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Background: There is a rapid increase in lung adenocarcinomas (LUAD), and
studies suggest associations between cuproptosis and the occurrence of various
types of tumors. However, it remains unclear whether cuproptosis plays a role in
LUAD prognosis.

Methods: Dataset of the TCGA-LUAD was treated as training cohort, while
validation cohort consisted of the merged datasets of the GSE29013,
GSE30219, GSE31210, GSE37745, and GSE50081. Ten studied cuproptosis-
related genes (CRG) were used to generated CRG clusters and CRG cluster-
related differential expressed gene (CRG-DEG) clusters. The differently expressed
lncRNA that with prognosis ability between the CRG-DEG clusters were put into a
LASSO regression for cuproptosis-related lncRNA signature (CRLncSig).
Kaplan–Meier estimator, Cox model, receiver operating characteristic (ROC),
time-dependent AUC (tAUC), principal component analysis (PCA), and
nomogram predictor were further deployed to confirm the model’s accuracy.
We examined the model’s connections with other forms of regulated cell death,
including apoptosis, necroptosis, pyroptosis, and ferroptosis. The immunotherapy
ability of the signature was demonstrated by applying eight mainstream
immunoinformatic algorithms, TMB, TIDE, and immune checkpoints. We
evaluated the potential drugs for high risk CRLncSig LUADs. Real-time PCR in
human LUAD tissues were performed to verify the CRLncSig expression pattern,
and the signature’s pan-cancer’s ability was also assessed.

Results: A nine-lncRNA signature, CRLncSig, was built and demonstrated owning
prognostic power by applied to the validation cohort. Each of the signature genes
was confirmed differentially expressed in the real world by real-time PCR. The
CRLncSig correlated with 2,469/3,681 (67.07%) apoptosis-related genes, 13/20
(65.00%) necroptosis-related genes, 35/50 (70.00%) pyroptosis-related genes,
and 238/380 (62.63%) ferroptosis-related genes. Immunotherapy analysis
suggested that CRLncSig correlated with immune status, and checkpoints,
KIR2DL3, IL10, IL2, CD40LG, SELP, BTLA, and CD28, were linked closely to our
signature and were potentially suitable for LUAD immunotherapy targets. For
those high-risk patients, we found three agents, gemcitabine, daunorubicin, and
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nobiletin. Finally, we found some of the CRLncSig lncRNAs potentially play a vital
role in some types of cancer and need more attention in further studies.

Conclusion: The results of this study suggest our cuproptosis-related CRLncSig
can help to determine the outcome of LUAD and the effectiveness of
immunotherapy, as well as help to better select targets and therapeutic agents.

KEYWORDS

lung adenocarcinoma, lncRNA, signature, cuproptosis, targets, therapeutic agent,
prognosis

Introduction

In China and throughout the world, lung cancer is one of the
most common malignant tumors (Chen et al., 2019; Sung et al.,
2021). According to WHO statistics, in 2020, 2,206,771 new lung
cancer patients were diagnosed globally, accounting for 11.4% of
new cancer cases; deaths were ranked the first among all cancer
types, accounting for 18% of all cancer deaths (Chen et al., 2019;
Sung et al., 2021). Adenocarcinoma (LUAD) accounts for
approximately 40% of lung cancer cases (Siegel et al., 2021).
Current treatment methods, such as surgical, radiotherapy, and
chemotherapy, can hardly meet advanced LUAD patients’
survival expectations (Siegel et al., 2021; Li et al., 2022a).
Therefore, the discovery of more effective prognostic models is
crucial for exploring the cellular and molecular mechanism of
LUAD carcinogenesis and finding treatment strategies.

Cell suicide pathways, termed regulated cell death, play a
critical role in organismal development, homeostasis, and
pathogenesis (Strasser and Vaux, 2020). Regulated cell death
has been observed in cancer for a long time, but the initial
reports were mainly in cases where necrosis was observed in
hypoxic areas of growing tumors (Strasser and Vaux, 2020).
During further tumor progression, cancer cells often respond to
their altered state through programmed regulated cell death and
are highly dependent on certain survival signals from their
environment (Strasser and Vaux, 2020). Regulated cell death
has long been implicated in cancer treatment, with radiation
and chemotherapy killing cancer cells while destroying normal,
healthy cells (Strasser and Vaux, 2020). The biology and
therapeutic response of LUAD are reported shaped by various
forms of regulated cell death, such as apoptosis (Wu et al., 2019),
necroptosis (Lu et al., 2022), pyroptosis (Lin et al., 2021), and
ferroptosis (Ma et al., 2021; Zhang et al., 2021). Excitingly,
Tsvetkov and colleagues published their latest study in the
journal Science, confirming the existence of copper-induced
regulated cell death, which is termed cuproptosis (Tsvetkov
et al., 2022). In their study, it was shown that cuproptosis is
distinct from apoptosis, necroptosis, pyroptosis, and ferroptosis
(Tsvetkov et al., 2022). Recently, the teams of Zhang et al. (2022a);
Zhang et al. (2022b) separately developed cuproptosis-related
prognostic models for hepatocellular carcinoma. Li et al.
(2022b) also conducted in-depth research on cuproptosis and
constructed a prediction model for oral squamous cell
carcinoma. Bian et al. (2022); Ji et al. (2022) have established
cuproptosis models of clear cell renal cell carcinoma, respectively,
both of which claim to be effective in predicting the prognosis of
the disease.

Given that some forms of regulated cell death may be more
immune-targeted than others, understanding how cuproptosis is
initiated, propagated, and ultimately executed in LUAD may have
important implications for possible combined diagnostic and
therapeutic interventions. Regarding the prognostic model about
cuproptosis, no LUAD research so far has been published. Most
studies of prognostic signatures target entire tumor populations
without tailoring high-risk patients, making them insufficient for
risk stratification or treatment (Ma et al., 2018; Ma et al., 2020a; Ma
et al., 2020b; Li et al., 2020; Zheng et al., 2020; Ma et al., 2021; Zhang
et al., 2021; Ma et al., 2022a; Ma et al., 2022b). To cope with the
above issues, we first developed a cuproptosis-related lncRNA
prognostic signature of LUAD and potential therapeutic targets
and drugs for high-risk patients. We gathered proved cuproptosis-
related genes to construct a lncRNA signature having the power to
predict LUAD outcomes, and further validated its prognostic ability
in a large independent cohort. We also tested the signature genes’
expression profile in real world and the model’s connections with
other forms of regulated cell death. More importantly, we revealed
that KIR2DL3, IL10, IL2, CD40LG, SELP, BTLA, and CD28, were
linked closely to our signature and were potentially suitable for
LUAD immunotherapy targets. We found three agents,
gemcitabine, daunorubicin, and nobiletin, for those high-risk
patients. Finally, we tested the ability of our signature lncRNAs
in pan-cancer.

Materials and methods

Data selection and preprocessing

We downloaded the RNA-seq data and clinical phenotype of
patients in the TCGA-LUAD project from the Xena Hub (https://
xenabrowser.net/). Use the keyword “lung adenocarcinoma” to
search in Gene Expression Omnibus (Clough and Barrett, 2016)
(GEO, https://www.ncbi.nlm.nih.gov/geo/), and filter out the
datasets containing total RNA and the total number of lung
cancer patients with survival time greater than 80 in the results
as candidate validation cohorts. GSE29013, GSE30219, GSE31210,
GSE37745, and GSE50081 were selected, and their data were
downloaded. The TCGA-LUAD were gathered as training cohort.
For the preprocessing of GSE29013, GSE30219, GSE31210,
GSE37745, and GSE50081, we used the R package
“inSilicoMerging” to merge them (Taminau et al., 2012), and
then we adopted the method that developed by Johnson et al.
(2007). To remove the batch effect and finally obtained the data
matrix treated as a validation cohort.
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Identification of cuproptosis-regulated
genes (CRG) subgroups using consensus
clustering

In the present research, we retrospectively selected 10 CRG
(FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS
and CDKN2A) from the work of Tsvetkov et al. (2022). We used the
“limma” R package to determine the co-expression genes of the ten
CRG with the parameters of correlation coefficient >0.4 or < −0.4 and
p < 0.05. The “ConsensusClusterPlus” R package was used to cluster
CRG co-expression genes in LUAD patients extracted from the
training cohort into different subtypes. The counts of the subtypes
were determined by the optimal k value. The Kaplan-Meier estimator
(KM) curve was constructed using R packages “survival” and
“survminer” to measure difference in overall survival of patients in
the CRG clusters. The “scatterplot3d” R package was applied to
perform principal component analysis (PCA) to see the clusters
differences. Packages “reshape2,” “ggpubr,” “limma,” “GSEABase,”
and “GSVA” were used to conduct the single-sample gene set
enrichment analysis (ssGSEA) and visualization. We then screened
the CRG cluster-related differential expressed genes (CRG-DEGs)
between clusters using the R package “limma” with Log FC >
0.15 or < −0.15 and adjust p < 0.05. These CRG-DEGs were the
put into an KEGG analysis for the potential pathways finding.

Constructions of CRG-DEG clusters and a
cuproptosis-regulated lncRNA signature
(CRLncSig)

With the help of the “ConsensusClusterPlus” R package and the
CRG-DEGs, we were able to group the patients in the training cohort
into different CRG-DEG clusters. The survival difference of CRG-DEG
clusters was measured using the KM curve calculated using the R
packages “survival” and “survminer”. The “scatterplot3d” R package
was applied to perform PCA to see the clusters differences. Packages
“reshape2,” “ggpubr,” “limma,” “GSEABase,” and “GSVA”were used to
conduct the ssGSEA analysis and visualization. We then conducted
GSVA to screen the most important KEGG pathways by comparing
CRG-DEG clusters by R packages “limma,” “GSEABase,” “GSVA,” and
“pheatmap”. We investigated the differently expressed lncRNA (DEL)
between the CRG-DEG clusters with Log FC > 0.15 or < −0.15 and
adjust p < 0.05. Then, these DELs were subjected to univariate Cox and
KManalyses for choosing the oneswith potential prognostic powerwith
p < 0.05. In order to prevent overfitting, we performed the least absolute
shrinkage and selection operator (LASSO) using the R package “glmnet”
on the prognostic DELs. A 10-fold cross-validation was performed in
the training cohort at 1 SE above the minimum partial likelihood
deviation to estimate the penalty parameter (Tibshirani, 1997; Sauerbrei
et al., 2007; Friedman et al., 2010; Goeman, 2010). For each patient, a
risk score was calculated according to the following formula:

Risk score � ∑
n

i

Expi p βi

with βi denoting the coefficient, Expi denoting the relative
expression level of each lncRNA normalized by z-score, and n
denoting each lncRNA in the CRLncSig.

Validation of the CRLncSig in an
indenpendent cohort

High-risk and low-risk patients were divided using median risk
scores. In both the training and validation cohorts, the CRLncSig’s
predictive capability was evaluated using methods such as the KM
curve, univariate and multivariable Cox analysis (Cao and Lopez-de-
Ullibarri, 2019), receiver operating characteristic (ROC) curve, time-
dependent AUC (tAUC) analysis, and PCA. ROC curve and tAUC
analyzes were implemented with the help of the “timeROC” and
“survival” R packages. The “scatterplot3D” R package was used to
evaluate the distribution of patients with different risk scores by PCA.
Additionally, we used the R packages “survival,” “survminer,” “rms,”
and “regplot,” to construct nomograms that predicted 1-, 3-, and 5-
year overall survival and calibrated the model to determine whether
the model’s predictions matched up with the actual consistency.

Correlations between the cuproptosis-
related lncRNA signature and apoptosis,
necroptosis, pyroptosis, and ferroptosis

For better knowing the interactions between our CRLncSig and
other types of “cell death”, we adopted the Pearson analysis.
Apoptosis, necroptosis, and pyroptosis-related genes were
extracted from the GeneCard and Gene Set Enrichment Analysis
(GSEA) online databases, respectively, by applying the following
steps: 1) search the GeneCard using the corresponding keyword; 2)
search the GSEA using the corresponding keyword: 3) merge the
above results and take the unique genes. FerrDb is the first database
dedicated to ferroptosis regulators and ferroptosis-related diseases
(Zhou and Bao, 2020). Ferroptosis-related genes were obtained from
FerrDb (http://www.datjar.com:40013/bt2104/).

GSEA

We first downloaded the GSEA program from http://www.gsea-
msigdb.org/gsea/downloads.jsp, the GSEA website. By dividing LUADs
by their median risk scores, we classified them as low-risk and high-risk.
From the Molecular Signatures Database (Liberzon et al., 2011) (http://
www.gsea-msigdb.org/gsea/downloads.jsp), we downloaded “c2.cp.
kegg.v7.4.symbols.gmt” to evaluate the assess of KEGG pathways
between high-risk and low-risk groups using GSEA. GSEA
parameter settings were set to five minimum genes, 5,000 maximum
genes, and 1,000 resamplings. A statistically significant value was a
p-value of 0.05 and a false discovery rate of 0.25.

