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Nanoparticle drug delivery systems have proved anti-tumor effects; however, they
are not widely used in tumor therapy due to insufficient ability to target specific
sites, multidrug resistance to anti-tumor drugs, and the high toxicity of the drugs.
With the development of RNAi technology, nucleic acids have been delivered to
target sites to replace or correct defective genes or knock down specific genes.
Also, synergistic therapeutic effects can be achieved for combined drug delivery,
which ismore effective for overcomingmultidrug resistance of cancer cells. These
combination therapies achieve better therapeutic effects than delivering nucleic
acids or chemotherapeutic drugs alone, so the scope of combined drug delivery
has also been expanded to three aspects: drug-drug, drug-gene, and gene-gene.
This review summarizes the recent advances of nanocarriers to co-delivery
agents, including i) the characterization and preparation of nanocarriers, such
as lipid-based nanocarriers, polymer nanocarriers, and inorganic delivery carriers;
ii) the advantages and disadvantages of synergistic delivery approaches; iii) the
effectual delivery cases that are applied in the synergistic delivery systems; and iv)
future perspectives in the design of nanoparticle drug delivery systems to co-
deliver therapeutic agents.
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1 Introduction

Cancer is the second leading cause of mortality, followed by cardiovascular disease
(Siegel et al., 2022). With the advancement of medical care in recent years and improved
living standards, cancer mortality rate has decreased steadily (Torre et al., 2016). However,
the number of diagnosed cancers has declined slightly since 2020, but the deaths have
gradually increased because of untimely diagnosis and treatment, multiple viral infections,
and slow information collection due to the COVID-19 pandemic (Yabroff et al., 2022). There
were 1.91 million new cancer patients in the United States in 2022, of which 600,000 died.
Prostate cancer was the most common cancer in men, breast cancer was the most diagnosed
in women, and lung cancer, the primary cause of cancer death, resulted in approximately
350 deaths per day (Siegel et al., 2022). In clinical oncology, despite developing new cancer
treatment approaches, such as the application of immunotherapy, RNAi therapy, and gene
editing, chemotherapy (cytotoxic drugs) is still the principal therapeutic technique (Xin et al.,
2017; Gupta et al., 2019). Although it plays an important role in treatment, it is associated
with multidrug resistance (MDR), toxicity, and several side effects resulting in low patient
compliance (Sun et al., 2014).
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MDR is a major challenge in cancer therapy and leads to low
intracellular drug concentrations and severe systemic toxicity, which
could lead to chemotherapy failure (Bukowski et al., 2020). MDR
results from the interaction of multiple mechanisms, and an
accurate understanding of these mechanisms is helpful in cancer
treatment (Jabr-Milane et al., 2008). Overexpression of membrane
transporter proteins is a major drug resistance mechanism, which
increases the efflux of substances from cells (Wei et al., 2019). In
addition, reducing drug uptake and eliminating receptors and
transporter proteins on the tumor surface results in insufficient
drug uptake, affecting drug concentrations (International
Transporter et al., 2010). Furthermore, DNA repair, anti-
apoptotic and pro-apoptotic proteins, the complex tumor
microenvironment (TME), and autophagy also promote the
development of tumor MDR (Hu et al., 2012; Ostman, 2012;
Wilson et al., 2012; Yang et al., 2018; Assaraf et al., 2019;
Tarasov et al., 2019). Fortunately, nanomedicine shows great
potential to overcome the variable MDR mechanisms which limit
conventional chemotherapeutics.

Nano drug delivery systems (NDDS) provide a promising
approach to controlled and targeted drug delivery and are one of
the prospective strategies in cancer therapy (Chidambaram et al.,
2011). Generally, nanoparticles can be prepared using organic and
inorganic materials, such as lipids, polymers, and gold (Shi et al.,
2017; Ulldemolins et al., 2021). As the particle size is approximately
100 nm, nanoparticles can utilize the enhanced permeability and
retention effect (EPR) to passively target the tumor and remain in it
(Danhier, 2016). Moreover, the physicochemical properties of the
nanoparticles, such as size, structure, and surface charge, can be
adjusted by the material composition and proportion (Lobatto et al.,
2011; Wang et al., 2012). These biological properties give
nanoparticles several advantages, such as tumor-targeted delivery,
decreased systemic side effects, prolonged plasma circulation, etc
(Markman et al., 2013; Wei et al., 2021). Nanoparticle drug delivery
systems can also carry larger drug payloads and prevent recognition
by efflux pumps (Scarano et al., 2015).

Owing to the complex tumor environment, effective treatment
may not be achieved by single chemotherapeutic drugs or sequence-
specific nucleic acids, thereby motivating the co-delivery of multiple
therapeutic agents (Jang et al., 2016). Furthermore, combination
delivery also has synergistic effects of elevating tumor inhibition
efficiency through several distinct targets, and it is possible to reduce
side effects and maximize drug efficacy (Eftekhari et al., 2019).
Moreover, different types of cancers can be treated by co-
administration therapy (Taratula et al., 2011; Yin T. et al., 2015).
One of the most common strategies to increase the sensitivity of
tumors to therapeutic agents is using nanoparticles to deliver two or
more cytotoxic drugs (Hajipour et al., 2019). Therefore, combining
cytotoxic drugs and nucleic acids may be another antitumor mode
that can reduce drug dosage and reverse drug resistance (Chitkara
et al., 2016). Recently, the co-delivery of genes and gene agents is an
emerging pattern achieving synergistic regulation of gene expression
in tumor cells (Pho-Iam et al., 2021).

Alternative materials such as lipids, polymers and inorganic
nano-systems have been used to fabricate these co-delivery
nanoparticles. This review introduces the recent advances in co-
delivery nanocarriers for cancer treatment, as shown in Figure 1,
including i) the basic delivery strategy responding to several specific

situations; ii) the preparation of three different materials for
nanocarriers and successful applications of co-delivery; iii) a
discussion of the value of this new approach, the future prospects
and technical challenges in this field.

2 Lipid-based nanocarrier for co-
delivery

Lipid-based nanoparticles have many advantages in drug
delivery systems, such as in vivo stability, high drug loading
efficiency, biocompatibility, avoiding the use of organic solvents,
and controllable drug release modes in the preparation (Sheoran
et al., 2022). They can efficiently deliver nucleic acid and cytotoxic
drugs (Aghamiri et al., 2019; Hajipour et al., 2019) and have been
applied in various fields, such as biopharmaceuticals and food safety
(Ghanbarzadeh et al., 2016). Due to the different manufacturing
processes and lipid compositions, lipid-based nanoparticles have
different physical and chemical properties and spatial structures,
which also lead to different types of lipid nanoparticles, including
liposomes, micelles, nanoemulsions, nanostructured lipid carriers,
vesicles, and solid lipid nanoparticles (Tran et al., 2017). Several
successful examples about schematic illustration of lipid-based
nanocarriers to co-delivery agents have shown in Figure 2 and
some innovative cases of lipid-based nanocarriers for simultaneous
delivery have shown in Table 1.

2.1 Lipid-based nanocarriers for delivery of
drugs and drugs

In 1965, it was first reported worldwide that combined regimens
of chemotherapy drugs could be used to treat acute lymphoblastic
leukemia. Researchers compared the use of methotrexate (MTX)
plus 6-mercaptopurine (6-MP) versus single-drug therapy and
found that the dual-drug regimen demonstrated great synergistic
effect and had better efficacy in reducing the tumor size and
alleviating the disease burden in children with acute
lymphoblastic leukemia (Frei et al., 1965). However, the
limitations of this regimen were low bioavailability, poor
biocompatibility and drug leakage (Garcia-Pinel et al., 2019).
Encouragingly, since then, there has been significant progress
achieved in the study of delivery carriers and lipid-based co-
delivery nanocarriers (Zununi Vahed et al., 2017).

2.1.1 Liposome
Liposomes are spherical and have a phospholipid bilayer composed

of phospholipid and cholesterol, which can simultaneously encapsulate
hydrophilic and hydrophobic molecules (Lu et al., 2019; Shah et al.,
2020), making them an excellent delivery carrier for drug co-delivery.
Doxorubicin (DOX) and paclitaxel (PTX) are highly active anti-cancer
drugs often used to treat non-small cell lung cancer, breast cancer, etc.
(Wu et al., 2017), but their clinical use might be limited due to
significant adverse events such as low solubility and multi-drug
resistance. Franco et al. (Franco et al., 2019) used long-circulating
and fusogenic liposomes (LCFL) constructed using lipid film hydration
to deliver PTX and DOX to treat breast cancer. They found that the
neutralized Zeta potential mean value of LCFL-PTX/DXR contained
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PEG on its bilayer. Further experiments using MTT and migration
assays showed that co-delivery treatments were associated with lower
IC50 values and reduced percentage of cell migration than treatment
with free PTX or DOX. In addition, they observed that compared with
free PTX or DOX, the long circulation fusion liposome encapsulated
with PTX:DOX 1:10M ratio had better anti-tumor effects and
significantly improved cardiotoxicity; thus, they concluded that
combined administration of LCFL PTX/DXR could achieve more
positive results compared with PTX and DOX alone for the
treatment of breast cancer.

