishore et al.
demonstrated that exosome-mediated transfer of miR-21 and miR-
155 between NB cells and monocytes confers resistance to cisplatin
in NB chemotherapy. This process may bemediated by the exosomic
miR-21/TLR8-NF-lB/exosomic miR-155/TERF1 signaling pathway
(Challagundla et al., 2015). It is well accepted that N-Myc
amplification is associated with high risk of NB (Matthay et al.,
2016). Heather et al. found that exosomes derived from N-Myc-
amplified NB cells mediated the resistance of non-N-Myc-amplified
cells to doxorubicin-induced apoptosis. Further research revealed
that exosomes from N-Myc-amplified cells may transfer aggressive
phenotypes such as TGS101, FlOT1, VPS35, NEDD4, β-catenin, and
RhoA to non-Myc-amplified cells (Colletti et al., 2017; Fonseka et al.,
2019). Another study reported an exosome-based mechanism of
doxorubicin resistance in NB. Tan et al. identified a highly expressed
biomarker, namely, circular RNA DLGAP4 (circ DLGAP4), in
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doxorubicin-resistant NB cells. The resistant cells deliver circ
DLGAP4 to the sensitive cells via exosomes. Exosome-derived
circ DLGAP4 induces doxorubicin-resistance by regulating miR-
143/HK2 axis (Tan et al., 2022). In conclusion, exosomes appear to
be novel targets to reverse therapy resistance.

3.7 Anti-disialoganglioside antibody
internalization

Although the introduction of anti-GD2 mab has improved the
survival outcome of high-risk NB patients, there are still some
children with disease recurrence or continuous progression,
which is closely related to the resistance of anti-GD2 mab
(Schumacher-Kuckelkorn et al., 2017). However, the mechanism
of resistance to GD2mab immunotherapy is still poorly understood.
Dr. Shahab’s team published a paper that provided new evidence on
the mechanism of anti-GD2 antibody resistance, showing that the
internalization of anti-GD2 mab in NB cells is an important
additional factor for the development of resistance to
immunotherapy (Tibbetts et al., 2022).

3.8 Other signaling pathways or
comprehensive mechanisms

In solid tumors, therapy resistance is often acquired by the
alteration of signaling pathways in the general single-agent
continuous targeted therapy (Qi et al., 2015). mTOR plays an

important role in cell signal transduction to regulate cancer cell
growth. AZD8055, a novel and potent inhibitor of ATP-competitive
and specific mTOR kinase, was verified to be an effective reagent to
suppress cancer cell growth (Cirstea et al., 2014). According to
previous studies, a single prolonged exposure to AZD8055 resulted
in acquired resistance in NB cells. A study by Xu et al. found that the
drug resistance of NB to AZD8055 was associated with the
overactivation of MEK/ERK pathway (Xu et al., 2018).

Some factors mediate therapy resistance through
comprehensive mechanisms. A study by Du et al.
demonstrated that Cathepsin L (CTSL), which is upregulated
in NB patients, was closely related to cisplatin and doxorubicin
resistance of NB. CTSL facilitates chemoresistance by promoting
the expression of ABCB1 and ABCG2, inhibiting the autophagy
and apoptosis of NB cells. Therefore, CTSL may be a potential
target to combat chemoresistance of NB to cisplatin and
doxorubicin (Du et al., 2022). P2X7 receptor isoform B also
contributes to NB chemoresistance through multiple
mechanisms including autophagy inhibition, EMT induction,
MRP-type transporter upregulation, retinoids resistance
(Arnaud-Sampaio et al., 2022).

4 Reversal strategies for therapy
resistance of NB

Based on the mechanisms of NB resistance to multiple therapies,
various reversal strategies have been proposed, which were
summarized in Figure 3; Table 2.