Identification of the immunological status of
the CRLncSig

We calculated stromal, immune, and ESTIMATE scores for each
patient based on gene expression in the training cohort using the R
package “ESTIMATE” (Yoshihara et al., 2013). We calculated the
association between CRLncSig and stromal, immune, and
ESTIMATE scores using the Pearson coefficient and Wilcoxon
rank sum. Multi-omics data can be leveraged with “IOBR” to
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facilitate immuno-oncology exploration, revealing tumor-immune
interactions and accelerating precision immunotherapy. To
calculate the immune-infiltrating cell scores for each sample of
the training cohort, we used the R package “IOBR” and its
methods of CIBERSORT, CIBERSORT-ABS, quantIseq, TIMER,
IPS, MCPCounter, xCell, and EPIC. CRLncSig’s relationships with
immune cell types of the eight algorithms were calculated using
Pearson coefficients and Wilcoxon rank-sum, and lollipop plots and
heatmap were applied for the visualization. Venn and cloud
diagrams were used to summarize the results we obtained. As
part of the “gsva” R package, the “ ssGSEA” function was used to
assess 13 immune-related pathways of the CRLncSig.

Identification of the immunotherapy role
and immune checkpoint target of CRLncSig

Using the “maftools,” the top 20 mutated genes were identified,
and the mutations and their frequencies were visualized across all
training cohort samples. Based on the median risk score of LUADs,
we divided them into two groups. To compare gene mutation
frequencies between low- and high-risk LUAD populations, we
used the chi-square test. Tumor mutational burden (TMB) is an
emerging therapeutic measure of immunotherapy sensitivity. TMB
is defined as the frequency of certain mutations within a tumor’s
genes (Chalmers et al., 2017). The TMB rank score of each case with
LUAD was obtained as previously described (Chalmers et al., 2017).
We deployed the Pearson coefficient together with the Wilcoxon
rank-sum to calculate the connections between the risk score and
TMB. Tumor Immune Dysfunction and Exclusion (TIDE) is a
computational framework that integrates T cell dysfunction
expression signatures and T cell exclusion to model tumor
immune evasion. Using TIDE, tumor immune evasion can be
modeled in two ways and can be used to predict immunotherapy
outcomes (Jiang et al., 2018; Fu et al., 2020; Chen et al., 2021a). More
importantly, we tested if our signature correlated with the TIDE. A
total of 60 immune checkpoints were selected from previous studies
(Thorsson et al., 2018) (Supplementary Table S1), including
24 inhibitory and 36 stimulatory checkpoints. We measured the
correlation between our signature and these 60 immune checkpoints
based on Pearson and Wilcoxon rank-sum analysis. To further test
whether our CRLncSig could guide immunotherapy, we deployed
the Kaplan–Meier estimator and Cox regression to test the
prognostic ability of the 60 immune checkpoints. Venn diagram
was used to summarize the above results to find good checkpoints
that may have the targeting ability of the CRLncSig. We collected
data frommultiple immune datasets to further evaluate the potential
impact of these promising checkpoint genes on the immune system
and immunotherapy. We presented them in a heatmap format with
the help of the regulator prioritization module of the TIDE online
tool (Fu et al., 2020).

Identification of drugs for high risk score
LUADs

High-risk and low-risk patients were divided using median risk
scores. Data on expression profiles and somatic mutations in human

cancer cell lines (CCLs) were acquired from the Broad Institute
Cancer Cell Line Encyclopedia (CCLE) (https://portals.
broadinstitute.org/ccle/) (Ghandi et al., 2019). The dependency
map (DepMap, https://de.pmap.org/portal/) portal was used to
collect the CERES scores of genome-scale CRISPR knockout
screens on 18,333 genes in 739 cell lines. CERES scores indicate
how dependent a gene is on certain CCLs. The lower the CERES
score, the greater the likelihood that the gene plays an important role
in the growth and survival of a given CCL. Based on PRISM
Repurposing (https://depmap.org/portal/prism/) and the Cancer
Therapeutics Response Portal (https://portals.broadinstitute.org/
ctrp), drug sensitivity data of CCLs were gathered. In the CTRP,
481 compounds have been evaluated over 835 CCLs, while in the
PRISM, 1,448 compounds have been evaluated over 482 CCLs. In
both datasets, the area under the dose-response curve (area under
the curve - AUC) represents drug sensitivity, and lower values
indicate greater sensitivity. To identify drug candidates with
higher drug sensitivity in patients with high risk scores, CTRP
and PRISM derived drug response data were analyzed. To
identify compounds with lower estimated AUC values in the
high risk score group, a differential drug response analysis
(log2FC > 0.9) was conducted between the groups of the top
decile score and bottom decile score (Yang et al., 2021). As a
next step, Spearman correlation analysis between AUC value and
risk score was conducted to select compounds with a negative
correlation coefficient (Spearman’s r < −0.09) (Yang et al., 2021).

Validation of drugs using connectivity map
(CMap) analysis

These above results were then put into multiple perspective
analyses, including clinical trial data, published experiment
evidence, and CMap for further confirming their effective in
LUAD (Yang et al., 2021). CMap analysis was performed as a
complement to investigate the therapeutic potential of candidate
agents in LUAD. We first conducted differential expression analysis
between tumor and normal samples. Next, 300 genes with the most
significant fold changes (150 upregulated genes and
150 downregulated genes) were submitted to the CMap website
(https://clue.io/query). Gene expression signature of perturbations
in this website are derived from both CMap v2 and Library of
Integrated Network-Based Cellular Signatures (LINCS) database,
and a total of 2,429 compounds are available for CMap analysis.
CMap calculates a connectivity score for each perturbation, which
ranges from −100 to 100. Specific perturbations with negative scores
have opposite gene expression patterns to a particular disease,
suggesting they have therapeutic potential.

Validation of the CRLncSig’s expression
profile using the real-time PCR and human
LUAD tissues

In order to verify the expression levels of each lncRNA of
CRLncSig, nine pairs of LUAD tissues and adjacent normal
tissues were examined using real-time PCR. The Ethics Review
Committee of the First Affiliated Hospital of Zhengzhou
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University approved this study. Informed consent was obtained
from all patients before surgery, no history of chemotherapy or
radiotherapy was present before surgery. After extracting the tissues,
we froze and stored them in liquid nitrogen. Total RNA was
extracted from the sample tissues via Trizol lysate (Thermo
Fisher Scientific). We reverse-transcribed total RNA from clinical
samples into cDNA using the HiScript III RT SuperMix Kit (R32301,
Vazyme, Nanjing, China). The real-time PCR was performed using
the CFX96 system (BIO-RAD Laboratories, Inc., Hercules, CA,
United States). Based on the 2−ΔΔCT method, expression levels of
target RNAs were normalized to GAPDH. The mean value was used
as the final experimental result for replicated wells. The
manufacturer’s instructions were followed during all procedures.
Student’s t-test was applied to identify genes differentially expressed
between normal and tumor samples. Differentially expressed genes
were defined as adjusted p-value < 0.05.

Pan-cancer ability determination of each
lncRNA of the CRLncSig

First, we downloaded the TCGA TARGET GTEx dataset from
the UCSC database (https://xenabrowser.net/) to determine whether
CRLncSig lncRNAs are differentially expressed in tumors and
normal tissues. In order to complete this step, we also excluded
cancer types with fewer than three samples, giving us data on
34 cancer types. A Wilcoxon rank sum test was used in R
software to determine the expression difference between normal
and tumor samples in each tumor type.

For prognostic assessment, in addition to the TCGA TARGET
GTEx dataset we got, we also obtained a high-quality TCGA
prognostic dataset from the TCGA prognostic study previously
published on Cell (Liu et al., 2018). A supplement of TARGET
follow-up data was obtained from UCSC, and samples with a short
than 30 days follow-up period were eliminated. Additionally, we
eliminated cancer types with fewer than ten samples each and
obtained data on 44 cancer types, including expression and
overall survival. Based on the Cox proportional hazards
regression model built with the R package “survival,” we
analyzed the relationship between the lncRNAs and the
prognosis of each cancer type.

In the final step, we evaluated the staging ability of each lncRNA.
The TCGA TARGET GTEx dataset was obtained above, and the
cancer types with fewer than three samples were eliminated, as were
cancer types without tumor staging data. Finally, we obtained
information on 30 cancer types. For each cancer type’s different
clinical stages, we calculated expression distributions of CRLncSig
lncRNAs using R software and utilized variance analysis to
investigate the differences.

Results

Patient characteristics

As Figure 1B demonstrates, 500 LUAD patients of project
TCGA-LUAD were treated as a training cohort for model
construction. 554 LUADs from the GSE29013, GSE30219,

GSE31210, GSE37745, and GSE50081 datasets were taken and
merged as a validation cohort for model certifying. The effect of
data merging for the validation cohort is shown in Figure 2.
According to the UMAP plot (Figure 2A), each dataset’s samples
are separated before the batch effect is removed. A clustering and
intertwining of each data set were observed after Johnson et al.
(2007) method had been applied, indicating that the batch effect is
well removed by this method. The clinical parameters of the enrolled
patients in each cohort are shown in Table 1.

Evaluation of the CRG clusters in LUADs
using consensus clustering

We first explored the co-expressed genes of 10 CRGs according
to our set screening criteria. After removing duplicate results, we
finally identified 1,175 genes as CRG co-expressed genes
(Supplementary Table S2). An algorithm of consensus clustering
classified LUADs from the training cohort into three CRG clusters
based on CRG co-expressed genes. A significant difference in the
overall survival of patients in the CRG cluster was found with the
KM survival curves. Cluster C had a better prognosis than patients in
clusters A and B. Populations in cluster A had a better prognosis
than those in cluster B (Figure 2B). The PCA revealed that the cluster
A, B, and C were obviously separated from each other (Figure 2C).
The infiltration level of the different immune cell populations in
CRG clusters was determined by ssGSEA. As shown in Figure 2D,
14 immune cells, including Activated B cell, Activated CD4 T cell,
Activated dendritic cell, CD56dim natural killer cell, Eosinophil,
Immature B cell, Immature dendritic cell, Mast cell, Monocyte,
Natural killer cell, Plasmacytoid dendritic cell, T follicular helper
cell, Type 1 T helper cell, and Type 2 T helper cell were recognized
significantly distributed in three CRG clusters. Furthermore, there
was a statistically significant difference between the three clusters of
LUAD patients in terms of age and tumor stage (Figure 2E). For
exploring the mechanism of the cluster pattern, we first investigated
the different expressed genes between each two clusters, finding
there were 26,517 between cluster A and B, 15,995 between cluster A
and C, and 10,222 between cluster B and C. We take the intersection
of the above three parts and learned 344 CRG-DEGs (Figure 2F;
Supplementary Table S3). Then, the KEGG method was used to
assess the signaling mechanisms using the CRG-DEGs, which of the
top 10 pathways were shown in Figure 2G, including Glycolysis/
Gluconeogenesis, Cell cycle, Vascular smooth muscle contraction,
Amino sugar and nucleotide sugar metabolism, Retinol metabolism,
Central carbon metabolism in cancer, p53 signaling pathway,
Apoptosis, Metabolic pathways, and Fc gamma R-mediated
phagocytosis.

Two CRG-DEG clusters identification and a
CRLncSig generated

Based on the CRG-DEGs, the LUADs from the training cohort
were divided into two CRG-DEG clusters using consensus clustering
methods. In the CRG-DEG clusters, the KM survival curve showed
significant differences in overall survival. The cluster A had a more
favor prognosis better than that of patients in cluster B (Figure 3A). The
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FIGURE 1
Schematic illustration indicates the mechanism of cuproptosis induction (A) (Hu et al., 2022; Tsvetkov et al., 2022) and research design (B). DLAT,
dihydrolipoamide S-acetyltransferase; FDX1, ferredoxin-1; Fe–S, iron–sulfur; TCA, tricarboxylic acid; GSH, Glutathione; BSO, buthionine sulfoximine;
CRLncSig, cuproptosis-regulated lncRNA signature; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; HR, hazard ratio; ROC, receiver
operating characteristic; TP, true positive rate; FP, false positive rate; AUC, area under the ROC curve; PC, principal component; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis.
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FIGURE 2
Data preprocessing and the CRG clusters construction. (A) UMAP plot shows validation cohort merged before batch effect removing,
displaying that the samples of each dataset are separated from each other. UMAP plot shows validation cohort merged after batch effect removing,
displaying that samples of each dataset are clustered and intertwined with each other. (B) The KM survival curve demonstrated that the overall
survival of patients in the CRG clusters were significantly different. The cluster C had a more favor prognosis better than that of patients in
cluster B and C, while the cluster B population had a promising outcome than that in the cluster C. (C) Principal component analysis scatter plot
shows three clusters were obviously separated. (D) Infiltration distribution of immune cells in the three CRG clusters. (E) Heatmap shows the
relationship between CRG clusters, clinical parameters, and 1175 CRG co-expressed genes. Each row represents a gene, and each column
represents a sample. (F) Venn diagram shows the process of obtaining the 344 CRG-DEGs. (G) KEGG analysis shows the top 10 enriched pathways.

(Continued )
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PCA revealed that the cluster A and B were obviously separated from
each other (Figure 3B). Through the use of ssGSEA, we determined the
degree of infiltration of the different immune cell populations in CRG-
DEG clusters. As shown in Figure 3C, 16 immune cells, including

Activated B cell, Activated CD4 T cell, Activated dendritic cell,
CD56dim natural killer cell, Eosinophil, Gamma delta T cell,
Immature B cell, Immature dendritic cell, Macrophage, Mast cell,
Monocyte, Natural killer T cell, Natural killer cell, T follicular helper

TABLE 1 Clinical characteristics of patients enrolled in the study.