In an innovative study by Li et al. (Li M. et al., 2022), the
investigators co-delivered crizotinib (Cri) and F7 into
thermosensitive liposomes (TSL) for treating breast cancer. F7 is
a new drug that can significantly inhibit cell proliferation, but its
application is often limited due to its high toxicity and drug
resistance with Cri. The F7-Cri-TSL regimen demonstrated good
stability, heat sensitivity, and synergistic therapeutic effects with
reduced systemic cytotoxicity. Therefore, F7-Cri-TSL was proposed
as a thermosensitive treatment for breast cancer. Gao et al. (Gao
et al., 2022) used microfluidic technology to design a co-drug
delivery system using curcumin (CUR) and prodrug SN38 for
treating lung cancer. They linked SN38 to the cell-penetrating
peptide TAT through the polyethylene glycol (PEG) linker, which

was then co-loaded with liposomes and CUR to form the liposome-
TAT-PEG-SN38/CUR complex (size, 171.21 nm). Their results
showed that Lip TAT-PEG-SN38/CUR could significantly inhibit
cell proliferation, increase cell apoptosis and demonstrated
significant anti-tumor effects.

2.1.2 Nanostructured lipid carriers
Nanostructured lipid carriers (NLC) are second-generation drug

carriers based on lipid nanoparticles that can enhance the stability of
carriers and accurately control drug release (Maroufi et al., 2020).
NLC has a large internal regulation space conducive to delivering
hydrophobic drugs (Doktorovova et al., 2014; Weber et al., 2014).
Because of the different mechanisms of action of PTX and DOX, the
combination delivery demonstrated favorable results in treating
solid tumors. Wang et al. (Wang et al., 2016) used melt
emulsification technology to prepare PTX and DOX nano lipid
carriers to study cytotoxicity in non-small cell lung cancer cell lines.
Their viability results using NCL-H460 cells showed that the
cytotoxicity effects of PTX-DOX-NLC on lung cancer cells were
3 times higher than that of single drug NLC and 9-fold better than
the free drug formula. Compared with single-drug NLC, PTX-DOX-
NLC had higher tumor targeting and stronger anti-tumor activity,
reduced systemic toxicity and greater efficacy in inhibiting lung

FIGURE 1
Schematic illustration of different nanocarriers for co-delivery of anticancer agents.
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cancer growth, suggesting an effective strategy for the targeted
treatment of lung cancer.

Yang et al. (Yang et al., 2016) jointly delivered cisplatin
(DDP) and paclitaxel (PTX) to treat head and neck cancer by
constructing folic acid-modified nano lipid carriers (NLCs). In
previous studies, although DDP plus PTX had more distinctly
auxiliary value than single drug therapy, the adverse events
should be ignored. The results showed that FA-DDP/PTX-
NLC had significant inhibitory and synergistic effects on head
and neck cancer cells (FaDu cells) and improved the anti-cancer
efficiency of tumor-bearing mice. Therefore, the NLC-based FA-
DDP/PTX carrier increased drug loading and sustained release,
demonstrating promising potential as a targeted molecular drug
for treating head and neck cancer. To overcome the MDR of
combination chemotherapy, Jiang et al. (Jiang et al., 2016)
developed an SLN by solvent injection technique to co-load
CUR and etoposide (ETP), an inhibitor of DNA
topoisomerase II that can affect the G2 phase of the cell cycle.
In vitro cell viability studies using SGC 7901 cell lines showed
that the cytotoxicity values of ETP-CUR-NLCs were significantly
higher than that of drug solution samples. The tumor tissue
distribution of ETP in ETP-CUR-NLCs was significantly higher
than in other tissues and demonstrated stable blood-drug
concentration during the tumor therapy.

2.1.3 Other lipid-based carriers
In general, the entrapment efficiency and drug loading of

liposomes would be affected by the complex environment,
resulting in drug leakage and decreased efficacy (Large et al.,
2021). The use of nanoemulsion nanocarriers may help to solve
this problem. Due to their high specific surface area, tissue targeting
and long circulation characteristics, nanoemulsions have started to
be used in the clinical treatment of malignant tumors (Sanchez-
Lopez et al., 2019). To solve the problems of low solubility and
bioavailability of bicalutamide (BCT), Arya et al. (Arya et al., 2017)
used a nanoemulsion drug delivery system to co-deliver BCT and
hesperidin (HSP) to treat prostate cancer. The results showed that
the nanoparticles had smaller particle sizes and faster drug release.
The entrapment rates of BCT and HSP were 91.29% and 88.19%,
respectively. Moreover, the significant decrease in the level of
biochemical markers of nephrotoxicity showed that the tissue
toxicity was significantly reduced and that BCT treatment could
alleviate pulmonary fibrosis.

Nano-miceller drug delivery carriers could be used to improve the
internal absorption efficiency of drugs such as the co-delivery tamoxifen
(TMX) and naringenin (NG) for the treatment of breast cancer (Sandhu
et al., 2017). Investigations on the uptake of Caco-2 cells showed that the
cell uptake potential of TMX-NG – SNEDDS was high and that the
cytotoxicity of TMX-NG-SNEDDS to MCF-7 cells was significant. The

FIGURE 2
Schematic illustration of lipid-based nanocarriers to co-deliver two different agents. (A) Immunoliposome to deliver AFT and CTX, (B) pH-responsive
liposome co-delivery DTX and siRNA, (C) FA-targeted NLC for co-delivery of DDP and PTX, and (D)NLC for co-delivery of an anticancer drug, siRNA and
targeting peptide. Reproduced with permission from ref. (Lu et al., 2019), (Zhao et al., 2022), (Yang et al., 2016), (Taratula et al., 2013). Copyright 2019,
2022, 2016 and 2013, Elsevier, BioMed Central, Taylor & Francis, and Elsevier, respectively.
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drug release curve showed that TMX-NG-SNEDDS, prepared using
natural lipids and biocompatible excipients, could completely release
the drug within 30 min, with better biocompatibility and anti-cancer
effects. The phospholipid bilayer is the basic support of the cell
membranes and also a natural drug delivery carrier (Liu et al.,
2022). Researchers extracted the vesicles secreted by cancer cells to
prepare drug delivery carriers, which effectively delivered drugs to
cancer cells via direct fusion with cancer cells. Li et al. (Li H. et al.,
2022) used extracellular vesicles (EVs) as natural drug carriers to co-
deliver DOX and ronidamine (LND), a chemical sensitizer, for the
treatment of lung cancer. They found that different centrifugal forces
could affect the size of EVs, thus, affecting anti-cancer efficiency, and
their results showed that smaller EVs had higher anti-cancer efficiency.
The two drugs inhibited the proliferation of cancer cells via DNA
damage, ATP inhibition and increased ROS production (Swift et al.,
2006; Juan et al., 2008).

2.2 Lipid-based nanocarriers for delivery of
drugs and genes

Combining two therapeutic agents with different mechanisms is
becoming a promising strategy in cancer therapy (Fisusi and Akala,
2019). Integration between chemotherapeutics and genes may enhance
the synergistic action and increase the efficiency of overcomingMDR (Qi
et al., 2017). Two approaches are used in gene therapy, DNA therapy and
RNAi therapy (Athanasopoulos et al., 2017). A plasmid DNA (pDNA)
usually has highmolecular weight and is a circular double-strandedDNA.
It can be moderated to specific RNA-related genes and translated into
proteins in the nucleus (Cheng et al., 2021). However, the difficult access
to the nucleus blocks the function of pDNA and directly affects the
intracellular level of gene expression. RNA interference therapy (RNAi) is
an emerging therapeutic tool that can control gene expression in several
diseases (Setten et al., 2019). Small interferingRNA (siRNA), short hairpin
RNA (shRNA) andmicroRNA (miRNA) are themainmembers of RNAi
(Weng et al., 2019). They can silence specific genes to restrict the
overexpression of encoding proteins and accomplish the purpose of
cancer treatment. The combination of drugs and genes may result in

synergistic functions by inhibiting MDR, a major challenge of cancer
therapies (Weng et al., 2019). Lipid-based nanocarriers were shown to be
among the most successful approach for drug and gene delivery (Ansari
et al., 2020). It can modify the physicochemical properties by connecting
with different materials to improve co-delivery efficiency (Buya et al.,
2021; Su et al., 2022).

2.2.1 Liposome
Liposomes can be broadly used as delivery models because of

their ability to carry nucleic acid agents and chemotherapeutic drugs
and combination with lipids and components to encapsulate genes
and drugs (Zhang Y. et al., 2021). The loaded agents can interact with
lipid carriers and affect the co-delivery efficiency to tumors
(Ickenstein and Garidel, 2019). Generally, it utilizes electrostatic
interaction between cationic liposome and siRNA to form
complexes. In addition, siRNA can be loaded in the core of
liposomes when the carrier is similarly charged (Antipina and
Gurtovenko, 2018; Song et al., 2021). To enhance the penetration
into tumors, Zhao et al. (Zhao et al., 2022) designed a liposomal
platform, D-L/si-DTX, to co-deliver DTX and PLK-1-siRNA using a
pH-sensitive peptide, DPRP, for cancer therapy. The results showed
that the advanced liposome complex, consisting of DSPE-PEG2000-
DPRP, significantly promoted cellular uptake and adequate lysosome
escape in the cytoplasm. Moreover, D-L/si-DTX exhibited tumor-
selective delivery and inhibited tumor growth by improved
penetration in tumor spheroids. In vitro and in vivo studies
demonstrated that D-L/si-DTX could significantly downregulate
the expression of PLK-1 and suppress tumor growth with
accurate delivery and no adverse toxicity compared with single-
loaded liposomes; indicating that their proposed delivery platform
could become a promising strategy for combination therapy.