FIGURE 3
Reversal strategies for therapy resistance of NB.
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4.1 Combination with enzyme inhibitors or
M2 receptor agonist

Some enzyme inhibitors including TRK inhibitors, ATM
inhibitors, and HDAC8 inhibitors can reverse drug resistance
when combined with conventional chemotherapy drugs. GNF-
4256 is a novel selective pan-TRK inhibitor identified by the
Genomics Institute of the Novartis Research Foundation.
Croucher et al. (2015) discovered that GNF-4256 enhanced
growth inhibition of NB cells in vitro and in vivo when
combined with conventional chemotherapy agents including
irinotecan and temozolomide. The unrestricted proliferation of
cancer cells requires maintaining telomeres (Hanahan and
Weinberg, 2011). Most cancers maintain telomeres by
activating telomerase (Heaphy et al., 2011). Additionally, some
cancers use the alternative lengthening of telomeres (ALT)
mechanism, which is more prevalent in tumors of
mesenchymal and neuroepithelial origin including
osteosarcoma, pancreatic neuroendocrine tumors, gliomas, and
NB (Henson and Reddel, 2010). A study by Koneru et al. (2021)
showed that the chemoresistance caused by ATM activation
induced by telomere dysfunction in ALT NB could be reversed
by the ATM inhibitor AZD0156. Histone deacetylases (HDACs),
which can remove acetyl groups from the N-acetyllysines on

histone and non-histone proteins, are considered to be important
therapy targets for various cancers (Xu et al., 2012). Until now,
18 HDAC members have been identified in humans. Among
them, the expression of HDAC8 is significantly increased in NB
(Rettig et al., 2015). Among theHDAC8-regulated miRNAs, miR-
137 has attracted much attention due to its critical role in NB
progression. It has been reported that HDAC8 can regulate the
expression of miR-137, which in turn regulates the
chemoresistance of cancer cells (Mahmoudi and Cairns, 2017).
Studies have shown that targeted inhibition of HDAC8 can
suppress the growth of NB cells and increase doxorubicin
sensitivity via upregulation of miR-137 and suppression of
MDR1 (Zhao et al., 2017).

In recent years, the significance of muscarinic receptors has been
widely reported as a new therapeutic target for the treatment of
different forms of cancers. Acetylcholine (ACh) is one of the major
neurotransmitters in the nervous system, which can be synthesized
in different types of tumor cells. Production of ACh by tumor cells
and subsequent interactions with muscarinic receptors often activate
autocrine/paracrine cycles that regulate cell proliferation, migration,
and angiogenesis. Study has shown that the combination of low-
dose conventional chemotherapy drugs and M2 agonists can affect
the resistance of NB through the decreased expression of MDR
pumps (Luciano et al., 2020).

TABLE 2 Reversal strategies against therapy resistance of NB.

Interventions Sensitize NB to Mechanism References

GNF-4256 Irinotecan and temozolomide TRK inhibition Croucher et al. (2015)

AZD0156 Temozolomide + irinotecan ATM inhibition Koneru et al. (2021)

si-HDAC8 Doxorubicin HDAC8 inhibition/miR-
137 upregulation

Zhao et al. (2017)

arecaidine propargyl ester (APE) Doxorubicin or cisplatin M2 agonist/ABC efflux pumps Luciano et al. (2020)

lapatinib YM155 ABCB1 inhibition Radic-Sarikas et al. (2017)

ZD55-shMYCN Doxorubicin Targeting MYCN Li Y. J et al. (2017)

Tideglusib Doxorubicin, cisplatin, carboplatin and
etoposide

Targeting GSK-3β to inhibit CSC Bahmad et al. (2021)

SN22 encapsulated in nanoparticles Camptothecin analog SN22 Enhancing tumor cell killing efficacy Nguyen et al. (2020), Alferiev
et al. (2022)

NOX4 silencing Chemotherapies Suppressing PI3K/AKT signaling
pathway

Yu et al. (2019)

doxorubicin-encapsulated drug delivery system
with P-gp siRNA

Doxorubicin Restoring the drug concentration at
essential level

Meng et al. (2010)

a novel peptide-drug bioconjugate Doxorubicin Enabling the efficient intracellular
Delivery

Lelle et al. (2017)

CQ Vorinostat, panobinostat, ponatinib Inhibiting autophagy Corallo et al. (2020), Korholz et al.
(2021)

HCQ GX 15–070 Inhibiting autophagy Cournoyer et al. (2019)

hydroxamic acid Paclitaxel Targeting TRP14-mediated autophagy Zhen et al. (2017)

Overexpression of microRNA-145 Cisplatin, vincristine, and radiation Enhancing autophagy Kim et al. (2020)

Oridonin NVP-BEZ235 Enhancing autophagy Zhang et al. (2016)

curcumin Doxorubicin Upregulation of p53 and p21 Namkaew et al. (2018)
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4.2 Modulation of ABC transporters