Characteristics Training cohort Validation cohort

(TCGA-LUAD, n = 500) (GSE29013, GSE30219, GSE31210, GSE37745, and GSE50081, n = 554)

Age

<65 219 (43.8%) 315 (56.86%)

≥65 271 (54.2%) 239 (43.14%)

Unknown 10 (2%) 0

Gender

Female 270 (54%) 265 (47.83%)

Male 230 (46%) 289 (52.17%)

Race

White 386 (77.2%) NA

Non-White 60 (12%) NA

Unknown 54 (10.8%) NA

Ethnicity

Hispanic or Latino 7 (1.4%) NA

Non-Hispanic or Latino 381 (76.2%) NA

Unknown 112 (22.4%) NA

Tumor stage

Stage I 268 (53.6%) 339 (61.19%)

Stage II 119 (23.8%) 108 (19.49%)

Stage III 80 (16%) 21 (3.79%)

Stage IV 25 (5%) 4 (0.72%)

Unknown 8 (1.6%) 82 (14.8%)

Prior malignancy

Yes 79 (15.8%) NA

No 421 (84.2%) NA

Tissue origin

Upper lobe lung 291 (58.2%) NA

Non-upper lobe lung 209 (41.8%) NA

Smoking history

Ever 415 (83%) 216 (38.99%)

Never 71 (14.2%) 139 (25.09%)

Unknown 14 (2.8%) 199 (35.92%)

Vital status

Alive 318 (63.6%) 348 (62.82%)

Dead 182 (36.4%) 206 (37.18%)

FIGURE 2 (Continued)
CRG: cuproptosis-regulated gene; UMAP: Uniform Manifold Approximation and Projection; KM: Kaplan–Meier estimator; DEGs: differentially
expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; p-value < 0.05 was considered statistically significant; *: p-value <0.05; ***:
p-value < 0.001.
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FIGURE 3
Two CRG-DEG clusters identified. (A) The KM survival curve demonstrated that the overall survival of patients in the CRG-DEG clusters were
significantly different. (B) Principal component analysis scatter plot shows three clusters were obviously separated. (C) Infiltration distribution of immune
cells in the two CRG-DEG clusters. (D) Heatmap shows the relationship between CRG-DEG clusters, clinical parameters, and 344 CRG-DEGs. Each row
represents a gene, and each column represents a sample. (E) GSVA screens the most important KEGG pathways by comparing two CRG-DEG
clusters. (F) Boxplots shows the distribution of ten CRGs (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A) across CRG-DEG
clusters. CRG: cuproptosis-regulated gene; DEGs: differentially expressed genes; KM: Kaplan–Meier estimator; GSVA: gene set variation analysis; KEGG:
Kyoto Encyclopedia of Genes and Genomes; p-value < 0.05 was considered statistically significant; ns: not significant; *: p-value < 0.05; **: p-value <
0.01; ***: p-value < 0.001.
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cell, Type 17 T helper cell, and Type 2 T helper cell were recognized
significantly distributed in the CRG-DEG clusters. In addition, LUAD
patients in the CRG-DEG clusters differed significantly in terms of age,
gender, and tumor stage (Figure 3D). By comparing two CRG-DEG
clusters, we carried outGSVA to identify KEGGpathways that aremost
important (Figure 3E; Supplementary Table S4). Surprisingly, KEGG_
ALPHA_LINOLENIC_ACID_METABOLISM, KEGG_LINOLEIC_
ACID_METABOLISM, KEGG_ARACHIDONIC_ACID_
METABOLISM, KEGG_DNA_REPLICATION, KEGG_TAURINE_
AND_HYPOTAURINE_METABOLISM, KEGG_CELL_CYCLE,
KEGG_ABC_TRANSPORTERS, KEGG_PRIMARY_BILE_ACID_
BIOSYNTHESIS, KEGG_FATTY_ACID_METABOLISM, and
KEGG_ETHER_LIPID_METABOLISM ranked as the top
10 pathways. Notably, we looked at the distribution of ten CRGs
(FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and
CDKN2A) across CRG-DEG clusters and found seven (FDX1, LIAS,
LIPT1, PDHB, MTF1, GLS, and CDKN2A) were related to CRG-DEG
clusters (Figure 3F). Interestingly, compared to CRG-DEG cluster A,
only CDKN2A showed an upregulated situation, while the remaining
six displayed downregulated.

For constructing the prognosis model of the LUAD, we first
investigated the DEL between the two CRG-DEG clusters, finding
there were 3,711 DELs between them. We take these DELs into KM

FIGURE 4
Risk model CRLncSig development. (A) LASSO coefficient profiles of prognostic lncRNAs enrolled. (B) LASSO regression with ten-fold cross-
validation obtained nine prognostic genes using theminimum Lambda. (C) Sankey diagrams describes the relationship of CRG cluster, CRG-DEG cluster,
risk, and vital status. (D) Boxplots shows the distribution of risk score within the CRG cluster was significantly different between each two clusters. (E)
Boxplots displays the distribution of risk score was significantly different within the CRG-DEG cluster. (F) Boxplots exhibits expression pattern of the
ten CRGs (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A) in the high- and low-risk groups. Seven genes (FDX1, LIAS, LIPT1,
PDHA1, PDHB, MTF1, andGLS) were found having downregulated expression values in the high-risk group than that in the low-risk group, which statistics
significantly. CRLncSig: cuproptosis-regulated lncRNA signature; LASSO: least absolute shrinkage and selection operator; FDR: false discovery rate. CRG:
cuproptosis-regulated gene; DEGs: differentially expressed genes; KM: Kaplan–Meier estimator; p-value < 0.05 was considered statistically significant; *:
p-value < 0.05; ***: p-value < 0.001.

TABLE 2 Prognostic LncRNAs obtained from LASSO Cox regression model.

Gene symbol Coefficient

AC009120.2 −0.080648545

AC093010.2 −0.254299619

AC107464.3 −0.27252566

COLCA1 −0.188492674

LINC00324 −0.397752717

LINC00862 0.124863725

LINC01711 0.195720949

LINC01833 0.1791624

PRKAG2-AS1 −0.093233879
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FIGURE 5
Validation of the CRLncSig in the involved studied cohorts. (A, B) Kaplan-Meier analysis was performed in the training and validation cohorts. Patients
in each cohort and subtypes were divided into low-risk groups and high-risk groups based on their median risk score. The log-rank test with a p-value <
0.05 suggests the survival difference is significant. (C) Univariate and multivariable Cox proportional hazards models. *: the variables involved in the
studied cohorts, explains as follows: Gender: male vs. female; Race: white vs. non-white; Ethnicity: Hispanic or Latino vs. non-Hispanic or Latino;
Prior malignancy: yes vs. no; Tumor origin: upper lobe lung vs. non-upper lobe lung; Smoking history: ever vs. never. (D) ROC curves. The ROC curves
value the accuracy for LUAD outcome prediction of our signature at 1-, 3-, and 5-year, respectively. (E) The tAUC analyses compare our signature’s
prognostic ability with other available clinical characteristics. The larger the AUC, the stronger the model’s predictive ability. (F) Principal component
analysis scatter plot. (G) The nomogram, a quantitative model for predicting clinical prognosis, to predict 1-year, 3-year, and 5-year OS in the LUAD

(Continued )
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and Cox analysis to further screen and found 17 DELs meet our
criteria (Supplementary Table S5). Then the LASSO analysis was
carried out using the 17 DELs for in-depth shrinkage and selection.
Finally, 9 lncRNAs were identified (Figures 4A, B), and each gene’s
coefficient was obtained (Table 2). In addition, we built Sankey
diagrams to descript the relationship of CRG cluster, CRG-DEG
cluster, risk, and vital status (Figure 4C). Using boxplots, we found
that the distribution of risk scores within CRG cluster was
significantly different. Consistently, the distribution of risk scores
also differed significantly across the CRG-DEG clusters (Figures 4D,
E). We next examined the expression pattern of the ten CRGs
(FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS,
and CDKN2A) in the high- and low-risk groups. In the high-risk
group, seven genes (FDX1, LIAS, LIPT1, PDHA1, PDHB, MTF1,
and GLS) had downregulated expression values, which statistically
significant (Figure 4F). In addition, we displayed the correlations
between each of the nine lncRNAs and the ten CRGs, which are
shown in Supplementary Figure S1A.

Independent cohort validation results
confirmed the CRLncSig has stable
prognostic power

In Supplementary Figures S1B, C, the upper parts showed the
patients sorted by increasing risk score, the scatter plot in the middle
showed the survival status of the LUADs, and the heatmap in the
lower part showed the relative expression levels of nine hub lncRNAs.
Each LUAD was assigned a risk score based on the risk score
calculator we developed. Patients were categorized into high-risk
and low-risk groups according to their median scores. Figure 5A
shows the Kaplan-Meier estimator suggested that LUADs at high risk
had poorer survival prospects than LUADs at low risk. Additionally,
the results of the validation cohort (Figure 5B) indicate that LUAD
patients who fall into high-risk groups have a less favorable prognosis.
In addition, in Supplementary Figure S2A, we displayed each nine
lncRNA’s prognosis ability in the form of Kaplan-Meier curves using
the two cohorts’ data, showing that the LINC0183, LINC01711, and
LINC00862 performed stable unfavorable impact on LUAD patients,
while AC107464.3, LINC00324, AC009120.2, COLCA1, PRKAG2-
AS1, and AC093010.2 helped the prognosis improvement of LUADs.
Next, we identified whether the risk score can be adopted to
independently predict the outcomes of LUAD patients. The risk
score and clinical parameters, including age, gender, race, ethnicity,
tumor stage, tumor origin, etc. were included in univariate and
multivariable analysis (Figure 5C). In the univariate Cox
regression, the risk score showed significant prognostic ability. In
the multivariate Cox analysis, it was recognized as an independent
prognostic factor with a hazard ratio of 3.89 (95% CI: 2.49–6.07, p =

2.25e-09) in the training cohort, 2.45 (95% CI: 1.59–3.77, p = 4.81e-
05) in the validation cohort. In addition, the age of validation cohort
also showed independent prognostic value, however, its significance
did not show a consistence in the two cohorts. Moreover, each gene’s
univariate Cox regression was shown in the chart exhibited in
Supplementary Figure S2B. We then tested our lncRNA signature’s
prognostic ability using ROC analysis (Figure 5D) and time-
dependent AUC (Figure 5E). The CRLncSig AUC in the training
cohort was 0.737 at 1-year, 0.661 at 3-year, and 0.651 at 5-year, while
in the validation cohort was 0.613 at 1-year, 0.647 at 3-year, and
0.635 at 5-year. According to the time-dependent AUC performed in
the training cohort (Figure 5E), our risk score was close compared to
tumor stage, which is regarded as the prognosis gold standard.
Interestingly, when we combined the risk score and tumor stage,
their predictive ability AUC could generally reach more than 0.7.
Consistently, when we took the risk score and tumor stage combined
in the validation cohort (Figure 5E), the predictive ability was stable
beyond all factors at all time points, hinting that our risk score is an
excellent addition to the tumor stage. As a result of PCA results
(Figure 5F), significant heterogeneity was observed between high-risk
and low-risk patients in training and validation cohorts, which
demonstrated that the risk score model was superior at
discriminating between these groups. Additionally, a nomogram
using seven factors, including age, grade, tumor, etc., was
constructed to predict 1-, 3-, and 5-year overall survival in the
TCGA-LUAD cohort (Figure 5G). According to the calibration
curves, the nomogram accurately predicted the 1-, 3-, and 5-year
overall survival of LUAD patients in the TCGA cohort (Figure 5H).

The CRLncSig’s relationships with apoptosis,
necroptosis, pyroptosis, and ferroptosis

We got apoptosis, necroptosis, pyroptosis, and ferroptosis genes
following our criteria, shown in Supplementary Table S6. The Pearson
coefficient examined the relationships between our prognosis model
and apoptosis, necroptosis, pyroptosis, and ferroptosis -related genes,
respectively (Supplementary Table S6; Supplementary Figure S3). The
analysis showed that ANLN, SELENBP1, TPX2, METTL7A, CDC20,
CENPA, CAPN3, TUBA1C, CEP55, and CDC6 were the top ten
correlated apoptosis-related genes, and overall, 2,469/3,681 (67.07%)
genes significantly linked with the CRLncSig. CYLD, RIPK3, FADD,
TLR3, TRPM7, ZBP1, IPMK, FAS, TNF, and FASLG were discovered
as the top necroptosis-related that correlated with the lncRNA
signature. As a whole, there were 13/20 (65.00%) necroptosis-
related genes correlated with the signature pronouncedly. Moreover,
the Pearson test found the top pyroptosis-related genes that correlated
with our signature are NLRP1, CARD8, CYCS, CASP1, IRF2, NLRC4,
NLRP3, GSDMB, NAIP, and GSDMD. In total, 35/50 (70.00%)

FIGURE 5 (Continued)
patients of the TCGA-LUAD cohort using seven factors, including age, grade, tumor stage, risk score, smoking history, tissue origin, and prior
malignancy. *: p-value < 0.05; ***: p-value < 0.001. (H) The calibration curves indicates that the nomogram accurately predicted the 1-, 3-, and 5-year OS
of LUAD patients in the TCGA cohort. CRLncSig, cuproptosis-regulated lncRNA signature; HR, hazard ratio; L95%, 95% confidence interval lower; H95%,
95% confidence interval higher; HR, hazard ratio; ROC, receiver operating characteristic; AUC, area under the ROC curve; tAUC, time-dependent
AUC; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; PCA, Principal components analysis; OS, overall survival; Exp, relative expression;
p-value < 0.05 was considered statistically significant.
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pyroptosis-related genes correlated with our signature. The
examination found RRM2, SLC2A1, AURKA, DUOX1, CDCA3,
IL33, ACADSB, EPT1, SLC7A5, and HILPDA were top ferroptosis-
related genes that correlated with our signature. To sum up, there were
238/380 (62.63%) ferroptosis-related genes correlating with our
signature.