At present, gene delivery approaches are mainly based on
siRNAs (Goncalves and Paiva, 2017). However, compared with
siRNA, shRNA has the capability of multi-target silencing with
superior efficiency, making shRNA a better therapeutic candidate
(Moore et al., 2010). To improve cellular uptake, Swami et al.
(Swami et al., 2021) developed a complex liposome system
(DTX-lipoplex) to co-deliver DTX and SIRT1-shRNA for breast

TABLE 1 Lipid-based nanocarriers for simultaneous delivery of therapeutics for cancer treatment.

Nanocarrier type Nanocarrier composition Therapeutics Cell lines Indication Refs

Liposome Tf-PEG3400-DOPE, ePC, CHEMS Cobimetinib/Ncl-240 HCT 116 Colon cancer Sriraman et al.
(2015)

Liposome Maleimide-PEG5k, DOPE, EPC Paclitaxel/Trichosanthin A549 Lung cancer Chen et al. (2017d)

Liposome Cholesterol, PC, Film hydration/
Cardiolipin

6-mercaptopurine/
Daunorubicin

Jurkat/
Hut78

Acute myeloid leukemia Agrawal et al. (2005)

SLN DSPE-PEG3400-Mal, SBL, DCC Cisplatin prodrug/Paclitaxel HeLa Cervical cancer Liu et al. (2017)

Liposome DSPE-PEG2000, DPPC, DDAB Docetaxel/siRNA A549/H226 Lung cancer Qu et al. (2014)

SLN HA-as-DSPE, GM, SPC Paclitaxel/pDNA MCF-7 Breast cancer Yu et al. (2016)

Liposome EPC, DSPE-PEG2000, GE11 Gemcitabine/siRNA Panc-1 Pancreatic cancer Lin et al. (2019)

cSLN DPhPE, DC-Chol, mPEG-DSPE Paclitaxel/siRNA KB Oral epidermal cancer Yu et al. (2012)

Liposome DOTAP, DOPE, DSPE-PEG Mitomycin C/siRNA TR4 Bladder cancer Cui et al. (2015)

SLN DOTAP, DDAB, DOPE pDNA/siRNA HepG2 Liver cancer Zhu et al. (2022)
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cancer treatment. The liposome was prepared by a solvent
evaporation method, which was 200 nm in size. Their results
showed that DTX-lipoplex had excellent stability in plasma
circulation and could protect shRNA from degradation.
Furthermore, passive targeting using nanoparticles could have
higher efficiency in treating breast cancer. Chowdhury et al.
(Chowdhury et al., 2017) was the first to co-deliver
shPFKFB3 and docetaxel (DTX) using liposome to increase
apoptosis and cellular stress for the treatment of NSCLC. They
observed enhanced therapeutic efficacy of docetaxel with the RNAi-
based glycolytic inhibitor and chemosensitization of NSCLC cells.

2.2.2 Solid lipid nanoparticles (SLN) and
nanostructured lipid carriers (NLC)

Solid lipid nanoparticles (SLN), as an alternative carrier of
liposomes and polymer nanoparticles, have received extensive
attention in the field of drug delivery due to their outstanding
colloidal stability and low toxicity (Montasser et al., 2013). SLNs are
nano-spherical particles prepared by dispersing solid lipids in an
aqueous solution. Generally, SLN consists of a lipid core and
amphiphilic surface (Ganesan et al., 2018). Owing to their non-
water solid core and inner drug core, SLNs have a better protection
capacity than liposomes (Liang et al., 2021). Nanostructured lipid
carriers (NLC) are a new generation of lipid-based nanoparticles
developed through different nanocarriers and can overcome the
limitations of conventional lipid nanoparticles (Tapeinos et al.,
2017). Therefore, NLCs have received considerable attention as
an advanced drug delivery tool for cancer therapy.

Pemetrexed is a promising chemotherapeutic agent for the
treatment of glioblastoma (Genova et al., 2013). To improve the
treatment effects, Berrin et al. (Kucukturkmen and Bozkir, 2018)
prepared cationic SLNs to co-deliver miR-21 and pemetrexed for
glioblastoma treatment. The therapeutic agents were encapsulated
by a high-pressure homogenization method. The cSLNs particle had
a size of 125 nm and a zeta potential of 27 mV. The combined
formulation was shown to prolong the circulation of pemetrexed
and achieve diffusion-controlled release at body temperature. In
vitro cellular properties tests showed that cSLNs significantly
promoted U87MG cell uptake and demonstrated promising
results in cytotoxicity-related experiments. An attractive strategy
in drug delivery is the transportation of miRNAs and
chemotherapeutics to their respective target sites. Shi et al. (Shi
et al., 2014) developed a novel delivery system using SLNs for miR-
34a-microRNA and paclitaxel (PTX) for melanoma therapy. The
average particle size of this nanoparticle was 220 nm and
demonstrated excellent protection from degradation in the
serum. In vivo experiments showed that passive targeting was the
main pattern in lung tissues and that PTX exhibited enhanced
activity upon synergizing with miR-34a. This co-delivery system
demonstrated promising potential as a new approach for
glioblastoma therapy.

Due to overexpression in cancer cells, transferrin (Ff) has been
widely used in drug delivery platforms as actively targeting ligands
(Gomme et al., 2005). To achieve higher loading capacity, Shao et al.
(Shao et al., 2015) designed transferrin (Tf)-decorated NLC for co-
delivery with paclitaxel (PTX) and plasmid. The particle size of Tf-
decorated NLC (Tf-PTX-DNA-NLC) with PEG5k and PEG10K were
135 nm and 235 nm, respectively. The delivery system exhibited low

cytotoxicity and high gene transfection efficiency in vivo. The active
targeting capacity to NCL-H460 cells was enhanced by Tf decoration.
Traditional lung cancer treatment was achieved by intravenous
chemotherapy and resulted in severe toxic effects on healthy tissues.
Inhalation has been recently proposed as an ideal strategy for the
optimal efficiency of anti-lung tumor therapy. To reduce the risk of
adverse events, Taratula et al. (Taratula et al., 2013) synthesized a
nanostructured lipid nanocarrier to co-delivery MRP1-siRNA and
doxorubicin or paclitaxel for treating lung cancer by inhalation.
Compared with intravenous treatment, the NLCs showed higher
anti-tumor activity and lesser exposure to healthy tissues. Therefore,
this delivery system might be a promising approach for treating lung
carcinoma in the future.

2.2.3 Other lipid-based carriers
The preparation of nanoparticles by microfluidic technology has

led to a revolution in the field of drug delivery. Precise and
controllable nanoparticle size represents a promising preparation
scheme for the particles to effectively penetrate the tumor interstitial
barrier. To improve the serum stability of nanoparticles, Younis et al.
(Younis et al., 2021) developed usLNPs for the co-delivery of SOR
andMK-siRNA to treat hepatic carcinoma. This usLNP had a size of
60 nm and exhibited tumor penetration performance. In vivo
experiment results showed that the novel nanoparticles could
eradicate HCC tumors at a low dose of therapeutic agents and
demonstrated excellent biosafety, indicating a promising strategy for
the treatment of SOR-resistant HCC. However, issues of large-scale
production could be an obstacle in the future.

Recent studies showed that grafting sucrose laurate with
liposome could enhance the efficiency of gene transfection
(Samaridou et al., 2020). To improve the inhibition of cancer
progression with synergistic efficacy, Zhang et al. (Zhang et al.,
2020) prepared novel nanoparticles to co-encapsulate paclitaxel
(PTX) and siRNA by using tripeptide lipid and folate-PEG2000-
DSPE. In addition, sucrose laurate was used to achieve higher gene
transfection efficiency to graft the surface of LNP. This advanced
nanoparticle improved cell uptake and controlled release, which
inhibited tumor growth by limiting VEFG expression. Moreover, a
low dosage of PTX in the complex demonstrated similar effects as
single-drug with high dosage, therefore showing good potential to
become an effective delivery platform for cancer treatment.

Sorafenib (SRF) is a multikinase inhibitor and has both anti-
tumor and anti-angiogenic effects, but its application is hindered by
MDR (Kong et al., 2021). Wang et al. (Wang et al., 2019) developed
antibody-targeted lipid nanoparticles (G-S27LN) to co-deliver SRF
and miRNA against liver cancers. Their novel nanosystem released
SRF in a pH-sensitive responsive manner, and their designed
combination mode led to lower cell viability. Animal studies
showed significant suppression of tumor growth with no toxicity
with G-S27LN preparation. Therefore, this platform represents a
promising strategy for breast cancer therapy.

2.3 Lipid-based nanocarriers for delivery of
genes and genes

Gene therapy has also made significant progress with the
development of delivery systems (Tang and Xu, 2020). Some
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specific diseases, such as liver cancer, need to upregulate oncogenes
and downregulate tumor suppressor genes at the same time, so the
exploitation of dual gene delivery system is also imminent (Xu et al.,
2018). Due to different mechanisms of action in cells, delivery agents
containing two genes may have more significant therapeutic effects
than monogenic agents. Some delivery platforms for dual gene
systems had been developed to treat gene dysregulations, such as
siRNA/siRNA, miRNA/miRNA, pDNA/siRNA, etc (Li Y. et al.,
2018; Sarker et al., 2019; Muhammad et al., 2020).