MDR, frequently mediated by ABC transporters, is one of the
most recognized obstacles in the success of pharmacological
anticancer approaches. The efflux of diverse drugs to
extracellular environment is mediated by these transporters,
causing insensitivity of tumor cells to chemotherapy and MDR
(Feyzizadeh et al., 2022). ABC transporters, as transporters of
phospholipids, lipophilic drugs, cholesterol, and other small
molecules on the cell membrane, are mainly responsible for
the distribution, absorption, and efflux of various compounds.
Given that overexpression of ABC transporters is one of the most
common mechanisms leading to drug resistance in cancer cells,
inhibition of these transporters is considered an effective way to
sensitize drug-resistant cancer cells (Porro et al., 2010). The
strategies of ABC transporter block include regulation of
protein expression and small molecular inhibitors. Using a
systematic drug combination screen, Radic et al. observed a
strong synergy between the EGFR kinase inhibitor lapatinib
and the anticancer compound YM155 in NB cells, which is
retained in several NB variants. Mechanistically, this
synergistic effect is based on lapatinib-induced inhibition of
the MDR efflux transporter ABCB1, which is frequently
expressed in drug-resistant NB cells, thereby prolonging and
enhancing the cytotoxicity of YM155 (Radic-Sarikas et al., 2017).

4.3 Targeting MYCN by oncolytic virus with
shRNA

The MDR-associated protein (MRP) genes encoding
transmembrane glycoproteins are key regulators of MDR. The
expression of MRP in NB is closely related to the MYCN
oncogene. A MYCN-dependent oncogenic pathway plays a vital
role in promoting the aggressive, intrinsically resistant disease
phenotype (Molenaar et al., 2009). It has been reported that the
expression level of MYCN and MRP is higher in doxorubicin-
resistant cells than in parental cells. Silencing the MYCN gene in
doxorubicin-resistant cells downregulates MRP and resensitizes
these resistant cells to doxorubicin. Downregulation of MYCN
and MRP increased intracellular doxorubicin levels and enhanced
the therapeutic effect of doxorubicin (Haber et al., 1999). A novel
type of oncolytic virus with shRNA, ZD55-shMYCN, can reverse
MDR in NB by targeting MYCN to inhibit tumor cell proliferation
and induce NB cell apoptosis (Li Y et al., 2017).

4.4 Targeting the cancer stem cells

Due to the characteristics of self-renewal, pluripotency,
unlimited proliferation, angiogenesis, and immune evasion, CSCs
cannot be completely eliminated by traditional treatment (Bahmad
et al., 2019). These resistant cells lead to tumor recurrence due to the
expression of DNA repair mechanisms, detoxification enzymes,
anti-apoptotic proteins, and MDR transporters (Ross and
Spengler, 2007). Therefore, CSCs play an important role in NB
progression, recurrence, and poor prognosis (Aravindan et al.,
2019). Glycogen synthase kinase 3β (GSK-3β) is an active

proline-directed serine/threonine kinase, which is closely related
to tumor formation and progression. The study by Bahmad et al.
evaluated the anti-tumor effect of Tideglusib, an irreversible
inhibitor of GSK-3β, on NB CSCs in vitro and in vivo. Their
findings showed that Tideglusib could be used as an effective
drug targeting NB CSC, thereby overcoming treatment resistance
(Bahmad et al., 2021). Although many promising CSC surface
markers have been identified, there are two key factors: 1) the
lack of specific candidates that are universally available among all
NB-CSCs in tumors; 2) The presence of candidate markers in
normal non-tumorigenic stem cells highly limits their use in
developing csc targeting methods (Aravindan et al., 2019).

4.5 Nanocarriers in resistance reversal

Nanocarriers are excellent platforms to enhance the
accumulation of chemotherapy drugs in tumor cells.
Combining nanotechnology with existing therapies such as
gene therapy and P-gp inhibitors has been shown to improve
drug resistance. Nanoparticles, when carefully designed, have the
potential to control drug release profiles to achieve optimal
cytotoxicity and avoid drug resistance by sensitizing cancer
cells to chemotherapy (Palakurthi et al., 2012). SN22 is a
topoisomerase I inhibitor that has shown potent anticancer
activity in early preclinical studies, but its clinical application
is limited due to its lack of solubility in standard delivery vehicles.
A recent study modified the structure of the camptothecin analog
SN22 and reversibly coupled it with a redox-free tocol derivative
(tocopheryl oxalate) to convert it to a PEGylated sub-100 optimal
stable encapsulation. Controlled release in nanometer
nanoparticles (NPs) enhance their pharmacological selectivity,
favorably alter biodistribution, enhance tumor cell killing
efficacy, and overcome drug resistance (Nguyen et al., 2020;
Alferiev et al., 2022).