CRLncSig’s mechanisms were identified by
GSEA

As a result of the GSEA analysis based on risk scores,
significantly enriched gene sets were identified in the CRLncSig,
which the top ten KEGG items were primarily related to cardiac
muscle contraction, leukocyte transendothelial migration,
arachidonic acid metabolism, ATP-binding cassette transporter,
taurine and hypotaurine metabolism, T cell receptor signaling,
aldosterone-regulated sodium reabsorption, VEGF signaling
pathway, calcium signaling, Proximal tubule bicarbonate
reclamation (Figure 6).

CRLncSig’s potential links to the LUADs
immunological status

There is widespread acceptance that cancer is a dynamic
ecosystem in which subclonal populations, mainly cancer cells
and non-malignant cells in the tumor microenvironment,
cooperate to promote disease progression. A general examination
of the tumor microenvironment is therefore necessary. Here, using
data from the TCGA cohort, we quantify the scores, including
immune score, stromal score, and ESTIMATE score, using the R
package “ESTIMATE”. Then through the analysis of the Wilcoxon
rank sum test and Pearson correlation coefficient test, it was found
that all the scores of categories were lower in the high-risk group,
and all scores were negatively correlated with the CRLncSig (Figures
7A–C). Eight mainstream immunoinformatic algorithms, including
IPS, TIMER, CIBERSORT, CIBERSORT−ABS, QUANTISEQ,

MCPCOUNTER, XCELL, and EPIC, were integrated into the
process of screening immune cell types involved in tumor
infiltration in high- and low-risk groups. These processes were
carried out with Wilcoxon rank-sum test and Pearson correlation
coefficient test and displayed in the shapes of the heatmap
(Figure 7D) and lollipop (Figure 7E) plots, respectively. In the
plots, only significant factors were outlined, and much detail was
shown in Supplementary Table S7. The Venn diagram shown in
Figure 7F demonstrated the intersection of the results from the
heatmap and the lollipop plots, detailed showing that the CD4 T cell,
B cell, CD8 T cell, and macrophage were the top cells that our risk
correlated in the outline of the word cloud. As for the related
immune functions, the scores for the APC_co_stimulation, CCR,
Check−point, HLA, Inflammation−promoting, T_cell_
co−inhibition, T_cell_co−stimulation, and Type_II_IFN_Reponse
were lower in the high-risk group than in the low-risk group
(Figure 7G). These findings revealed that the lncRNA signature
might be associated with the immunological status of LUADs.

The CRLncSig’s participation in
immunotherapy and targeting potential
immune checkpoint

We thoroughly explored the mutation characteristics of all
tumor samples in TCGA-LUAD cohort. Only genes with
significant mutation differences between low- and high-risk
groups (p < 0.05) were selected and were arranged according to
mutation frequency. As shown in the Figure 8A, we listed the top
20 mutated genes showing TP53 mutated most frequently
approximately accounting for 53.3% in the cohort, followed by
TTN (50.6%) and MUC16 (43.8%). Among the alterations,
missense mutation was the most common variant classification.
Wilcoxon tests revealed that groups with higher risk scores had
higher TMB than groups with lower risk scores. Among risk scores
and TMB, Pearson coefficients showed a positive correlation
(Figure 8B). According to clinical trials and preclinical studies,
the immune checkpoint blockade offers more durable clinical

FIGURE 6
GSEA analysis with the KEGG gene set as the background identified relevant pathways of the CRLncSig. The significance threshold of this analysis
was set as: p-value < 0.05, and FDR < 0.25. GSEA: Gene Set Enrichment Analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery
rate.
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FIGURE 7
In-depth analytics on the relationship between the CRLncSig and the tumor microenvironment condition, immune cell infiltration, immune
function. (A) A boxplot and a scatterplot display the relationship between the CRLncSig and immune score. (B) A boxplot and a scatterplot display the
relationship between the CRLncSig and stromal score. (C) A boxplot and a scatterplot display the relationship between the CRLncSig and ESTIMATE score.
(D) The heatmap demonstrated the infiltration distribution of eight types of immune cells generated from eight mainstream immunoinformatic
algorithms in different CRLncSig scores. Only significantly distributed immune cells are exhibited. (E) The lollipop plot describes the infiltration
correlations of eight types of immune cells with CRLncSig scores. Only significantly immune cells are shown. (F) The Venn diagram shows the intersection
of the results from the heatmap and the lollipop plots, detailed showing that the CD4 T cell, B cell, CD8 T cell, andmacrophagewere the top cells that our

(Continued )
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benefits, including treatment responses and long-term survival, to
patients with higher TMB (Samstein et al., 2019; Stenzinger et al.,
2019). Our results here demonstrated that our high risk LUADs
might expect more responses from immunotherapy to a certain
extent. Following that, we examined the potential clinical efficacy of
immunotherapy based on the risk score subgroups using the TIDE.
As a surrogate biomarker, TIDE scores can provide insight into
whether a NSCLC patient will respond to immune checkpoint
blockades, including anti-PD1 and anti-CTLA4, if therapy is
initiated. Immune evasion is more likely to occur in patients with
higher TIDE prediction scores, suggesting that immunotherapy has
a lesser chance of being effective (Jiang et al., 2018; Fu et al., 2020;
Chen et al., 2021a). Based on our results, high-risk patients had
lower TIDE scores, meaning that immunotherapy was more
beneficial for them (Figure 8C), which corresponded with our
“TMB difference” findings above.

We curated 60 immune checkpoint genes based on past studies,
and we found that 48 of the 60 genes were significantly associated
with risk score using the Pearson correlation coefficient (Figure 8D).
The top 5 were CD40LG (coefficient = −0.55), SELP
(coefficient = −0.48), BTLA (coefficient = −0.48), TNFRSF14
(coefficient = −0.47), and EDNRB (coefficient = −0.44)
(Figure 8D). As shown in Figure 8E, 46 checkpoint genes were
differentially distributed between high-risk and low-risk groups
based on the Wilcoxon signed-rank test. The Kaplan–Meier
estimator found that 8 checkpoints affected the prognosis of
LUAD, namely, SELP, CD40LG, IL10, IL2, KIR2DL3, CD28,
BTLA, and TLR4 (Figure 8F). The Cox Proportional-Hazards
Model revealed 15 prognosis-related genes among 60 checkpoints
(Figure 8G). In order to simplify the results and balance the outputs
of each analysis, we used Venn diagrams to intersect the above
results and found that SELP, CD40LG, IL10, IL2, KIR2DL3, CD28,
and BTLA not only closely related to our CRLncSig, but also affected
the LUAD prognosis, which deserves more attention (Figure 8H).
Interestingly, the relationships between each two of the seven
checkpoints were calculated, showing all of them have positive
correlations and are statistically significant (Figure 8I).

To further evaluate the potential impact of these seven
checkpoint genes on the immune system and immunotherapy,
we collected data from multiple immune datasets and presented
them in a heatmap format (Figure 8J). It can be seen that these seven
checkpoint genes exhibited higher T dysfunction values in the
GSE12417_GPL570, METABRIC, TCGA Endometrial, and
TCGA Melanoma cohorts than in the E-MTAB-179 cohort (grey
module). In the immunotherapy cohorts (black module), the seven
checkpoints were ranked descendingly based on the average score of
a group with the immunotherapy cohorts, and they were ranked
from high to low as KIR2DL3, IL10, IL2, CD40LG, SELP, BTLA, and
CD28. These findings potentially hinted at the direction of future
crosstalk research between our CRLncSig and immunotherapy.

Identification and validation of potential
therapeutic agents for high risk score LUADs

CTRP and PRISM datasets contain gene expression profiles
and drug sensitivity profiles of hundreds of CCLs, which can be
used to build a drug response prediction model. There were
160 compounds shared between the two datasets. In total,
1770 compounds were found in the two datasets after
removing duplication (Figure 9A; Supplementary Table S8).
We identified candidate agents with greater drug sensitivity
for patients with high-risk scores using two different
approaches (Figure 9B). Based on CTRP and PRISM data, the
analyses were conducted. The first step was to identify
compounds with lower estimated AUC values in the high risk
score group by performing a differential drug response analysis
(log2FC > 0.9) between the highest and lowest risk score decile
groups. Following that, having examined the correlation between
AUC values and risk scores, compounds with a negative
Spearman coefficient of 0.09 were selected. These analyses
yielded six CTRP-derived compounds (including leptomycin
B, paclitaxel, parbendazole, PHA−793887, triazolothiadiazine,
and gemcitabine) (Figure 9C) and seven PRISM-derived
compounds (including decitabine, docetaxel, NVP−AUY922,
ganetespib, daunorubicin, nobiletin, and gemcitabine)
(Figure 9D). AUC values for all of these compounds were
lower in the risk score-high group, and there was a negative
correlation between risk scores and AUC values.

In spite of the 13 candidate compounds showing a higher
drug sensitivity in high-risk patients, the above analyses alone
cannot support the conclusion that these compounds are good
enough. Further multi-angle analysis was carried out in order to
assess their therapeutic potential in LUADs. First, we used CMap
analysis to identify compounds whose gene expression patterns
were opposed to the LUAD-specific expression patterns
(i.e., gene expression increased in tumor tissues but decreased
by treatment of certain compounds). Four compounds, including
PHA-793887, gemcitabine, daunorubicin, and nobiletin, had
CMap scores <−95, representing that these compounds might
have potential therapeutic effects in LUADs (Figure 9E;
Supplementary Table S9). Second, we calculated the fold-
change value representing the difference between the
candidate drug target in tumor and normal tissues. An
increased fold-change value indicates that the candidate drug
is more likely to be effective at treating LUAD (Figure 9E;
Supplementary Table S9). The third step was to conduct a
comprehensive literature review in PubMed (https://www.ncbi.
nlm.nih. gov/pubmed/) to determine the experimental and
clinical evidence that candidate compounds are beneficial in
treating LUAD (Figure 9E; Supplementary Table S9) (Burkes
and Shepherd, 1995; Fossella, 2002; Ramalingam and Belani,

FIGURE 7 (Continued)
risk correlated in the outline of the word cloud. (G) The violin plot shows the immune functions distributions in the high- and low-risk groups.
CRLncSig, cuproptosis-regulated lncRNA signature; p-value < 0.05 was considered statistically significant; ns, not significant; *p-value < 0.05; **p-
value < 0.01; ***p-value < 0.001; ****p-value < 0.0001.
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2004; Shimamura et al., 2012; Garon et al., 2013; Momparler,
2013; Liu and Gao, 2017; Wang et al., 2019; Han et al., 2021; Sever
et al., 2021). On a whole, gemcitabine, daunorubicin, and
nobiletin are considered promising for treating high risk score
LUADs based on our robust in silico evidence and confirmed
in vitro findings. In contrast, PHA-793887, which showed an
excellent CMap score but lacked vitro experiment validation, also
deserved attention in further research.

Confirming the nine lncRNAs expression
patterns in human tissues using real-time
PCR and their potential in pan-cancer

To better understand the real-world expression pattern of each
gene in the gene signature, we applied the real-time PCR to detect
the above lncRNAs in human LUAD tissues (n = 9) and human
normal lung tissues (n = 9) difference in expression. Table 3 shows
the primer sequences for the nine lncRNAs, AC009120.2,
AC093010.2, AC107464.3, COLCA1, LINC00324, LINC00862,
LINC01711, LINC01833, and PRKAG2-AS1. Notably, all
lncRNAs had different expression in LUAD and normal lung
tissues (Figure 10A). It was found that LINC00324, LINC00862,
LINC01711, and LINC01833 lncRNAs were upregulated in LUAD
tissues, while the remaining lncRNAs were underexpressed. The
upregulated genes in LUAD like LINC00862, LINC01711, and
LINC01833 were also showed having unfavorable prognosis
powerful in Supplementary Figure S2, and the downregulated
genes in LUAD like AC009120.2, AC093010.2, AC107464.3,
COLCA1, and PRKAG2-AS1 displayed owning protectable
function for the LUAD outcomes, which further proved the
validity of the gene signatures we found and provided clues for
upcoming deeper research.