High efficiency of cell uptake and excellent lysosomal escape are
the most outstanding advantages of cationic lipid nanoparticles,
which have been widely used in siRNA delivery systems (Yonezawa
et al., 2020). SiRNA is encapsulated in multilayer lipids and can be
fully protected in systemic circulation. Therefore, Kim et al. (Kim
et al., 2019) designed a ligand coupled cationic nanoparticles
carrying siRNA and quantum dots (QD) for the treatment of
breast cancer. Cationic lipids become coated with two siRNA
therapeutics (Bcl-2 and PKC-l) and simultaneous QD
incorporation. The results showed that QLs achieved enhanced
targeting delivery to cancer cells and gene silencing efficiency.
Moreover, the aptamo-QLs exhibited competitive therapeutic
efficacy compared to immuno-QLs and may be a potential
delivery carrier for RNA interference. To improve the
bioavailability of gemcitabine, Simonenko et al. (Simonenko
et al., 2020) co-delivered CHK1-siRNA and WEE1-siRNA by
using lipid nanoparticles to treat pancreatic cancer. The results
showed that co-delivering two siRNAs brought about a 10-fold
efficacy improvement compared with gemcitabine alone. These
systems may provide a novel thought for pancreatic cancer
therapy. In addition, joint delivery of gene drugs also includes
siRNA and mRNA, both types of RNA have made significant
progress in recent years. In order to maximize the therapeutic
effect, Ball et al. (Ball et al., 2018) explored the strategy of
simultaneous delivery of siRNA and mRNA by single lipid
nanoparticles. Due to the differences in the molecular weight and
stability between siRNA and mRNA, specific reactions are required
for co-delivery. Polyethylene glycol (PEG), cholesterol and two
kinds of lipids (DSPC and DOPE) were selected as raw materials
to prepare LNP, and the delivery effect was depended on adjusting
the proportion of ingredients. The experimental results showed that
LNP containing two kinds of RNA significantly enhanced the
therapeutic effect in vivo and in vitro, doubled the gene silencing
efficiency compared with siRNA alone (0.05 mg/mL), and tripled
the luciferase expression compared with mRNA alone (0.5 mg/kg).

Chen et al. constructed liposome-polycation-hyaluronic acid
nanoparticles using antibody fragment (scFv) to co-deliver siRNA
and miRNA to treat melanoma lung metastasis (Chen et al., 2010).
siRNA downregulated the target gene (c-Myc/MDM2/VEGF) in
lung metastasis. In addition, miRNA-34a induced B16F10 cell
apoptosis, inhibited survivin expression, and downregulated the
MAPK pathway. The co-delivery of two kinds of RNA
significantly reduced toxicity to normal tissues, enhanced the
treatment, and demonstrated good clinical application prospects
for cancer therapies as they promoted LPH nanoparticles to target
scFv. In addition to siRNA, miRNA is also used in dual delivery. To
improve cell uptake and plasma stability, Ghaffari et al. (Ghaffari
et al., 2021) optimized cationic niosomes to target the Bcl-2 gene by
co-encapsulating miR-15a and miR-16-1 for the treatment of

prostate cancer. The particle size of the specific noisome was
70 nm and had a zeta potential of +14.83 mV. The combination
therapy of nanocarriers significantly decreased expression of the Bcl-
2 gene and promoted the cell death of PC3 cells, providing an
applicable drug delivery approach against prostate cancer.

3 Polymer-based nanocarriers for co-
delivery

The development of nanotechnology makes it possible for drugs
to be absorbed or combined on the surface of nanoparticles,
encapsulated in the core or dissolved in the particle matrix, and
also makes it possible for targeted, safe and effective pharmaceutical
preparations of nanoparticle (NPs) (Chaturvedi et al., 2019).
Nanodrug delivery systems have shown great potential in
improving the solubility of hydrophobic drugs, enhancing the
drug’s biological distribution and pharmacokinetics, and
providing preferential accumulation in targets (Zhang et al.,
2019). Lipid-based nanoparticles have become the most common
type of nano drugs approved by the FDA (Wang T. et al., 2021).
However, the polymer-based nanocarrier is also considered an ideal
drug delivery material because of its physical and chemical
properties, such as biodegradability, biocompatibility, water
solubility and storage stability (Ballarin-Gonzalez et al., 2014).
Several instances about schematic illustration of polymer-based
nanocarriers have shown in Figure 3 and some examples of
polymer-based nanocarriers have shown in Table 2.

3.1 Synthetic polymer-based nanoparticles

Polymers can be divided into synthetic and natural polymers
according to the synthesis method. Synthetic polymers include
PLGA, PEI and PAMAM, while natural polymers include Poly
(l-lysine) (PLL), chitosan (CH) and hyaluronic acid (HA)
(Methachan and Thanapprapasr, 2017; Nayanathara et al., 2020;
Gigmes and Trimaille, 2021). Various polymers have been studied to
verify compliance with delivery systems’ requirements for
improving delivery efficiency (Luque-Michel et al., 2017; Kang
et al., 2021).

3.1.1 PLGA
PLGA are synthetic polymers with properties of biodegradability

and biocompatibility, approved by the FDA, and have shown
potential as promising drug delivery materials (Sadat Tabatabaei
Mirakabad et al., 2014). PLGA is hydrolyzed to lactic acid and
glycolic acid monomers under acidic conditions (Ding and Zhu,
2018). The tricarboxylic acid cycle can metabolize these monomer
units to avoid tissue toxicity caused by carrier accumulation (Kapoor
et al., 2015). PLGA nanoparticles enter cells via endocytosis, and the
retained PLGA nanoparticles slowly release the encapsulated drug
resulting in sustained drug effects. To enhance the efficiency of
PLGA nanoparticles entering lung cancer cells, Sharma et al.
(Sharma et al., 2020) used polycationic polymer PEI to modify
PLGA and co-deliver epirubicin (EPI) and paclitaxel (PTX) to detect
the anti-cancer effects in A549 lung cancer cells. The particle size of
PLGA-PEI-EPI-PTX was 241 nm, and the zeta potential was 42 mV.
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The research results showed that as the ester bond between lactic
acid and glycolic acid monomer units broke, with the increase in
solution acidity, the loading drugs continued to diffuse from the
nanoparticles and maintained a controlled drug release. In addition,
the synergistic effects of EPI with PTX in nanoparticles also
effectively inhibited cell migration and invasion.

Stat3 are activator of transcription proteins of the Stat family
that regulates apoptosis, cell cycle and angiogenesis.
Overexpression of Star3 may lead to MDR, while inhibition
of Star3 can reduce the activity of cancer cells and increase
apoptosis (Zou et al., 2020). To improve the therapeutic effects
of lung cancer, Su et al. (Su et al., 2012) used PEI on the surface
of PLGA to co-deliver paclitaxel and siRNA (against Stat3). The
nanocarrier was constructed in three steps. First, paclitaxel was
encapsulated in PLGA nanoparticles by solvent evaporation.
Then, PEI was coated on the surface of PLGA. Lastly, the final
carrier was prepared by negatively adsorbing charged siRNA
through electrostatic interaction. The particle size of PLGA-
PEI-TAX-S3SI was 250 nm, measured by transmission electron
microscopy. The complex was taken up by A549 and A549/
T12 cells and demonstrated high cytotoxicity in these cells. The
results of confocal microscopy showed that PLGA nanoparticles
were still released 3 h after injection, indicating that the carrier
had the ability to slowly release the drug. In addition, PLGA-

PEI-TAX-S3SI was associated with more apoptosis than PLGA-
PEI-TAX, demonstrating that it successfully inhibited the
expression of Stat3.

Paclitaxel and cisplatin are widely used in the treatment of
ovarian cancer, but due to MDR, their therapeutic effects in
recurrent or advanced ovarian cancer remain limited (Wang H.
et al., 2021). Studies have shown that drug efflux and the anti-
apoptosis pathway could be the main factors for drug resistance
in ovarian cancer (Khan et al., 2017). Therefore, Risnayanti et al.
(Risnayanti et al., 2018) developed a “dual RNAi delivery
system” to simultaneously deliver MDR1 and Bcl-2 siRNA to
inhibit both MDR pathways. Their PLGA complex was
synthesized using the double emulsion solvent evaporation
method, and polylysine was used to reduce the negative
electricity brought by siRNA. The particle size of the
nanoparticles was 197 nm, and the Zeta potential
was −2.5 mV. Compared with a single RNAi inhibition
pathway, the dual RNAi delivery system broke the
interdependence of the two mechanisms, significantly reduced
the MDR of ovarian cancer cells, and significantly increased
the toxicity of paclitaxel and cisplatin to cells. Thus,
this system could be further evaluated as a
promising treatment strategy for recurrent or advanced
ovarian cancer.