4.6 Reversal of hypoxia-induced resistance

Hypoxia is the main cause of treatment failure in various
types of malignant tumors including NB (Ward et al., 2013). In
hypoxic environments, cancer cells acquire hypoxic resistance
through genetic and adaptive changes to survive and proliferate
(Li et al., 2016). Hypoxia-inducible factor 1α (HIF-1α), an
oxygen-dependent activator of transcription, improve the
viability of hypoxic cells to participate in tumor angiogenesis
and mammalian development (Lee et al., 2004; Zhang et al.,
2015). Hypoxia induces a high rate of glycolysis in tumors.
Therefore, inhibiting glycolysis to reduce cancer cell viability
in hypoxic environments helps to attenuate the hypoxic
resistance of cancer cells (Cao et al., 2007). NOX4 was found
to be highly expressed in human NB cells under the condition of
hypoxia (Liu et al., 2017). Studies have shown that silencing
NOX4 inhibits hypoxia-induced glycolysis and cell growth by
suppressing PI3K/AKT signaling pathway, which would
attenuate hypoxia resistance. As a result, the tumor
progression and drug resistance of NB is restrained (Yu et al.,
2019).
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4.7 Combination therapy via bioconjugates

Bioconjugation usually involves two molecules linked by
covalent bonds, at least one of which should be a biological
source or biomolecule (Antonio et al., 2019). In cancer
therapeutic drugs, these biological molecules used for
conjugation are mainly ligands targeting tumor-specific
antigens (Varshosaz et al., 2016). It can also be peptide
(Szweda et al., 2016), glycoprotein (Casanas Pimentel et al.,
2016), aptamer, or interferon with anticancer properties
(Wadhawan et al., 2019). The unique advantage of
bioconjugates is that they can selectively deliver therapeutic
drugs to pathological sites and increase the retention of
molecules in the blood circulation system. Their delivery
mechanism is based on active drug delivery (Sun et al.,
2012). Researchers have synthesized bioconjugates to
overcome MDR by conjugating certain molecules. Meng et al.
(2010) conjugated a doxorubicin-encapsulated drug delivery
system with P-gp siRNA that knocked down the P-gp gene
expression. This system restored the drug concentration at
essential level to induce apoptosis of cancer cells. Marco
et al. described the synthesis and characteristic of a novel
bioconjugate, consisting of an octaarginine cell-penetrating
peptide and a highly DNA-affine doxorubicin dimer. Their
study showed that the novel bioconjugate could successfully
overcome the drug resistance of NB cells (Lelle et al., 2017). The
therapeutic effect of bioconjugation becomes more significant
compared with their individual effects. However, the current
application of bioconjugates faces two major challenges. First,
the efficacy of in vitro test often cannot be translated into
clinical staging. Another challenge is the cost of production.
When combined with therapeutic biomolecules such as
antibodies, aptamers, nucleic acids, and peptides, the
production cost will increase more or less.

4.8 Interference with autophagy

Autophagy is a ubiquitous cellular self-degradation process that
involves the degradation and recycling of cytosolic components
through the lysosomal pathway. Autophagy is closely related to
therapy resistance of NB. Accumulating evidence indicated that
autophagy inhibition significantly reduced chemoresistance of NB
(Belounis et al., 2016). Korholz et al. (2021) investigated the impact
of broad-spectrum HDACIs on autophagic flux. The results showed
that autophagy induced by vorinostat and panobinostat
transcriptionally upregulated autophagy-related genes in NB cells
and induced nuclear translocation of the transcription factors
FOXO1 and FOXO3a. Combination of vorinostat or
panobinostat with the autophagy modulating agent CQ enhanced
NB cell death. Ponatinib (PON) is a tyrosine kinase inhibitor for the
treatment of NB. The cytotoxicity of PON is commonly impaired by
autophagy, indicating the cytoprotective role of autophagy in
response to PON. A study revealed that inhibition of autophagy
by CQ significantly ameliorates the PON resistance in vitro and in
vivo, making combination of CQ and PON a promising strategy for
NB treatment (Corallo et al., 2020). Similarly, combining HCQ with
GX 15–070, a Bcl-2 family proteins inhibitor, exerts synergistic effect