FIGURE 8
Determination of the relationship between the CRLncSig and
immunotherapy. (A) The waterfall plot shows the top 20 genes
mutated in the LUAD, and their difference in the high and low risk
groups. (B) The TMB difference in the high and low-risk patients
tested by the Wilcoxon rank-sum showing in form of boxplot. The
correlation between TMB and the signature tested by the Pearson
coefficient showing in form of scatterplot. (C) The TIDE difference in
the high and low-risk patients tested by the Wilcoxon rank-sum

(Continued )

FIGURE 8 (Continued)
showing in form of boxplot. The correlation between TIDE and
the signature tested by the Pearson coefficient showing in form of
scatterplot. (D) The lollipop plot describes the correlations between
CRLncSig and immune checkpoints explained by the Pearson
coefficient. (E) The violin plot shows the distribution of immune
checkpoints in low and high- CRLncSig score tested by the Wilcoxon
rank-sum. (F) The Kaplan–Meier estimator found that 8 checkpoints
affected the prognosis of LUAD, namely SELP, CD40LG, IL10, IL2,
KIR2DL3, CD28, BTLA, and TLR4. (G) The Cox Proportional-Hazards
Model revealed 15 prognosis-related genes among 60 checkpoints.
(H) The Venn diagram shows the intersection of the above results and
found that SELP, CD40LG, IL10, IL2, KIR2DL3, CD28, and BTLA not
only closely related to our CRLncSig, but also affected the LUAD
prognosis. (I) The correlations between seven found checkpoint
genes are shown as a heatmap and performed via the Pearson
coefficient. All displayed correlations were statistically significant. (J)
Heatmap exhibits these seven checkpoint genes’ roles in the immune
system and immunotherapy from multiple immune datasets. In the
immunotherapy cohorts (black module), the seven checkpoints were
ranked descendingly based on the average score of a group with the
immunotherapy cohorts, and they were ranked from high to low as
KIR2DL3, IL10, IL2, CD40LG, SELP, BTLA, and CD28. CRLncSig:
cuproptosis-regulated lncRNA signature; ns: not significant; *p-
value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value <
0.0001; p-value < 0.05 was considered statistically significant; TMB,
Tumor mutational burden; TIDE, Tumor Immune Dysfunction and
Exclusion.
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FIGURE 9
Identification of candidate agents with higher drug sensitivity in high CRLncSig risk score patients. (A) A venn diagram for summarizing included
compounds from CTRP and PRISM datasets. (B) Schematic outlining the strategy to identify agents with higher drug sensitivity in high risk score patients.
(C) The results of Spearman’s correlation analysis and differential drug response analysis of six CTRP-derived compounds. The lower the value of the
y-axis, the greater the drug sensitivity. (D) The results of Spearman’s correlation analysis and differential drug response analysis of seven PRISM-
derived compounds. The lower the value of the y-axis, the greater the drug sensitivity. (E) Identification of most promising therapeutic agents for high risk
score patients according to the evidence from multiple sources). Six CTRP-derived agents and seven PRISM-derived agents were shown on the left and
right of the diagram, respectively. CRLncSig, cuproptosis-regulated lncRNA signature; Pos/Neg, Positively/Negatively; **p-value < 0.01; ***p-value <
0.001; p-value < 0.05 was considered statistically significant.
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Using pan-cancer expression patterns as a starting point, we
assessed the potential of these nine lncRNAs. We analyzed the
expression data of 34 cancer types, finding six of the nine lncRNAs,
AC009120.2, LINC01833, PRKAG2-AS1, AC107464.3, COLCA1,
and LINC01711, showed significant differences (tumor vs. normal)
in 30 or more cancer types (Supplementary Figure S4; Table 3).
Taking a step further, we then explored the prognostic ability of nine
lncRNAs in pan-cancer. For this reason, we curated 44 cancer types
according to the screening criteria and built the Cox models. The
results displayed that the top five lncRNAs were AC107464.3,

LINC01711, LINC00862, LINC00324, and AC009120.2; they
affected 17, 16, 14, 14, and 12 cancer types, respectively
(Supplementary Figure S5; Table 3). Finally, we tested the
expression distribution of nine lncRNAs in different cancer
stages, and according to the criteria we set, we found data from
30 cancer types for this analysis. The results showed that
LINC01711, AC107464.3, LINC00324, COLCA1, and PRKAG2-
AS1 were the top five lncRNAs, and they were differentially
expressed in cancer stages of 12, 8, 8, 8, and 8 cancer types,
respectively (Supplementary Figure S6; Table 3). According to

TABLE 3 The nine lncRNAs’ primer sequences and their potential in pan-cancer.

Gene
symbol

Sequence (5′–3′) Pan-cancer potential Cancer types with
significant differential
expression, prognostic
ability, and staging
power

Forward Reverse Significantly
differentially
expressed
between tumor
and normal, cancer
type counts (total
34 types)

Significant
prognostic
ability, cancer
type counts
(total 44 types)

Significantly
distributed in
tumor stage
subtypes, cancer
type counts (total
30 types)

Sum
counts

Cancer
type
counts

Cancer type
names

AC009120.2 CCCTGT
TGGCAG
AGG
TGTAT

GGGTGC
AGAGAC
CAG
GAATA

31 12 7 50 2 COAD, LUAD

AC093010.2 GTGAGG
TTCGAA
GCA
GGAAG

TTCCCA
GTATGG
CGT
TTCTC

19 10 3 32 2 LUAD, KIPAN

AC107464.3 CCTGGG
GATGCA
GCATATT

GGCAAG
AGAGAC
CAG
CATTC

30 17 8 55 7 KIRP, LUAD,
KICH, KIPAN,
BRCA, STES,
STAD

COLCA1 ATCTTC
ACCCCA
AGCCTTCT

CTGAGG
TCAATG
GCA
AGGAT

30 10 8 48 5 KIPAN, KIRP,
KIRC, LUAD,
KICH

LINC00324 AGAGCC
CAGGAA
CTG
TCAAA

GGGTTC
TGTTCT
TCC
AACCA

24 14 8 46 3 LIHC, LUAD,
KIRP

LINC00862 GCAGCG
ATTGGA
GTG
ATGTA

CAGAAG
TCCCAA
GTC
CCAAA

25 14 4 43 1 KICH

LINC01711 ACTCTC
CGAGGG
TCA
AGGAT

GCCTTT
GAGTAA
GCC
GTTTG

30 16 12 58 6 KIPAN, KIRC,
KIRP,
COADREAD,
STAD, BLCA

LINC01833 ACCATC
GGACTG
ACGTTCTC

CTAGAA
GCGGTT
CCT
TGTGC

31 9 3 43 1 KICH

PRKAG2-
AS1

GGGACT
TCTGGG
TCTTCTCC

CTTGAG
CATTCA
GTG
GGACA

31 9 8 48 2 KIPAN, BRCA
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FIGURE 10
Confirming the CRLncSig’s nine lncRNAs expression patterns in human tissues using real-time PCR and their potential in pan-cancer. (A) The
expression levels of the 9 signature lncRNAs in normal lung (n = 9) and LUAD (n = 9) tissues detected by real-time PCR. Data were means ± standard
deviation. (B) The diagrams show the ability of AC107464.3, LINC01711, and COLCA1 in tumor and normal differential expression, prognosis, and tumor
staging. CRLncSig: cuproptosis-regulated lncRNA signature; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001; p-value <
0.05 was considered statistically significant; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; COADREAD, Colon
adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma; KICH, Kidney Chromophobe; KIPAN, Pan-kidney cohort; KIRC, Kidney renal clear
cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LUAD, Lung adenocarcinoma; STAD, Stomach adenocarcinoma; STES, Stomach and
Esophageal carcinoma.
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our above results, we tried to find which lncRNA was significant in
tumor and normal differential expression, prognostic ability, and
tumor staging power and found that AC107464.3, LINC01711, and
COLCA1 occupied the top 3 most counts of cancer types, which was
7, 6, and 5, respectively (Figure 10B; Table 3). Our brief exploration
of the nine lncRNAs and pan-cancer prove the importance of our
CRLncSig, which may shed light on future research in other cancers.

Discussion

In the past few years, copper has become increasingly recognized
as an essential mineral nutrient for cell proliferation and death due
to its intrinsic redox properties (Lelievre et al., 2020; Ge et al., 2022).
This field has brought together researchers from various disciplines
due to its rapid development. Including researchers could help
translate basic copper chemistry and biology research into
clinical applications, especially for cancer treatment (Ge et al.,
2022). Interestingly, Tsvetkov found that copper can bind directly
to the lipid acylation component of the tricarboxylic acid (TCA)
cycle, causing it to aggregate lipid acylated proteins and iron-sulfur
clusters (Tsvetkov et al., 2022). Unlike known forms of cell death
such as pyroptosis, apoptosis, ferroptosis, and necroptosis,
cuproptosis is completely new. Considering that the prognostic
outcomes of LUAD vary widely, the development of a robust
classifier is crucial to maximizing the benefits of personalized
treatment and timely follow-up for patients of varying risk and
prognosis. In the present research, we innovatively adopt the novel
cuproptosis concept to establish CRLncSig predicting LUAD
outcomes by digging TCGA and GEO databases (with a total
human sample size exceeding 1,000 cases). Specifically, our
novelty lay in adopting comprehensive bioinformatics analysis,
including consensus clustering, LASSO regression, Kaplan-Meier
curves, Cox models, ROC curves, and tAUC, and the validations in a
large cohort. Our analysis revealed that the CRLncSig is potentially
linked to the LUADs immunological status and participates in
immunotherapy and targeting potential immune checkpoints like
SELP, CD40LG, IL10, IL2, KIR2DL3, CD28, and BTLA. Above all,
the in silico screening of 1770 compounds identified three drugs with
potential therapeutic implications for high-risk LUADs,
gemcitabine, daunorubicin, and nobiletin. Lastly, we describe
signature lncRNAs’ real-world expression patterns using real-time
PCR and their potential in pan-cancer by analyzing multi-cohort.

Many studies have revealed relevant risk parameters for its
progression in malignant hepatocellular neoplasms (Moriyama
et al., 2022; Park et al., 2022; Yang et al., 2022). However, the
increased incidence of hepatocellular carcinoma inWilson’s patients
and in animal models has raised researchers’ concerns that
abnormal copper accumulation may be related to an unidentified
mechanism of tumor progression (Ge et al., 2022). Many studies
have shown that tumors require a greater amount of copper than
healthy tissue, leading to a link between copper and cancer (Ge et al.,
2022). The balance between gastrointestinal absorption and biliary
excretion is maintained for copper homeostasis once mammalian
growth and development has been completed. Nevertheless,
anabolic status requires significantly more copper in the diet to
meet metabolic demands (Ge et al., 2022). Copper deficiency during
embryonic and fetal development results in numerous structural and

biochemical abnormalities (Ge et al., 2022). Since copper is
necessary for mitochondrial cytochrome c oxidase, which is
required for rapid cell division, cancer cells have an increased
requirement for copper (Ge et al., 2022). Various cancers,
including lung cancer, have been linked to elevated copper
concentrations in animal models and patients (Ge et al., 2022).
Copper imbalance affects mitochondrial respiration and interferes
with glycolysis, insulin resistance, and lipid metabolism (Ge et al.,
2022). Additionally, copper pathways, such as the ATOX-ATP7A-
LOX pathway, contribute to metastatic spread (Ge et al., 2022).
Aside from affecting tumor angiogenesis, copper regulates
autophagy through ULK1 and ULK2, as well as promoting tumor
formation, growth, andmetastasis (Ge et al., 2022). As a result of this
metal nutrient, copper, a number of pro-angiogenic factors are
activated, including vascular endothelial growth factor, fibroblast
growth factor 2, tumor necrosis factor, and interleukin 156. Many
recent studies link copper signaling to cancer cell proliferation,
tumor growth, and metastasis (Ge et al., 2022). Copper and cancer
metabolism must be studied intensively in order to understand all
aspects of cancer biology, such as tumor initiation, growth, and
metastasis (Ge et al., 2022). It is urgently needed to find meaningful
cuproptosis-related signatures for predicting tumor prognosis,
which will be useful for understanding cuproptosis’ mechanism
in cancer. According to Zhang and collogues, a prognostic lncRNA
profile related to cuproptosis may offer new perspectives on
hepatocellular carcinoma therapy (Zhang et al., 2022b). Bian’s
team constructed a cuproptosis-related gene signature as a
potential prognostic predictor in patients with clear cell renal cell
carcinoma, offering novel insights into cancer treatment (Bian et al.,
2022). For the moment, in LUAD, there is still no study showing that
any cuproptosis-related signature can predict prognosis. Our
present study attempts to fill this gap and construct a
cuproptosis related lncRNA signature for predicting the
outcomes of LUAD, providing more clues for this “virgin land”
in follow-up studies.

Our signature contains nine lncRNAs (Table 2), which were
AC009120.2, AC093010.2, AC107464.3, COLCA1, LINC00324,
LINC00862, LINC01711, LINC01833, and PRKAG2-AS1.
Furthermore, we performed real-time PCR validation and found
that all lncRNAs were significantly expressed differently between
LUAD and normal human lung tissues. A negative effect was
demonstrated by LINC00862, LINC01711, and LINC01833 on
LUAD outcomes, while the remaining lncRNAs detected a positive
impact (Supplementary Figure S2). There are rare studies on
LINC00862, which were only mentioned in one recent study.
According to Yu and colleagues, LINC00862 levels were elevated
in HCC tumor nodules and cirrhotic livers, suggesting it might be
involved in the progression of HCC (Yu et al., 2021). Moreover, these
researchers also examined the expression of LINC00862 in human
HCC cell lines and found that it is upregulated in several HCC cell
lines in comparison to THLE-2, a normal human liver cell line (Yu
et al., 2021). Elevated expression of LINC01711 in bladder cancer
correlates with reduced survival (Du et al., 2021). Through its
interaction with miR-326 and FSCN1, LINC01711 has been shown
to promote esophageal squamous cell carcinoma initiation and
progression (Xu et al., 2021). Additionally, LINC01711 expression
was positively correlated with TGF-β1, a critical factor in the TGF-β
signaling pathway (Lee et al., 2005). Unfortunately, the research on
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LINC01711 and lung cancer is still lacking, and more efforts are
needed. A study showed that LINC01833 sponging miR-519e-3p and
regulating S100A4 expression promote LUAD invasion (Zhang et al.,
2020). Overexpression of LINC01833 improves the proliferation and
invasion ability of lung cancer cells, as well as promotes the transition
from epithelial to mesenchymal state (Zhang et al., 2020).