FIGURE 3
Schematic illustration of polymer-based nanocarriers to co-deliver two different agents. (A) The synthetic route of TAT-PEG-PEI-OA for co-deliver
of DTX and pDNA, (B) lipopolymers to delivery pDNA and siRNA, (C) Chitosan derivatives for co-delivery of siRNA and PTX, and (D) Thiolated glycol
chitosan for co-delivery of Dual-poly-siRNA. Reproduced with permission from ref. (Dong et al., 2016), (Thapa et al., 2019), (Yin et al., 2020), (Lee et al.,
2015). Copyright 2016, 2019, 2020 and 2015, Elsevier, Mary Ann Liebert, American Chemical Society, and Elsevier, respectively.
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3.1.2 Polyethyleneimine (PEI)
Gene delivery vectors can be divided into viral vectors and non-

viral vectors (Santana-Armas and Tros de Ilarduya, 2021). Viral
vectors are rarely used due to significant safety concerns
(Balakrishnan and David, 2019). PEI, as the representative of
non-viral vectors, is widely used for gene delivery because of its
outstanding biocompatibility and high transfection efficiency and is
considered a gold standard of gene transfection (Lungwitz et al.,
2005). Liver cancer immunotherapy has been the hotspot in liver
cancer treatment. To induce anti-tumor immune responses, Pei et al.
(Pei et al., 2022) designed nanovaccines consisting of polyanionic
alginate (ALG) and polycationic polyethyleneimine (PEI) to co-
deliver glypican-3 peptide antigens and unmethylated cytosine-
phosphate-guanine adjuvants. The particle size of nanovaccines
was 218 nm, and the zeta potential was 21 mV. Cellular uptake
experiment showed that nanovaccines enhanced antigen and
adjuvant uptake by dendritic cells and promoted endosomal
escape of the peptide. In addition, the nanovaccines exhibited
significant stimulation of DC maturation and also induced
cytotoxic T lymphocyte responses. Therefore, this study could be
a promising approach for liver cancer immunotherapy.

Docetaxel (DTX) is one of the most important chemotherapy
drugs and the only drug for treating resistant prostate cancer (Assi
et al., 2020). However, severe drug resistance hinders its clinical
application. Because DTX has multiple drug resistance mechanisms,
combining gene therapy with chemotherapy could be a promising
durable strategy (Guo et al., 2019). Due to their different properties,
using DNA and chemotherapy drugs in the same carrier delivery is
challenging. TAT peptide is a transduction domain from HIV-1,
which can improve the uptake of gene vectors and transfection
efficiency. Dong et al. (Dong et al., 2016) synthesized an advanced
PEI carrier that combined TAT peptide, oleic acid and PEG to form
TAT-PEG-PEI-OA for delivering pDNA and DTX. The particle size
of the complex was 270 nm, and the zeta potential was 22 mV.
Cytotoxicity data showed that TAT-DTX/pDNA demonstrated
significant tumor cell inhibition ability. In addition, after 24 h of

administration, the transfection efficiency of TAT-DTX/pDNA was
1.5 times higher than the control group. These results indicated that
the TAT-DTX/pDNA complex could allow continuous delivery of
drugs in tumor tissues.

Tumor necrosis factor apoptosis-inducing ligand (TRAIL) can
induce apoptosis in cancer cells while not affecting the survival of
normal cells (Sloot et al., 2006). Researchers examined the use of
TRAIL in treating p53 mutated cancer, but due to its short half-life
and poor pharmacokinetic characteristics, the therapeutic effects of
TRAIL remain unsatisfactory. Studies have shown that silencing Bcl-
2 and SOD1 with siRNA could increase the sensitivity of TRAIL, and
using pDNA could enhance the expression of required proteins
(Thapa et al., 2018). Therefore, the simultaneous delivery of pTRAIL
and Bcl-2 siRNA for breast cancer treatment is a promising
approach. Thapa et al. (Thapa et al., 2019) grafted lipids onto
PEI through thioester and amide linkage to prepare cationic
polymers for the co-delivery of siRNA and pDNA to treat breast
cancer. After delivering two genes in vivo, the growth of the breast
cancer lesion was significantly inhibited, indicating that the fusion of
the two mechanisms induced strong apoptosis, indicating that the
dinuclear acid model of a single carrier could enhance the anti-
cancer ability of TRAIL.

3.1.3 Polyamide amine (PAMAM)
The non-viral vector PAMAM dendrimer is a cationic polymer

carrier with gene transfer capability (Mekuria et al., 2021).
Compared with traditional simple linear polymers, dendrimers
also have better physical and chemical properties than
conventional simple linear polymers (Daneshvar et al., 2013).
PAMAM dendrimers have several unique functions that make
them ideal for gene transfer, including good controllability and
proportionally adequate molecular size and weight, non-
immunogenic, three-dimensional branched chain structure,
positively charged surface, easy surface modification, etc. (Chen
et al., 2022). Cancer monotherapy might not achieve good lesion
control due to incomplete regression and metastasis of the tumor.

TABLE 2 Polymer-based nanocarriers for simultaneous delivery of therapeutics for cancer treatment.

Nanocarrier type Nanocarrier composition Therapeutics Cell lines Indication Refs

Emulsion PLGA, PVA, PHBV 5-Fluorouracil/
oxaliplatin

HT-29 Colon cancer Handali et al.
(2019)

Emulsion PLGA, Pluronic F127, chitosan, hyaluronic
acid

Doxorubicin/irinotecan MDA-MB-231/
PC-3

Breast cancer/prostate
cancer

Wang et al. (2015a)

Emulsion PLGA, PVA, chitosan Camptothecin/
curcumin

CT26 Colon cancer Xiao et al. (2015)

Emulsion PLGA, PEG, FA Paclitaxel/cisplatin A549 Lung cancer He et al. (2015)

Micelle PEI, DA, Pullulan Doxorubicin/pDNA HL7702 Liver cancer Chen et al. (2017c)

Micelle DDAB, mPEG-PCL Lycopene/siRNA MCF-7 Breast cancer Mennati et al.
(2022)

Dendrimer PAMAM, ERL, CQ Erlotinib/pDNA H1975 Lung cancer Lv et al. (2018)

Emulsion PLGA, PEI Curcumin/siRNA MCF-7 Breast cancer Sarpoli et al. (2022)

Micelle PEI, NCA, PSer siRNA/pDNA 293T-GFP/HeLa Cervical cancer Chen et al. (2017b)

Peptide dendrimer TFA, DIPEA, PyBop siRNA/siRNA A549 Lung cancer Wu et al. (2021)
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Combined therapy allows multiple drug delivery and has synergistic
anti-cancer effects. Based on these, Zhang et al. (Zhang N. et al.,
2022) developed a nano delivery system based on dendrimers
(PAMAM) and pH-responsive liposomes (pRL) to co-deliver
fluoroquinoline (FRU) and DOX for anti-vascular therapy and
chemotherapy. The particle size of the nanosystem was 120 nm,
and the zeta potential was 15 mV. After targeting tumor cells, FRU
and DOXwere released in the acidic environment of tumor cells and
effectively accumulated at the tumor site to enhance tumor
inhibitory effects.

The efflux of hydrophobic chemotherapeutic drugs is one of the
common mechanisms of MDR, in which P-glycoprotein (P-gp)-
mediated MDR is the most prominent. P-gp is a protein encoded by
the MDR1 gene, which can protect normal tissues from exogenous
substances. Although small drug molecules can block P-gp, P-gp
inhibitors are often associated with serious adverse reactions and
should be inhibited at the gene level (Waghray and Zhang, 2018;
Zhang et al., 2021b). Yalamarty et al. (Yalamarty et al., 2022)
prepared an amphoteric triblock copolymer based on PAMAM
dendrimer for simultaneous delivery of DOX and MDR1 siRNA.
Themicellar systemmodified with 2C5 was shown to reduce toxicity
and target tumor cells. The experimental results showed that the
delivery carrier had excellent stability, outstanding biocompatibility
and was hemolytic. The formulation could protect siRNA from
degradation, which could be delivered to the target site and achieve
lysosome escape. However, there was no research progress on the
delivery of dual genes based on PAMAM until Li et al. (Li J. et al.,
2018) designed a PAMAM-mediated co-delivery system for siRNA
and pDNA for EGFR-targeted tumor therapy. In the future, we
expect relevant research institutions to optimize the formula, make a
carrier model suitable for delivery, and conduct in vivo experiments
to verify the effects.

3.2 Natural polymer-based nanoparticles

Natural polymer-based nanoparticles have also been widely
investigated in dual drug delivery systems (Bharadwaz and
Jayasuriya, 2020). Due to their positively charged surface, some
natural polymers are great carriers to deliver drugs and genes
simultaneously. Therefore, biopolymers are excellent alternatives
to carry chemotherapeutic agents and nucleic acids, such as
liposoluble drugs and pDNA (Idrees et al., 2020).

3.2.1 Poly (l-lysine) (PLL)
Cationic polymers are the research focus of gene delivery vectors

because of their excellent gene compression ability, controllable
molecular weight and easy modification. PLL are cationic polymers
employed for gene transfer. Under physiological conditions, the
amino acid of PLL is positively charged and interacts with negatively
charged genes to form nanoparticles. Moreover, PLL has excellent
biodegradability (Shi et al., 2015; Zheng et al., 2021). However, PLL
is prone to aggregation and precipitation, and its poor gene
transfection ability is exhibited when the ionic strength changes
or is not modified (Sun et al., 2012). Glucose oxidase (GOx) can
oxidize glucose into gluconic acid and H2O2. H2O2 can cause cancer
cell death at high concentrations. Based on this principle, Du et al.
(Du et al., 2019) prepared a delivery carrier to co-load Gox and

paclitaxel (PTX) and used PLL to connect to mesoporous silica
(MSN) through covalent coupling to investigate their anti-cancer
effects. Their results showed that the nanoparticles could effectively
decompose glucose, produce H2O2, achieve anti-tumor effects and
enhance chemotherapeutic effects, further intensifying apoptosis.