and increases chemosensitivity in NB (Cournoyer et al., 2019).
Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of
thioredoxin-related protein 14 (TRP14) which was upregulated in
NB cells after paclitaxel treatment. Zhen et al. (2017) found that
SAHA sensitizes NB cells to paclitaxel by targeting TRP14-mediated
autophagy. In addition to the cyto-protective role, the pro-death role
of autophagy for cancer cells has also been demonstrated.
Overexpression of microRNA-145 sensitizes Cisplatin-resistant,
Vincristine-resistant, and radiation-resistant NB cells to their
corresponding treatment by enhancing autophagy (Kim et al.,
2020). Oridonin, a natural biologically active compound,
sensitizes NB cells to NVP-BEZ235 in vitro and in vivo through
enhancing autophagy (Zhang et al., 2016). In conclusion, targeting
autophagy is a promising approach to overcome therapeutic
resistance in NB.

4.9 Natural compounds

Plant-derived natural products with pleiotropy and low
toxicity have been introduced as ideal candidate agents to
develop promising MDR modulators. Significantly, several
natural substances are effective against NB cells in vitro.
Flavonoids and polyphenols are known as promising
therapeutic compounds (Dobrzynska et al., 2020).
Isoliquiritigenin, a natural extract of flavonoid, induces
necrotic cell death and cell cycle arrest by down-regulating
ATP in NB cells (Escobar et al., 2019). In addition, juniper
berry extracts containing flavonoids, upregulate p53 and
induce endoplasmic reticulum stress and apoptosis in NB cells
(Lantto et al., 2016). Furthermore, curcumin, a natural
polyphenolic compound derived from the South Asian
turmeric plant (Curcuma longa), displays good anticancer
properties by inhibiting the serine-threonine kinases AKT/NF-
κB signaling. It can induce mitochondrial dysfunction and
p53 upregulation, finally leading to apoptosis (Zhai et al.,
2020). Another potential application of curcumin in the
treatment of NB is in combination with conventional
chemotherapeutic agents, especially cisplatin and doxorubicin
(Namkaew et al., 2018). Curcumin also demonstrates synergistic
effects with other natural substances and radiation therapy
against NB cells (Farhood et al., 2019). Combining curcumin
with lower doses of chemotherapeutic drugs and radiation can
achieve high antitumor efficacy, as well as low toxicity and drug
resistance. Moreover, although curcumin has the potential to
slow NB progression and fight cancer drug resistance, its clinical
viability is limited due to its poor oral bioavailability, low water
solubility, and rapid metabolism. A number of novel curcumin
formulations, including nanoparticles, lipid carriers,
nanosuspensions, and microemulsions have been proposed to
overcome these problems (Sadegh Malvajerd et al., 2019).

5 Conclusion and perspectives

Currently, different treatments against NB have displayed
favorable clinical outcomes such as chemotherapy, radiotherapy,
targeted therapy, and immunotherapy. However, the genetic
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heterogeneity of NB limits the efficacy of existing treatment
modalities. Many patients do not respond to treatments since
NB develops resistance through complex mechanisms. It is
reported that almost 50% of patients developed resistance to
anti-GD2 treatment and relapsed (Chan and Chan, 2022). Hence,
there is an urgent need to understand the resistant mechanism
and explore reversal strategies. As mentioned above, ABC
transporters, miRNAs, CSCs, EMT, autophagy, TME, and
some signaling pathways may be potential targets to combat
therapy resistance of NB. Recent studies have identified a large
number of genetic alterations and dysfunctional pathways related
to NB resistance through high-throughput “omics” techniques.
Continued efforts should be taken to discover novel therapeutic
targets against NB resistance and prognostic markers which can
access patients’ response to treatment. At present, some
monotherapies or combined therapies targeting NB resistance
are being tested in preclinical or clinical studies. For instance,
chemotherapy in combination with miR-based treatment was
regarded as a promising method for clinical management of
progressive NB. Novel strategies have been proposed and are
under investigation such as inducing pyroptosis in apoptosis
resistant-NB cells (Wang et al., 2022). In conclusion, this review
demonstrated the complex mechanisms (Figure 2) and various
reversal strategies (Figure 3; Table 2) of NB resistance to multiple
treatments. Further exploration is needed to overcome the
therapy resistance of NB and improve therapy efficacy. We
expect that patients will benefit from the novel interventions
targeting NB resistance in the future.
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