In their study, Mitra et al. (2012) pointed out that excessive
copper exposure can lead to apoptosis and cell cycle arrest,
potentially causing immunotoxicity, and found that copper-
induced immunosuppression appears to be regulated by the
apoptotic pathway. In several human diseases, including cancer,
necroptosis causes caspase-independent programmed cell death
mediated by the MLKL signaling cascade (Zhang et al., 2022c). A
high level of inflammation results in pyroptosis, a form of lysis-
programmed cell death that occurs mainly during intracellular
pathogens within the cell and may form part of an antimicrobial
response (Tan et al., 2021). Ferroptosis is characterized by the
inactivation of GPX4, followed by the accumulation of ROS and
the binding of free Fe2+ to membrane lipids (Li et al., 2022c).
Copper depletion limited GPX4 protein expression, the only enzyme
capable of protecting against lipid peroxidation, according to Li et al.
(2022c). In the presence of copper depletion, the dermal papilla cells
(DPCs) were less sensitive to erastin (an inducer of ferroptosis),
while the ferroptosis inhibitor ferrostatin-1 (Fer-1) partly prevented
bathocuproinedisulfonic (BCS)-induced cell death (Li et al., 2022c).
While the way of regulated cell death of cuproptosis, apoptosis,
necroptosis, pyroptosis, and ferroptosis varies (Chen et al., 2021b;
Tsvetkov et al., 2022), from our research, they seem to be somewhat
related, such as our cuproptosis-related signature correlated with
2,321/3,681 (63.05%) apoptosis-related genes, 11/20 (55.00%)
necroptosis-related genes, 34/50 (68.00%) pyroptosis-related
genes, and 222/380 (58.42%) ferroptosis-related genes, providing
potential explanations and inspirations for further research of cell
death-related tumor mechanism.

Cancer immunotherapy prolongs the survival of deadly cancer
patients and as more cancer patients become eligible for immune-
based cancer treatments, reflecting that this approach is
revolutionizing the field of oncology (Vanneman and Dranoff,
2012; Waldman et al., 2020). New therapeutic combinations and
newly discovered drug targets are expanding the use of
immunotherapy in cancer treatment (Vanneman and Dranoff,
2012; Waldman et al., 2020). Targeted strategies inhibit tumor
progression by interfering with crucial molecular pathways, while
immunotherapy produces durable and effective tumor destruction by
stimulating the host’s own response (Vanneman and Dranoff, 2012;
Waldman et al., 2020). The main challenge of immunotherapy is how
to determine whether a certain biomarker is suitable for the host, and
how to adjust its application strategy to maximize the benefits (Suresh
et al., 2018). This study gives hints about which immunotherapy
targets to use or under what circumstances to apply. We first found
that our risk score was associated with TMB and TIDE, suggesting
that our signature appeared to guide immunotherapy. Next, we
followed the trail and found seven checkpoints, including SELP,
CD40LG, IL10, IL2, KIR2DL3, CD28, and BTLA elated to our
signature score. In the immunotherapy cohorts we chosen, the
seven checkpoints were ranked from high to low as KIR2DL3,
IL10, IL2, CD40LG, SELP, BTLA, and CD28. KIR2DL3, a
transmembrane glycoprotein expressed by natural killer cells and

T cell subsets, is responsible for sending inhibitory signals throughout
the cell (Sim et al., 2016). KIR2DL3’s structure is important for cancer
development (Sim et al., 2016). Neuroblastoma development is
influenced by KIR2DL3, according to Sezgin et al. (2022). IL-10 is
a cytokine with potent anti-inflammatory properties. The function of
IL-10 is to prevent damage to the host and maintain normal tissue
homeostasis by limiting the host’s immune response to pathogens
(Oft, 2014). IL-10 suppresses inflammatory Th17 T cells and
macrophages, which can trigger or promote tumor formation (Oft,
2014). The research by Vahl and colleagues showed that IL-10
competes with IFN-γ on the PD1/PDL1 pathway, potentially
contributing to resistance to PD1/PDL1 immunotherapy in lung
cancer patients (Vahl et al., 2017). A key function of IL-2 is
activating the immune system, which could potentially eradicate
cancer (Jiang et al., 2016). The FDA has approved the use of IL-2
as a monotherapy for metastatic renal cell carcinoma and metastatic
melanoma (Jiang et al., 2016). A decrease in IL-2 levels and a marked
increase in soluble IL-2 receptor concentrations have been observed in
advanced NSCLC, and these are associated with poor outcomes (Jiang
et al., 2016). The role of IL-2 activation in restoring lymphocyte
immunocompetence against lung cancer has also been demonstrated
(Jiang et al., 2016).

Individuals with LUAD exhibit high levels of heterogeneity,
making it nearly impossible to find a treatment that is effective for
everyone (Zito Marino et al., 2019). All current treatments for
advanced LUAD lack corresponding biomarkers, so they do not
achieve satisfactory therapeutic effects because they are population-
based (Zito Marino et al., 2019). One of the main goals of this study is
to find a tailored treatment strategy for a specific population, which is
crucial to maximizing treatment effectiveness. As well as providing
information on prognosis, the CRLncSig risk score can be used in
precision oncology to guide targeted therapy. In particular, our study
discovered three potential therapeutic agents for high-risk LUAD
patients: gemcitabine, daunorubicin, and nobiletin. Non-small cell
lung cancer is commonly treated with gemcitabine, a synthetic
antimetabolite tumor drug (Sederholm et al., 2005). A synthetic
version of gemcitabine was developed by Larry Hertel in the early
1980s for use as an antiviral medication. However, preclinical tests
showed it could kill leukemia cells in vitro as well (Burkes and
Shepherd, 1995). Gemcitabine was approved for the treatment of
non-small cell lung cancer by the FDA in 1998 (Barton-Burke, 1999).
In NSCLC, gemcitabine monotherapy has shown a response rate
greater than 20%, amedian survival of 7–9 months, and favorable side
effects in more than 500 patients in six phase II studies (Sederholm
et al., 2005). Although gemcitabine, which has been extensively
studied, is effective for most lung cancers, some patients cannot
get effective drug responses due to the heterogeneity of lung
cancers (Zito Marino et al., 2019). The CRLncSig score of our
research can potentially be an excellent indicator to guide clinical
gemcitabine medication. Known as daunorubicin, daunomycin is an
anthracycline antibiotic that binds to DNA and causes helical
unwinding, ultimately inhibiting DNA synthesis and DNA-
dependent RNA synthesis (Murphy and Yee, 2017). This drug
slows or stops the growth of cancer cells and can be used to treat
acute myeloid leukemia, acute lymphoblastic leukemia, chronic
myelogenous leukemia, and Kaposi’s sarcoma (Murphy and Yee,
2017). Potapov et al. demonstrated that compared to doxorubicin,
daunomycin lowered the proportion of the DNA-synthesizing cells in
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the drug-sensitive xenografts of lung cancer more significantly
(Potapov Iu et al., 1986). The experimental data suggested that
daunomycin would be highly efficient in the chemotherapy of
patients with lung cancer (Potapov Iu et al., 1986). Using co-
delivery liposomes targeting daunorubicin and dioscin, Wang and
colleagues demonstrated significant antitumor effects in tumor-
bearing mice, which may provide an effective strategy for the
treatment of NSCLC (Wang et al., 2019). Nobiletin is a naturally
occurring compound with potential therapeutic effects against a
variety of cancer types (Ashrafizadeh et al., 2020). Compound 29d,
a derivative of nobiletin, has been shown to increase paclitaxel
accumulation in lung cancer cells by reducing P-gp activity,
thereby enhancing its antitumor activity (Feng et al., 2020). In
terms of enhancing the antitumor activity of adriamycin, nobiletin
inhibits Akt and Wnt/β-catenin signaling pathway by increasing
GSK-3β activity, and leads to decreased lung cancer cells viability
(Moon et al., 2018).

There are some limitations to this study. We generated this
CRLncSig from publicly accessible data. Although it has been
confirmed to have stable prognosis ability through applied to
another large independent cohort and have differential
expression patterns in tumor and normal tissues via silico and
real-time PCR approaches, its clinical applicability needs further
confirmation with more parameters. Furthermore, there are still no
wet laboratory facts to hold up the nine lncRNAs’ parts in
cuproptosis-related mechanisms. Therefore, more research, which
focuses in vivo and in vitro, is urgently needed to reveal more clues
that support the signature’s potential future.

Conclusion

The present research constructed a novel and capable
cuproptosis-related lncRNA signature, CRLncSig, for LUAD.
Applying the signature to a large independent cohort and
assessing its human tissue expression pattern using real-time
PCR validated its stability and broad applicability. The signature
owns the potential ability to undertake the role of precise
immunotherapy. Our study identified potential
immunotherapy targets and agents which might improve
patients’ prognoses most effectively for those with high
CRLncSig scores. In summary, this study has introduced new
insights into personalized prognostication approaches and shed
light on the integration of tailored prognosis prediction and
precision therapy.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: This study used publicly available datasets. Their
names and where to get them are as follows: TCGA and pan-cancer

TCGA TARGET GTEx, https://xenabrowser.net; GSE29013,
GSE30219, GSE31210, GSE37745, and GSE50081, https://www.
ncbi.nlm.nih.gov/geo; CCLs database, https://depmap.org/portal;
CTRP database, https://portals.broadinstitute.org/ctrp; PRISM
database, https://depmap.org/portal/prism.

Ethics statement

Approval for this research was granted by the ethics committee
of the First Affiliated Hospital of Zhengzhou University (2022-KY-
0109-004), and all patients who participated in the research project
gave their written informed consent. Every experiment was
undertaken in compliance with the institutional ethical standards
that Zhengzhou University had adopted.

Author contributions

CM contributed to the study design, data analysis, and draft
manuscript. FL and ZH analyzed the data. ZH conducted a literature
review. SZ, YY, and ZG revised the entire manuscript. ZG supervised
the study. All authors approved the final submitted version.

Acknowledgments

CM thanks the technical support from the post-doctoral research
station of the First Affiliated Hospital of Zhengzhou University.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1113808/
full#supplementary-material

References

Ashrafizadeh, M., Zarrabi, A., Saberifar, S., Hashemi, F., Hushmandi, K., Hashemi, F.,
et al. (2020). Nobiletin in cancer therapy: How this plant derived-natural compound

targets various oncogene and onco-suppressor pathways. Biomedicines 8 (5), 110.
doi:10.3390/biomedicines8050110

Frontiers in Pharmacology frontiersin.org22

Ma et al. 10.3389/fphar.2023.1113808

https://xenabrowser.net
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://depmap.org/portal
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism
https://www.frontiersin.org/articles/10.3389/fphar.2023.1113808/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1113808/full#supplementary-material
https://doi.org/10.3390/biomedicines8050110
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1113808


Barton-Burke, M. (1999). Gemcitabine: A pharmacologic and clinical overview.
Cancer Nurs. 22 (2), 176–183.