Zhang et al. (Zhang et al., 2016) developed a triblock polymer
micelle (NSC-PLL–PA) based on N-succinyl chitosan, PLL and
palmitic acid. NSC was found to improve the cycle time of
micelles and prevent premature metabolism. PLL is a cationic
skeleton that can negatively adsorb charged siRNA. PA is a
hydrophobic core used to encapsulate DOX. The average particle
size of triblock polymer micelles is about 170 nm, with a zeta
potential of 6.8 mV. The complex was unstable in a
pH 5.3 environment, indicating that the complex could be
rapidly released in the tumor microenvironment. In addition, the
complex downregulated the expression of P-gp and increased the
concentration of DOX in cells. This study proved the effectiveness of
the micelles in reversing MDR, which could be a promising strategy
for synergistic tumor therapy.

The use of siRNA has several advantages. On the one hand,
siRNA delivery avoids issues associated with the nuclear membrane
barrier because it works in the cytoplasm. On the other hand, siRNA
can be pre-designed (Dong et al., 2019). When using cationic
polymers to condense siRNA, the complexes usually form larger
particles, which can be avoided using pDNA for condensation under
the same conditions. In addition to the particle size problem, siRNA
and vector are also prone to premature separation, resulting in low
transfection efficiency (Hu et al., 2020). To obtain a stable siRNA
delivery system, Kang et al. (Chang Kang and Bae, 2011) selected
PLL as the delivery carrier, oligosulfonamide (OSA) as the surface
modification and pDNA and siRNA as long-chain anions and short-
chain anions, respectively, to prepare the siRNA/pDNA delivery
carrier PLL/siRNA pDNA OSA complex. The results showed that
the particle size of the complex was 200 nm, and the PLL/siRNA
pGFP complex containing OSA had a better ability to induce gene
silencing than its counterpart without OSA.

3.2.2 Hyaluronic acid (HA)
Hyaluronic acid is a natural polysaccharide composed of

2000–25,000 disaccharides. The basic sugar units are glucuronic
acid and acetylglucosamine, and different molecular weights can be
selected according to needs [67]. Because hyaluronic acid contains
carboxyl groups, it can be almost completely ionized under normal
physiological pH conditions, thus showing negative charge
characteristics (anionic characteristics) at indicated pH. The
chemical structure of hyaluronic acid also contains other
chemical groups, such as carboxyl, hydroxy and acetamido,
which can be used to modify the structure with other materials.
In the field of drug delivery systems, the interaction of HA-CD44
receptors has been widely used as an active tumor-targeting strategy.
CD44 receptor-mediated endocytosis in cancer cells and the tumor-
targeting ability of CD44 receptor-mediated hyaluronic acid-based
nanosystems in vivo have been widely identified in various cancer
cells, such as breast cancer, glioblastoma, liver cancer, lung
adenocarcinoma and melanoma (Misra et al., 2015; Thapa and
Wilson, 2016; Chaudhry et al., 2021).

Prostate cancer is the second largest cancer in males after lung
cancer, and it is easy to metastasize (Misra et al., 2015). Inhibiting
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androgen secretion is one of the methods to treat metastatic prostate
cancer, but it usually requires medical castration, causing pain to
patients. DTX combined with steroids is the first choice for
chemotherapy. Formonetin (FMN) is an effective ingredient
extracted from Trifolium pratense and Astragalus membranaceus,
which can be used to treat castration-tolerant prostate cancer (Tay
et al., 2019). To improve the synergistic anti-cancer effects, Dong
et al. (Dong et al., 2022) used HA and GE as the carrier of FMN and
DTX, respectively, and self-assembled the two carriers to prepare
binary nanoparticles (HA/GE-DTX/FMN NP). The results showed
that the particle size of HA/GE-DTX/FMN nanoparticles was
190 nm, and the zeta potential was 20 mV. The cell uptake
efficiency of HA/GE-DTX/FMN NPs was 59.6%, which had
significant growth inhibition on PC3 cells. In addition, the anti-
tumor efficiency of the nanocomposite was 2 times higher than the
control group and free drugs and demonstrated promising
synergistic anti-tumor effects.

Since breast cancer can metastasize to the lungs, liver and other
organs, the 5-year survival rate of breast cancer patients is very low.
The signal transducer and activator of transcription 3 (STAT3) is
one of the important proteins in cells that can transmit extracellular
signals to the nucleus (Yu et al., 2014). Abnormal expressions of
STAT3 are often detected in breast cancer patients. It was reported
that the inhibition of STAT3 could reduce tumor growth and
metastasis. Therefore, STAT3 has become an attractive
therapeutic target for cancer metastasis (Lee et al., 2019). Luo
et al. (Luo et al., 2021) first grafted polyethyleneimine onto poly
(L-lactic acid)-lipoic acid to form cationic micelles with PTX. The
final delivery system was formed by combining siSTAT3 with
electrostatic interaction and wrapping the cationic complex with
HA. The HA coating was shown to reverse the electrical properties
of the complex and increase cell uptake efficiency and targeting. The
particle size of the micelle was 200 nm and its zeta potential
was −21 mV. It was also proved that PTX and siSTAT3 had
synergistic effects and could increase the apoptosis of tumor cells.

3.2.3 Chitosan (CH)
Chitosan is a natural macromolecular nanomaterial (Lee et al.,

2019). Due to its wide source, lack of immunogenicity, easy
modifiability and good safety, biocompatibility and
biodegradability with free amino groups, it has become one of
the most modern drug carriers (Matalqah et al., 2020). However,
chitosan is only soluble in acidic solutions and insoluble in neutral
and alkaline solutions, resulting in poor stability of nanoparticles,
which greatly limits the embedding efficiency of some drugs.
Therefore, to ensure that chitosan nanomaterials can be safely
used in practice, it is necessary to structurally modify chitosan in
clinics, such as constructing water-soluble chitosan derivatives,
amphiphilic chitosan derivatives, etc (Wang W. et al., 2020).
Niloofar et al. (Ghobadi-Oghaz et al., 2022) synthesized a nano
polymer with zein as the core and chitosan as the shell for the co-
delivery of Cur and berberine (Ber) to treat breast cancer. The
particle size of the nano polymer (Cur-Z-Ber-Ch) was 168 nm, the
zeta potential was 36 mV, and the encapsulation efficiency of the
composite to Cur and Ber was 75% and 60%, respectively. In vitro
studies showed that the Cur-Z-Ber-Ch nanoparticles could increase
cell uptake and apoptosis and significantly inhibit IL-8
proinflammatory cytokines.

Although naturally and positively charged chitosan can compress
negatively charged siRNA through electrostatic interaction, its
application in siRNA delivery is limited by low transfection
efficiency due to low charge density and lysosomal escape
efficiency (Ragelle et al., 2013). Cation modification, such as
quaternization or low molecular polycation, can improve the
transfection performance of chitosan (Mao et al., 2010). Studies
have shown that amphiphilic drug carriers can not only
encapsulate siRNA and chemotherapy drugs together but also
release the two drugs to their respective targets. Yin et al. (Yin
et al., 2020) developed an amphiphilic drug delivery carrier based
on chitosan to co-deliver hydrophilic siRNA and hydrophobic
chemotherapy drugs (PTX). HA coating was added to the delivery
carrier and demonstrated good in vivo stability and high drug loading.
In addition, disulfide bond cleavage under high GSH concentration
enhanced siRNA transfection, improved the function of PTX, and
made the two agents achieve synergistic effects. Because cancer is
usually associated with overexpression of growth factors, it has
become a research hotspot to inhibit the expression of related
genes through siRNA. To solve the limitation of insufficient single
gene silencing therapy, Lee et al. (Lee et al., 2015) developed a novel
dual siRNA targeted delivery system for the targeted gene therapy of
vascular endothelial growth factor (VEGF) and B cell lymphoma 2
(Bcl-2). The two siRNAs were chemically modified and mixed to be
adsorbed by ethylene glycol chitosan nanoparticles to obtain the final
carrier. Their results showed that the dual siRNA delivery system
uniformly delivered each siRNA to a single cell, showing ideal siRNA
therapeutic in vivo and great advantages in silencing the two genes.

4 Inorganic-based nanocarriers for co-
delivery

Inorganic nanocarriers are widely used in biomedicine due to
their chemical and physical stability, tolerance to most organic
solvents, low toxic side effects, controllable laboratory production
cost and large surface area (Mai and Meng, 2013). Among them, the
large surface area provides high drug loading and precise controlled
release for drug delivery carriers. Inorganic nanoparticles often need
surface modification by combining with polymers and lipids to
achieve successful drug delivery (Vivero-Escoto et al., 2010).
Although inorganic nanoparticles have received extensive
attention in many fields, such as cell labeling and cell separation,
only a few drug delivery carriers have been approved until now, and
the co-administration of inorganic nanoparticles has not been
approved for marketing. Currently, many inorganic nanoparticles
have been studied in the laboratory, such as mesoporous silica
nanoparticles, gold nanoparticles, quantum dots and iron-based
nanoparticles (Niemeyer, 2003). Some novel examples about
inorganic-based nanocarriers to co-delivery two different agents
have shown in Figure 4 and Table 3.

4.1 Inorganic-based nanocarriers for
delivery of drugs and drugs

Inorganic nanocarriers usually comprise an inorganic core and
surface coating (Zhang et al., 2021a). The inorganic core has stable
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physicochemical properties, may be accurately and precisely
prepared, and is the rigid support of drug carriers (Ponton
et al., 2020). The surface coating can be modified to improve
the functionality of inorganic delivery carriers and achieve anti-
tumor treatment.

4.1.1 Mesoporous silica nanoparticles (MSNs)
Owing to its large surface area, high porosity, good

biocompatibility and easy surface modification, mesoporous
silica is helpful for drug encapsulation and improving drug
delivery efficiency (Lin et al., 2021). To achieve the
synergistic effect of topoisomerase inhibitors, Li et al. (Li
et al., 2013) prepared a stimulus-response vector CPT@MSN-
hyd-DOX by co-delivering DOX and camptothecin (CPT), two
drugs without overlapping toxicities and cross-resistance, for
the treatment of glioblastoma. DOX was connected to the carrier
by a hydrazone bond, and CPT was dispersed in the space of the
mesoporous silica carrier. Through the rapid release of DOX
under acidic conditions, CPT was released in a free diffusion
manner to synergize the effects of DOX and CPT and
maintain the relative “stealth” characteristics in the
circulation process.

It is well known that liposomes have hydrophilic and hydrophobic
properties and can deliver hydrophilic and hydrophobic drugs
together. The use of inorganic nanocarriers in delivering multiple
drugs can be challenging due to their uniform and stable structures;
however, it was found that mesoporous silica as a delivery carrier
could solve this issue (Wang Y. et al., 2015). Advanced magnetic
mesoporous silica nanoparticles were developed by Liu et al. to deliver
hydrophilic–hydrophobic anti-cancer drug pairs (Liu et al., 2012).
Two drug combinations, DOX-PTX and DOX-rapamycin (RAPA),
were prepared through sequential adsorption. The experimental
results showed that the aperture of MMSN was approximately
50 nm and had a high drug-loading capacity. Compared to single-
drug loaded MMSNs, multidrug-loaded MMSNs could be
endocytosed by A549 cells, leading to growth inhibition effects.
One strategy to increase drug loading was to design coatings on
the surface of inorganic-based nanoparticles, which might help avoid
drug leakage. To overcome these challenges and achieve drug synergy,
Luo et al. (Luo et al., 2022) developed amesoporous silica nanoparticle
systemwith lipid bilayer (LB) coating to be co-administered with 3M-
052 (TLR7/8 agonist) and irinotecan for the treatment of pancreatic
ductal adenocarcinoma. The C18 lipid tail of 3M-052 was attached to
the coated LB, and irinotecan was dispersed in pores. The

FIGURE 4
Schematic illustration of inorganic-based nanocarriers to co-deliver two different agents. (A) Themagnetic mesoporous silica nanoparticles for co-
deliver of DTX and PTX/RAPA, (B) pH/redox dual-responsive nanosystem to delivery DOX and siRNA, (C) Gold nanorod vesicles for co-delivery of CUR
and PTX, and (D)Octreotide-conjugated gold nanorods for co-delivery of DOX and siRNA. Reproduced with permission from ref. (Liu et al., 2012), (Yuan
et al., 2021), (Zhu et al., 2019), (Xiao et al., 2012). Copyright 2012, 2021, 2019 and 2012, Dovepress, Elsevier, BioMed Central, and Royal Society of
Chemistry, respectively.

Frontiers in Pharmacology frontiersin.org12

Chen et al. 10.3389/fphar.2023.1111991

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1111991


combination formula not only improved pharmacokinetics but also
enhanced the immunogenic cell death induced by irinotecan. In
pancreatic carcinoma models, the advanced co-delivery systems led
to tumor shrinkage with reduced regulatory T cells and enhanced
CD8+ T cells.

Supramolecular photosensitizers (supraPSs) have emerged as
effective photodynamic therapy (PDT) agents. By coating
tirapazamine (TPZ)-loaded mesoporous silica nanoparticles
(MSNs) with layer-by-layer assembled multilayer, the versatile
nanoplatform (TPZ@MCMSN-Gd3+) was obtained with the
formation of supraPSs via host-guest interaction and the
chelation with paramagnetic Gd3+ (Chen W. et al., 2017). The
delivery systems could be specifically uptaken by CD44 receptor
and trigger the release of therapeutics. As confirmed by in vivo
studies, the complexes showed preferential accumulation in tumor
site and significantly inhibited the tumor progression by the
collaboration of PDT and bioreductive chemotherapy under NIR
fluorescence/MR imaging guidance.

4.1.2 Magnetic nanoparticles
Magnetic nanoparticles have been used in many medical fields,

such as targeted drug delivery, magnetic resonance imaging, etc
(Vangijzegem et al., 2019). When the external magnetic field is
applied, the magnetic nanoparticles gain magnetism but lose
magnetism when the external magnetic field is removed (Li et al.,
2021). Therefore, this feature can be explored to deliver
chemotherapy drugs to the required specific location by applying
an external magnetic field to play a targeted delivery function. In this
context, Chiang et al. (Chiang et al., 2014) prepared pH-sensitive
double emulsion nanocapsules containing trastuzumab by
combining magnetic nanoparticles with single-component
polyvinyl alcohol (PVA) through an emulsion process to co-
deliver hydrophilic DOX and hydrophobic PTX. The results
showed that the release of PTX and DOX increased when the
carrier was in an acidic pH environment. Confocal microscopic

images also verified the targeted binding ability of trastuzumab.
Under this condition, the external magnetic field was applied to
increase the HER-2 cell inhibition rate, which indicated that the
magnetic targeted drug delivery system played an excellent role in
cancer therapy.

Another remarkable application of magnetic nanoparticles was
created by Fang et al. (Fang et al., 2014), who utilized polyacrylic acid
(PAA) and iron oxide (IO) to prepare Lactoferrin (Lf)-tethered
magnetic double emulsion nanocapsules. The nanoparticles could
co-deliver DOX and CUR encapsulated in the core and shell,
respectively. Drug targeting was achieved by applying an external
magnetic field, while drug release was achieved by regulating the
surface charge. These core-shell W/O/Wmagnetic nanocapsules were
effectively delivered into RG2 glioma cells. Through the combination
of magnetic application and Lf ligand, the agents’ cell uptake was
significantly increased in RG2 cells, resulting in drug accumulation
and inhibiting tumor growth effectively. The combination of passive
and active targeting is also one of the research emphases of magnetic
nanoparticles. Hiremath et al. (Hiremath et al., 2019) prepared Fe3O4

nanoparticles with an oleic acid shell using an alkaline co-
precipitation method for the co-delivery of DOX and CUR. The
size of the nanocomposite carrier was 12.5 nm, and the drug
encapsulation rates of compactaxel and CUR were 43.7% and
56.5%, respectively. The targeting efficiency and cellular uptake
were eventually increased under the action of an external magnetic
field.

4.1.3 Other inorganic -based carriers
Stimulation response nanocarriers have received increasing

attention in recent years (Fernandez and Orozco, 2021). When
there are specific chemical bonds in the delivery system, the
corresponding response can be applied to break the chemical
bonds to achieve the purpose of drug release. Lighting is an
external stimulus and owing to its low cost and minimally
invasive to the organization, near-infrared light has been used in

TABLE 3 Inorganic-based nanocarriers for simultaneous delivery of therapeutics for cancer treatment.

Nanocarrier type Nanocarrier composition Therapeutics Cell
lines

Indication References

MSNs HHG2C18-L, MSN-NH2 Erlotinib/doxorubicin A549 Lung cancer He et al. (2016)

Aginate/CaCO3 Sodium alginate, anhydrous calcium chloride,
anhydrous sodium carbonate

Doxorubicin/paclitaxel Hela Cervical cancer Wu et al. (2014)

Fe/Au NP FeCl2·4H2O, HAuCl4, FeCl3·6H2O 6- mercaptopurine/
doxorubicin

MCF-7 Breast cancer Ghorbani et al. (2018)

MSNs CTAC, TEOS Gemcitabine/paclitaxel PANC-1 Pancreatic
cancer

Meng et al. (2015)

MSNs APTES, CTAB, TEOS Doxorubicin/pDNA QGY-7703 Liver cancer Li et al. (2017)

SPIONPs FeCl3, Na2SO3, NH3·H2O Doxorubicin/siRNA U251 Glioblastoma Wang et al. (2020b)

CaCO3 DOTAP, mPEG-DSPE, CaCl2, Na2CO3 Doxorubicin/miRNA HepG2 Liver cancer Zhao et al. (2017)

LDHs MgCl2·6H2O, NaOH, AlCl3·6H2O 5-fluorouracil/siRNA MCF-7 Breast cancer Li et al. (2014)

Au NP HAuCl4·3H2O, SA, PVP Imatinib/siRNA B16F10 Melanoma Labala et al. (2017)

Au NP NaBH4, HAuCl4·32O, PIC Doxorubicin/sRNA SK-OV-3 Ovarian cancer Kotcherlakota et al.
(2017)
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drug delivery systems (Yu et al., 2021). In addition, near-infrared
light can use light absorbers, such as gold nanoparticles, to promote
photothermal therapy for cancer treatment. Zhu et al. (Zhu et al.,
2019) prepared a cRGD peptide-modified gold nanorod to co-
deliver PTX and CUR for chemophotothermal cancer therapy.
The banding of cRGD to αvβ3 promoted the endocytosis of
nanocarriers, enhanced the response of gold nanorods, improved
near-infrared enhanced drug release and strengthened therapeutic
efficiency. This innovative therapy provided a versatile strategy for
the precise treatment of tumors.