Bian, Z., Fan, R., and Xie, L. (2022). A novel cuproptosis-related prognostic gene
signature and validation of differential expression in clear cell renal cell carcinoma.
Genes (Basel). 13 (5), 851. doi:10.3390/genes13050851

Burkes, R. L., and Shepherd, F. A. (1995). Gemcitabine in the treatment of non-small-
cell lung cancer. Ann. Oncol. 6 (3), S57–S60. doi:10.1093/annonc/6.suppl_3.s57

Cao, R., and Lopez-de-Ullibarri, I. (2019). ROC curves for the statistical analysis
of microarray data. Methods Mol. Biol. 1986, 245–253. doi:10.1007/978-1-4939-
9442-7_11

Chalmers, Z. R., Connelly, C. F., Fabrizio, D., Gay, L., Ali, S. M., Ennis, R., et al. (2017).
Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational
burden. Genome Med. 9 (1), 34. doi:10.1186/s13073-017-0424-2

Chen, H., Carrot-Zhang, J., Zhao, Y., Hu, H., Freeman, S. S., Yu, S., et al. (2019).
Genomic and immune profiling of pre-invasive lung adenocarcinoma. Nat. Commun.
10 (1), 5472. doi:10.1038/s41467-019-13460-3

Chen, X., Kang, R., Kroemer, G., and Tang, D. (2021). Broadening horizons: The role
of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 18 (5), 280–296. doi:10.1038/s41571-020-
00462-0

Chen, Y., Li, Z. Y., Zhou, G. Q., and Sun, Y. (2021). An immune-related gene
prognostic index for head and neck squamous cell carcinoma. Clin. Cancer Res. 27 (1),
330–341. doi:10.1158/1078-0432.ccr-20-2166

Clough, E., and Barrett, T. (2016). The gene expression Omnibus database. Methods
Mol. Biol. 1418, 93–110. doi:10.1007/978-1-4939-3578-9_5

Du, Y., Wang, B., Jiang, X., Cao, J., Yu, J., Wang, Y., et al. (2021). Identification
and validation of a stromal EMT related LncRNA signature as a potential marker to
predict bladder cancer outcome. Front. Oncol. 11, 620674. doi:10.3389/fonc.2021.
620674

Feng, S., Zhou, H., Wu, D., Zheng, D., Qu, B., Liu, R., et al. (2020). Nobiletin and its
derivatives overcome multidrug resistance (MDR) in cancer: Total synthesis and
discovery of potent MDR reversal agents. Acta Pharm. Sin. B 10 (2), 327–343.
doi:10.1016/j.apsb.2019.07.007

Fossella, F. V. (2002). Docetaxel for previously treated non-small-cell lung cancer.
Oncol. Willist. Park) 16 (6), 45–51.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33 (1), 1–22. doi:10.
18637/jss.v033.i01

Fu, J., Li, K., Zhang, W., Wan, C., Zhang, J., Jiang, P., et al. (2020). Large-scale public
data reuse to model immunotherapy response and resistance. Genome Med. 12 (1), 21.
doi:10.1186/s13073-020-0721-z

Garon, E. B., Finn, R. S., Hamidi, H., Dering, J., Pitts, S., Kamranpour, N., et al.
(2013). The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung
cancer growth. Mol. Cancer Ther. 12 (6), 890–900. doi:10.1158/1535-7163.MCT-
12-0998

Ge, E. J., Bush, A. I., Casini, A., Cobine, P. A., Cross, J. R., DeNicola, G. M., et al.
(2022). Connecting copper and cancer: From transition metal signalling to
metalloplasia. Nat. Rev. Cancer 22 (2), 102–113. doi:10.1038/s41568-021-
00417-2

Ghandi, M., Huang, F. W., Jane-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E.
R., 3rd, et al. (2019). Next-generation characterization of the cancer cell line
Encyclopedia. Nature 569 (7757), 503–508. doi:10.1038/s41586-019-1186-3

Goeman, J. J. (2010). L1 penalized estimation in the Cox proportional hazards model.
Biom J. 52 (1), 70–84. doi:10.1002/bimj.200900028

Han, S. H., Han, J. H., Chun, W. J., Lee, S. S., Kim, H. S., and Lee, J. W. (2021).
Nobiletin inhibits non-small-cell lung cancer by inactivating WNT/β-Catenin signaling
through downregulating miR-15-5p. Evid. Based Complement. Altern. Med. 2021,
7782963. doi:10.1155/2021/7782963

Hu, H., Xu, Q., Mo, Z., Hu, X., He, Q., Zhang, Z., et al. (2022). New anti-cancer
explorations based on metal ions. J. Nanobiotechnology 20 (1), 457. doi:10.1186/s12951-
022-01661-w

Ji, Z. H., Ren, W. Z., Wang, H. Q., Gao, W., and Yuan, B. (2022). Molecular subtyping
based on cuproptosis-related genes and characterization of tumor microenvironment
infiltration in kidney renal clear cell carcinoma. Front. Oncol. 12, 919083. doi:10.3389/
fonc.2022.919083

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 (10),
1550–1558. doi:10.1038/s41591-018-0136-1

Jiang, T., Zhou, C., and Ren, S. (2016). Role of IL-2 in cancer immunotherapy.
Oncoimmunology 5 (6), e1163462. doi:10.1080/2162402X.2016.1163462

Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics 8 (1), 118–127. doi:10.
1093/biostatistics/kxj037

Lee, F. T., Mountain, A. J., Kelly, M. P., Hall, C., Rigopoulos, A., Johns, T. G., et al.
(2005). Enhanced efficacy of radioimmunotherapy with 90Y-CHX-A’’-DTPA-

hu3S193 by inhibition of epidermal growth factor receptor (EGFR) signaling with
EGFR tyrosine kinase inhibitor AG1478. Clin. Cancer Res. 11 (19), 7080s–7086s. doi:10.
1158/1078-0432.CCR-1004-0019

Lelievre, P., Sancey, L., Coll, J. L., Deniaud, A., and Busser, B. (2020). The multifaceted
roles of copper in cancer: A trace metal element with dysregulated metabolism, but also
a target or a bullet for therapy. Cancers (Basel). 12 (12), 3594. doi:10.3390/
cancers12123594

Li, F., Niu, Y., Zhao, W., Yan, C., and Qi, Y. (2022). Construction and validation
of a prognostic model for lung adenocarcinoma based on endoplasmic
reticulum stress-related genes. Sci. Rep. 12 (1), 19857. doi:10.1038/s41598-
022-23852-z

Li, F., Wu, X., Liu, H., Liu, M., Yue, Z., Wu, Z., et al. (2022). Copper depletion
strongly enhances ferroptosis via mitochondrial perturbation and reduction in
antioxidative mechanisms. Antioxidants (Basel). 11 (11), 2084. doi:10.3390/
antiox11112084

Li, J., Chen, S., Liao, Y., Wang, H., Zhou, D., and Zhang, B. (2022). Arecoline is
associated with inhibition of cuproptosis and proliferation of cancer-associated
fibroblasts in oral squamous cell carcinoma: A potential mechanism for tumor
metastasis. Front. Oncol. 12, 925743. doi:10.3389/fonc.2022.925743

Li, X., Ma, C., Luo, H., Zhang, J., Wang, J., and Guo, H. (2020). Identification of the
differential expression of genes and upstream microRNAs in small cell lung cancer
compared with normal lung based on bioinformatics analysis. Med. Baltim. 99 (11),
e19086. doi:10.1097/MD.0000000000019086

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P., and
Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics 27
(12), 1739–1740. doi:10.1093/bioinformatics/btr260

Lin, W., Chen, Y., Wu, B., Chen, Y., and Li, Z. (2021). Identification of the
pyroptosisrelated prognostic gene signature and the associated regulation axis in
lung adenocarcinoma. Cell Death Discov. 7 (1), 161. doi:10.1038/s41420-021-
00557-2

Liu, J., Lichtenberg, T., Hoadley, K. A., Poisson, L. M., Lazar, A. J., Cherniack, A. D.,
et al. (2018). An integrated TCGA pan-cancer clinical data resource to drive high-
quality survival outcome analytics. Cell 173 (2), 400–416.e11. doi:10.1016/j.cell.2018.
02.052

Liu, Z., and Gao,W. (2017). Leptomycin B reduces primary and acquired resistance of
gefitinib in lung cancer cells. Toxicol. Appl. Pharmacol. 335, 16–27. doi:10.1016/j.taap.
2017.09.017

Lu, Y., Luo, X., Wang, Q., Chen, J., Zhang, X., Li, Y., et al. (2022). A novel necroptosis-
related lncRNA signature predicts the prognosis of lung adenocarcinoma. Front. Genet.
13, 862741. doi:10.3389/fgene.2022.862741

Ma, C., Li, F., He, Z., and Zhao, S. (2022). A more novel and powerful prognostic gene
signature of lung adenocarcinoma determined from the immune cell infiltration
landscape. Front. Surg. 9, 1015263. doi:10.3389/fsurg.2022.1015263

Ma, C., Li, F., and Luo, H. (2021). Prognostic and immune implications of a novel
ferroptosis-related ten-gene signature in lung adenocarcinoma. Ann. Transl. Med. 9
(13), 1058. doi:10.21037/atm-20-7936

Ma, C., Li, F., Wang, Z., and Luo, H. (2022). A novel immune-related gene signature
predicts prognosis of lung adenocarcinoma. Biomed. Res. Int. 2022, 4995874. doi:10.
1155/2022/4995874

Ma, C., Luo, H., Cao, J., Gao, C., Fa, X., andWang, G. (2020). Independent prognostic
implications of RRM2 in lung adenocarcinoma. J. Cancer 11 (23), 7009–7022. doi:10.
7150/jca.47895

Ma, C., Luo, H., Cao, J., Zheng, X., Zhang, J., Zhang, Y., et al. (2020). Identification of a
novel tumor microenvironment-associated eight-gene signature for prognosis
prediction in lung adenocarcinoma. Front. Mol. Biosci. 7, 571641. doi:10.3389/
fmolb.2020.571641

Ma, C., Luo, H., Liu, B., Li, F., Tschope, C., and Fa, X. (2018). Long noncoding RNAs:
A new player in the prevention and treatment of diabetic cardiomyopathy? Diabetes
Metab. Res. Rev. 34 (8), e3056. doi:10.1002/dmrr.3056

Mitra, S., Keswani, T., Dey, M., Bhattacharya, S., Sarkar, S., Goswami, S., et al. (2012).
Copper-induced immunotoxicity involves cell cycle arrest and cell death in the spleen
and thymus. Toxicology 293 (1-3), 78–88. doi:10.1016/j.tox.2011.12.013

Momparler, R. L. (2013). Epigenetic therapy of non-small cell lung cancer using
decitabine (5-aza-2’-deoxycytidine). Front. Oncol. 3, 188. doi:10.3389/fonc.2013.
00188

Moon, J. Y., Manh Hung, L. V., Unno, T., and Cho, S. K. (2018). Nobiletin enhances
chemosensitivity to adriamycin through modulation of the akt/gsk3β/β⁻Catenin/
MYCN/MRP1 signaling pathway in A549 human non-small-cell lung cancer cells.
Nutrients 10 (12), 1829. doi:10.3390/nu10121829

Moriyama, M., Kanda, T., Midorikawa, Y., Matsumura, H., Masuzaki, R., Nakamura,
H., et al. (2022). The proliferation of atypical hepatocytes and CDT1 expression in
noncancerous tissue are associated with the postoperative recurrence of hepatocellular
carcinoma. Sci. Rep. 12 (1), 20508. doi:10.1038/s41598-022-25201-6

Murphy, T., and Yee, K. W. L. (2017). Cytarabine and daunorubicin for the treatment
of acute myeloid leukemia. Expert Opin. Pharmacother. 18 (16), 1765–1780. doi:10.
1080/14656566.2017.1391216

Frontiers in Pharmacology frontiersin.org23

Ma et al. 10.3389/fphar.2023.1113808

https://doi.org/10.3390/genes13050851
https://doi.org/10.1093/annonc/6.suppl_3.s57
https://doi.org/10.1007/978-1-4939-9442-7_11
https://doi.org/10.1007/978-1-4939-9442-7_11
https://doi.org/10.1186/s13073-017-0424-2
https://doi.org/10.1038/s41467-019-13460-3
https://doi.org/10.1038/s41571-020-00462-0
https://doi.org/10.1038/s41571-020-00462-0
https://doi.org/10.1158/1078-0432.ccr-20-2166
https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.3389/fonc.2021.620674
https://doi.org/10.3389/fonc.2021.620674
https://doi.org/10.1016/j.apsb.2019.07.007
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1186/s13073-020-0721-z
https://doi.org/10.1158/1535-7163.MCT-12-0998
https://doi.org/10.1158/1535-7163.MCT-12-0998
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1002/bimj.200900028
https://doi.org/10.1155/2021/7782963
https://doi.org/10.1186/s12951-022-01661-w
https://doi.org/10.1186/s12951-022-01661-w
https://doi.org/10.3389/fonc.2022.919083
https://doi.org/10.3389/fonc.2022.919083
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1080/2162402X.2016.1163462
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1158/1078-0432.CCR-1004-0019
https://doi.org/10.1158/1078-0432.CCR-1004-0019
https://doi.org/10.3390/cancers12123594
https://doi.org/10.3390/cancers12123594
https://doi.org/10.1038/s41598-022-23852-z
https://doi.org/10.1038/s41598-022-23852-z
https://doi.org/10.3390/antiox11112084
https://doi.org/10.3390/antiox11112084
https://doi.org/10.3389/fonc.2022.925743
https://doi.org/10.1097/MD.0000000000019086
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1038/s41420-021-00557-2
https://doi.org/10.1038/s41420-021-00557-2
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1016/j.taap.2017.09.017
https://doi.org/10.1016/j.taap.2017.09.017
https://doi.org/10.3389/fgene.2022.862741
https://doi.org/10.3389/fsurg.2022.1015263
https://doi.org/10.21037/atm-20-7936
https://doi.org/10.1155/2022/4995874
https://doi.org/10.1155/2022/4995874
https://doi.org/10.7150/jca.47895
https://doi.org/10.7150/jca.47895
https://doi.org/10.3389/fmolb.2020.571641
https://doi.org/10.3389/fmolb.2020.571641
https://doi.org/10.1002/dmrr.3056
https://doi.org/10.1016/j.tox.2011.12.013
https://doi.org/10.3389/fonc.2013.00188
https://doi.org/10.3389/fonc.2013.00188
https://doi.org/10.3390/nu10121829
https://doi.org/10.1038/s41598-022-25201-6
https://doi.org/10.1080/14656566.2017.1391216
https://doi.org/10.1080/14656566.2017.1391216
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1113808


Oft, M. (2014). IL-10: Master switch from tumor-promoting inflammation to
antitumor immunity. Cancer Immunol. Res. 2 (3), 194–199. doi:10.1158/2326-6066.
CIR-13-0214

Park, I., Kim, N., Lee, S., Park, K., Son, M. Y., Cho, H. S., et al. (2022).
Characterization of signature trends across the spectrum of non-alcoholic fatty
liver disease using deep learning method. Life Sci. 314, 121195. doi:10.1016/j.lfs.
2022.121195

Potapov Iu, N., Krutova, T. V., Korman, D. B., and Pashkova, V. S. (1986). [Cytotoxic
action of doxorubicin and daunomycin on human lung cancer cells]. Antibiot. Med.
Biotekhnol 31 (8), 614–617.

Ramalingam, S., and Belani, C. P. (2004). Paclitaxel for non-small cell lung cancer.
Expert Opin. Pharmacother. 5 (8), 1771–1780. doi:10.1517/14656566.5.8.1771

Samstein, R.M., Lee, C.H., Shoushtari, A. N., Hellmann,M. D., Shen, R., Janjigian, Y. Y.,
et al. (2019). Tumor mutational load predicts survival after immunotherapy across
multiple cancer types. Nat. Genet. 51 (2), 202–206. doi:10.1038/s41588-018-0312-8

Sauerbrei, W., Royston, P., and Binder, H. (2007). Selection of important variables
and determination of functional form for continuous predictors in multivariable model
building. Stat. Med. 26 (30), 5512–5528. doi:10.1002/sim.3148

Sederholm, C., Hillerdal, G., Lamberg, K., Kolbeck, K., Dufmats, M., Westberg, R.,
et al. (2005). Phase III trial of gemcitabine plus carboplatin versus single-agent
gemcitabine in the treatment of locally advanced or metastatic non-small-cell lung
cancer: The Swedish lung cancer study group. J. Clin. Oncol. 23 (33), 8380–8388. doi:10.
1200/JCO.2005.01.2781

Sever, B., Altintop, M. D., Ciftci, G. A., and Ozdemir, A. (2021). A new series of
triazolothiadiazines as potential anticancer agents for targeted therapy of non-small cell
lung and colorectal cancers: Design, synthesis, in silico and in vitro studies providing
mechanistic insight into their anticancer potencies. Med. Chem. 17 (10), 1104–1128.
doi:10.2174/1573406416666201021142832

Sezgin, G., Goruroglu Ozturk, O., Ozkan, A., Kupeli, S., and Bayram, I. (2022).
Clinical impact of KIR2DS3 and KIR2DL3 genes in neuroblastoma patients.Med. Princ.
Pract. 31, 532–539. doi:10.1159/000524656

Shimamura, T., Perera, S. A., Foley, K. P., Sang, J., Rodig, S. J., Inoue, T., et al. (2012).
Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor
activity in in vitro and in vivomodels of non-small cell lung cancer. Clin. Cancer Res. 18
(18), 4973–4985. doi:10.1158/1078-0432.CCR-11-2967

Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2021). Cancer statistics, 2021.
CA Cancer J. Clin. 71 (1), 7–33. doi:10.3322/caac.21654

Sim, M. J., Stowell, J., Sergeant, R., Altmann, D. M., Long, E. O., and Boyton, R. J.
(2016). KIR2DL3 and KIR2DL1 show similar impact on licensing of human NK cells.
Eur. J. Immunol. 46 (1), 185–191. doi:10.1002/eji.201545757

Stenzinger, A., Allen, J. D., Maas, J., Stewart, M. D., Merino, D. M., Wempe, M. M.,
et al. (2019). Tumor mutational burden standardization initiatives: Recommendations
for consistent tumor mutational burden assessment in clinical samples to guide
immunotherapy treatment decisions. Genes Chromosom. Cancer 58 (8), 578–588.
doi:10.1002/gcc.22733

Strasser, A., and Vaux, D. L. (2020). Cell death in the origin and treatment of cancer.
Mol. Cell 78 (6), 1045–1054. doi:10.1016/j.molcel.2020.05.014

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3), 209–249. doi:10.
3322/caac.21660

Suresh, K., Naidoo, J., Lin, C. T., and Danoff, S. (2018). Immune checkpoint
immunotherapy for non-small cell lung cancer: Benefits and pulmonary toxicities.
Chest 154 (6), 1416–1423. doi:10.1016/j.chest.2018.08.1048

Taminau, J., Meganck, S., Lazar, C., Steenhoff, D., Coletta, A., Molter, C., et al. (2012).
Unlocking the potential of publicly available microarray data using inSilicoDb and
inSilicoMerging R/Bioconductor packages. BMC Bioinforma. 13, 335. doi:10.1186/
1471-2105-13-335

Tan, Y., Chen, Q., Li, X., Zeng, Z., Xiong, W., Li, G., et al. (2021). Pyroptosis: A new
paradigm of cell death for fighting against cancer. J. Exp. Clin. Cancer Res. 40 (1), 153.
doi:10.1186/s13046-021-01959-x

Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., Ou Yang, T. H., et al.
(2018). The immune landscape of cancer. Immunity 48 (4), 812–830.e14. doi:10.1016/j.
immuni.2018.03.023

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Stat.
Med. 16 (4), 385–395. doi:10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.
0.co;2-3

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al.
(2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science
375 (6586), 1254–1261. doi:10.1126/science.abf0529

Vahl, J. M., Friedrich, J., Mittler, S., Trump, S., Heim, L., Kachler, K., et al. (2017).
Interleukin-10-regulated tumour tolerance in non-small cell lung cancer. Br. J. Cancer
117 (11), 1644–1655. doi:10.1038/bjc.2017.336

Vanneman, M., and Dranoff, G. (2012). Combining immunotherapy and targeted
therapies in cancer treatment. Nat. Rev. Cancer 12 (4), 237–251. doi:10.1038/nrc3237

Waldman, A. D., Fritz, J. M., and Lenardo, M. J. (2020). A guide to cancer
immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol.
20 (11), 651–668. doi:10.1038/s41577-020-0306-5

Wang, Y., Fu, M., Liu, J., Yang, Y., Yu, Y., Li, J., et al. (2019). Inhibition of tumor
metastasis by targeted daunorubicin and dioscin codelivery liposomes modified with
PFV for the treatment of non-small-cell lung cancer. Int. J. Nanomedicine 14,
4071–4090. doi:10.2147/IJN.S194304

Wu, X., Kong, W., Qi, X., Wang, S., Chen, Y., Zhao, Z., et al. (2019). Icariin induces
apoptosis of human lung adenocarcinoma cells by activating the mitochondrial
apoptotic pathway. Life Sci. 239, 116879. doi:10.1016/j.lfs.2019.116879

Xu, M. L., Liu, T. C., Dong, F. X., Meng, L. X., Ling, A. X., and Liu, S. (2021). Exosomal
lncRNA LINC01711 facilitates metastasis of esophageal squamous cell carcinoma via
the miR-326/FSCN1 axis. Aging (Albany NY) 13 (15), 19776–19788. doi:10.18632/
aging.203389

Yang, C., Guo, Y., Wu, Z., Huang, J., and Xiang, B. (2022). Comprehensive analysis of
cuproptosis-related genes in prognosis and immune infiltration of hepatocellular
carcinoma based on bulk and single-cell RNA sequencing data. Cancers (Basel). 14
(22), 5713. doi:10.3390/cancers14225713

Yang, C., Huang, X., Li, Y., Chen, J., Lv, Y., Dai, S., et al. (2021). Prognosis and
personalized treatment prediction in TP53-mutant hepatocellular carcinoma: An in
silico strategy towards precision oncology. Brief. Bioinform 22 (3), bbaa295. doi:10.1093/
bib/bbaa295

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-Garcia,
W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612

Yu, A. T., Berasain, C., Bhatia, S., Rivera, K., Liu, B., Rigo, F., et al. (2021). PHAROH
lncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR.
Elife 10, e68263. doi:10.7554/eLife.68263

Zhang, A., Yang, J., Ma, C., Li, F., and Luo, H. (2021). Development and validation of a
robust ferroptosis-related prognostic signature in lung adenocarcinoma. Front. Cell Dev.
Biol. 9, 616271. doi:10.3389/fcell.2021.616271

Zhang, G., Sun, J., and Zhang, X. (2022). A novel Cuproptosis-related LncRNA
signature to predict prognosis in hepatocellular carcinoma. Sci. Rep. 12 (1), 11325.
doi:10.1038/s41598-022-15251-1

Zhang, T., Wang, Y., Inuzuka, H., and Wei, W. (2022). Necroptosis pathways in
tumorigenesis. Semin. Cancer Biol. 86 (3), 32–40. doi:10.1016/j.semcancer.2022.07.007

Zhang, Y., Li, W., Lin, Z., Hu, J., Wang, J., Ren, Y., et al. (2020). The long noncoding
RNA Linc01833 enhances lung adenocarcinoma progression via MiR-519e-3p/
S100A4 Axis. Cancer Manag. Res. 12, 11157–11167. doi:10.2147/CMAR.S279623

Zhang, Z., Zeng, X., Wu, Y., Liu, Y., Zhang, X., and Song, Z. (2022). Cuproptosis-
related risk score predicts prognosis and characterizes the tumor microenvironment in
hepatocellular carcinoma. Front. Immunol. 13, 925618. doi:10.3389/fimmu.2022.
925618

Zheng, X., Li, Y., Ma, C., Zhang, J., Zhang, Y., Fu, Z., et al. (2020). Independent
prognostic potential of GNPNAT1 in lung adenocarcinoma. Biomed. Res. Int. 2020,
8851437. doi:10.1155/2020/8851437

Zhou, N., and Bao, J. (2020). FerrDb: A manually curated resource for regulators and
markers of ferroptosis and ferroptosis-disease associations. Database 2020, baaa021.
doi:10.1093/database/baaa021

Zito Marino, F., Bianco, R., Accardo, M., Ronchi, A., Cozzolino, I., Morgillo, F., et al.
(2019). Molecular heterogeneity in lung cancer: From mechanisms of origin to clinical
implications. Int. J. Med. Sci. 16 (7), 981–989. doi:10.7150/ijms.34739

Frontiers in Pharmacology frontiersin.org24

Ma et al. 10.3389/fphar.2023.1113808

https://doi.org/10.1158/2326-6066.CIR-13-0214
https://doi.org/10.1158/2326-6066.CIR-13-0214
https://doi.org/10.1016/j.lfs.2022.121195
https://doi.org/10.1016/j.lfs.2022.121195
https://doi.org/10.1517/14656566.5.8.1771
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1002/sim.3148
https://doi.org/10.1200/JCO.2005.01.2781
https://doi.org/10.1200/JCO.2005.01.2781
https://doi.org/10.2174/1573406416666201021142832
https://doi.org/10.1159/000524656
https://doi.org/10.1158/1078-0432.CCR-11-2967
https://doi.org/10.3322/caac.21654
https://doi.org/10.1002/eji.201545757
https://doi.org/10.1002/gcc.22733
https://doi.org/10.1016/j.molcel.2020.05.014
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.chest.2018.08.1048
https://doi.org/10.1186/1471-2105-13-335
https://doi.org/10.1186/1471-2105-13-335
https://doi.org/10.1186/s13046-021-01959-x
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1038/bjc.2017.336
https://doi.org/10.1038/nrc3237
https://doi.org/10.1038/s41577-020-0306-5
https://doi.org/10.2147/IJN.S194304
https://doi.org/10.1016/j.lfs.2019.116879
https://doi.org/10.18632/aging.203389
https://doi.org/10.18632/aging.203389
https://doi.org/10.3390/cancers14225713
https://doi.org/10.1093/bib/bbaa295
https://doi.org/10.1093/bib/bbaa295
https://doi.org/10.1038/ncomms3612
https://doi.org/10.7554/eLife.68263
https://doi.org/10.3389/fcell.2021.616271
https://doi.org/10.1038/s41598-022-15251-1
https://doi.org/10.1016/j.semcancer.2022.07.007
https://doi.org/10.2147/CMAR.S279623
https://doi.org/10.3389/fimmu.2022.925618
https://doi.org/10.3389/fimmu.2022.925618
https://doi.org/10.1155/2020/8851437
https://doi.org/10.1093/database/baaa021
https://doi.org/10.7150/ijms.34739
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1113808

	Prognosis and personalized treatment prediction in lung adenocarcinoma: An in silico and in vitro strategy adopting cupropt ...
	Introduction
	Materials and methods
	Data selection and preprocessing
	Identification of cuproptosis-regulated genes (CRG) subgroups using consensus clustering
	Constructions of CRG-DEG clusters and a cuproptosis-regulated lncRNA signature (CRLncSig)
	Validation of the CRLncSig in an indenpendent cohort
	Correlations between the cuproptosis-related lncRNA signature and apoptosis, necroptosis, pyroptosis, and ferroptosis
	GSEA
	Identification of the immunological status of the CRLncSig
	Identification of the immunotherapy role and immune checkpoint target of CRLncSig
	Identification of drugs for high risk score LUADs
	Validation of drugs using connectivity map (CMap) analysis
	Validation of the CRLncSig’s expression profile using the real-time PCR and human LUAD tissues
	Pan-cancer ability determination of each lncRNA of the CRLncSig

	Results
	Patient characteristics
	Evaluation of the CRG clusters in LUADs using consensus clustering
	Two CRG-DEG clusters identification and a CRLncSig generated
	Independent cohort validation results confirmed the CRLncSig has stable prognostic power
	The CRLncSig’s relationships with apoptosis, necroptosis, pyroptosis, and ferroptosis
	CRLncSig’s mechanisms were identified by GSEA
	CRLncSig’s potential links to the LUADs immunological status
	The CRLncSig’s participation in immunotherapy and targeting potential immune checkpoint
	Identification and validation of potential therapeutic agents for high risk score LUADs
	Confirming the nine lncRNAs expression patterns in human tissues using real-time PCR and their potential in pan-cancer

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