As the powerful redox potential and phototherapy, researchers
started to use copper as a drug delivery carrier (Naikoo et al., 2021).
Copper nanoparticles can alter gene regulation and cell shape and
increase the apoptosis of cancer cells through DNA destruction. Guo
et al. (Chen et al., 2018) co-delivered DOX and DTX into CuO
nanoparticles for the targeted delivery therapy of nasopharyngeal
carcinoma. A PLGA external shell was covered on the surface of
CuO for connecting folic acid. The research results showed that the
external coating enabled the CuO nanoparticles to have an
extremely high drug loading rate and significant stability,
enhanced the drug circulation and release, and exhibited
considerable efficacies in destroying prostate cancer cells
(DU145-TXR). Nanographene oxide (NGO) has been widely
studied for drug delivery due to its large surface area, easy
conductivity and high drug-loading efficiency. In addition, there
are hydrophilic groups such as hydroxyl and carboxyl groups on
both sides of the NGO surface, which can increase the stability of the
carrier in the solution. Yang et al. (Yang et al., 2013) developed an
advanced NGO drug delivery nanoparticle co-loaded epirubicin
(EPI) and anti-EGFR antibody (C255) with PEG connection for
blocking EGFR growth signal to treat glioma. The experiment on
glioma cells (U87) showed that PEG-NGO-C225 caused a
significant decrease in EGFR expression, prolonging the survival
of U87 tumor-bearing mice for 50 days. NGO-based nanoparticles
may allow toxic drugs to be safely delivered to tumor cells to
overcome the challenges of tumor treatment.

4.2 Inorganic-based nanocarriers for
delivery of drugs and genes

Compared to organic-based gene delivery systems, inorganic-
based gene delivery systems are still in the development stage. Some
specific properties of inorganic nanoparticles, including magnetism
and biological stability, provide unique delivery opportunities for
these systems. However, many shortcomings such as high price and
complicated treatment steps still limit their wide application.

4.2.1 Gold nanoparticles
Au NPs have shown considerable potential in the field of drug

delivery and are considered a pharmaceutical breakthrough (Singh
et al., 2018). In addition, the inner core of Au NPs is inert and non-
toxic, and the modification of chemical bonds can impart more
functions (Fan et al., 2020). Moreover, the improved gold
nanoparticles have biocompatibility and non-immunogenicity
and can be used as radiosensitizers and photothermal agents in
the medical field. Li et al. (Li et al., 2015) developed modified gold
nanoparticles to co-deliver captopril and siRNA for the treatment of

breast cancer. Captopril was connected with PEI through an amide
bond, and the remaining thiol group was connected with
polyethylene imine (CP). Finally, siRNA was loaded by
electrostatic adsorption to form a siRNA/CP/GNP complex. The
particle size of the complex was approximately 87 nm,
demonstrating effective EPR effects and gene-silencing properties.
Captopril and siRNA are delivered to the same cell together, which
leads to significant downregulation of VEGF by Ang II-ACE and
siRNA-dependent pathways in MDA-MB435 cells, resulting in
stronger inhibition of angiogenesis.

To enhance the therapeutic outcomes of neuroendocrine (NE)
cancers, Xiao et al. (Xiao et al., 2012) developed a nanocarrier based
on AuNR, which could co-deliver DOX against ASCL1 siRNA using
octreotide (OCT) as the active solvent targeting ligand to target NE
cancer cells overexpressing SSTRs. To achieve drug release
controlled by pH-sensitive, DOX was connected with the Au NRs
via specific chemical bonds, and siRNA was conjugated onto the Au
NRs by electrostatic interaction. The results showed that the gene
silencing efficiency of Au–DOX–OCT–ASCL1 siRNA systems in
BON carcinoid cancer cells was significantly higher than that of
Au–DOX–siRNA nanoparticles and exhibited an excellent
therapeutic efficiency in treating NE cancer cell lines. In a study
performed by Yin et al. (Yin F. et al., 2015), gold nanorods-based
nanocarriers were employed to conjugate DOX and mutant K-Ras
siRNA to treat pancreatic carcinoma. With 665 nm light reflection,
DOX and siRNA were released simultaneously to the Panc-1 cells to
achieve a synergistic effect and effectively inhibit tumor growth.
Such an approach was shown to downregulate K-Ras gene
expression and exert powerful anti-proliferative effects against
pancreatic cancer cells.

4.2.2 Mesoporous silica nanoparticles (MSNs)
Mesoporous silica nanoparticles (MSNs) are major inorganic-

based nanoparticles applied in co-delivery (Zhou et al., 2018). The
high surface area of MSNs makes them adequate to be extensively
used in chemotherapy (Castillo et al., 2020). Moreover, the coating
of their chemical shell makes it easier for them to encapsulate agents.
To regulate P-gp levels in drug-resistant cancer cells, Yuan et al.
(Yuan et al., 2021) fabricated a nanosystem (HPMSN) to co-deliver
DOX and GCN5 siRNAwith a hyaluronic acid-coated to trigger pH/
redox dual-responsive. This nano delivery system effectively
released DOX and siRNA via pH/redox dual responsiveness and
restricted leakage during the initial circulation. With the assistance
of HA shell, HPMSN enhanced drug internalization through CD44-
mediated targeting. In breast tumor model (MCF7/ADR)
experiments, GCN5 siRNA downregulated P-gp levels and
eliminated P-gp-mediated drug resistance. The results showed
that HPMSNs inhibited tumor growth by 78% and minimized
systemic toxicity of DOX.

Another example of an external shell is the cross-linked
polyethylene imine-coated drug/siRNA co-delivery carrier based
on mesoporous silica by Zhang et al. (Zhang R. et al., 2022),
which demonstrated good diagnostic sensitivity and drug
delivery. There are numerous pores on the surface of fluorescent
mesoporous core-shell silica. Polyethyleneimine is cross-linked on
the negatively charged surface by electrostatic interaction and
combines with negatively charged siRNA. The disulfide bond
reduces the carrier’s response, allowing the release of drugs
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according to different GSH concentrations. Therefore, fluorescent
silicon nuclei can be used as fluorescent probes to track the cellular
uptake of carriers. Babaei et al. (Babaei et al., 2020) developed
mesoporous silica nanoparticles for co-delivery of camptothecin
(CPT) and survivin shRNA to treat colon adenocarcinoma. The
prepared system was rod-shaped, with a 150 nm diameter. CPT was
first loaded into the MS nanoparticles, and the system was
PEGylated to condense iSur-pDNA. Then, an AS1411 DNA
aptamer allowed the system to provide selective therapies. The
results showed that the CPT was controlled released through the
system and induced a synergistic effect with iSur-pDNA in
cytotoxicity. In addition, the AS1411 DNA aptamer increased
drug uptake in cancer cells resulting in cellular toxicity and
apoptosis.

4.2.3 Other inorganic-based carriers
Inorganic anions such as CO3

2- can promote the co-
precipitation of Ca2+ with DNA and have unique advantages in
gene delivery systems (Dizaj et al., 2015). To improve drug delivery
efficiencies, Zhao et al. (Zhao et al., 2012) fabricated calcium
carbonate-based nanoparticles. A cell-penetrating peptide, KALA,
was introduced into this system and luciferase reporter gene plasmid
was coated on the system’s surface. Due to the existence of KALA,
the cellular uptake and gene expressions caused by CaCO3-KALA-
DNA were significantly enhanced in 293T cells. Moreover,
p53 expression plasmid and DOX were encapsulated in CaCO3-
KALA-DNA to verify the co-delivery efficiency. The results showed
that CaCO3-KALA-p53-DOX nanoparticles exhibited strong
delivery efficiency and could significantly inhibit HeLa cells. Due
to the tunable properties of molecular building blocks, nanoscale
metal-organic frameworks (MOF) can serve as efficient nanocarriers
for drug delivery. Similar to mesoporous silica, MOF also has the
property of high porosity and can be surface modified as well.
Chemotherapeutics can be loaded in large pores, and siRNA can be
linked to metal ions on the MOF surfaces. He et al. (He et al., 2014)
co-loaded a cisplatin prodrug and siRNA into NMOF to block MDR
pathways. Cisplatin and siRNA can be simultaneously delivered to
ovarian cancer cells, and siRNA was protected from nuclease
degradation by UiO to enhance cellular uptake. As a
result, the NMOF could be a promising strategy for treating
ovarian cancer.

Carbonate apatite has drawn increasing as a promising
inorganic component for drug delivery systems (Takahashi et al.,
2018). It can be synthesized by calcium phosphate precipitation
through bicarbonate. Its particle size can be controlled between
50–300 nm by crystal growth dynamic (Uddin et al., 2018). These
carriers dissolute fast in endosomal acidic pH, thus causing an
effective release of therapeutic drugs. To change the constraints of
pharmacokinetics, Fatemian et al. (Fatemian et al., 2019) developed
inorganic carbonate apatite (CA) nanoparticles to co-encapsulate
against AKT/ERBB2 siRNA and paclitaxel (PTX) for breast cancer
treatment. Compared with the CA-PTX, CA-PTX-siRNA had the
largest anti-cancer effects in 4T1 cells. In vivo investigations showed
that the group of CA-PTX-siRNA had smaller tumors than the CA-
PTX group. The carrier might be a potential approach for improving
the survival of cancer patients.

4.3 Inorganic-based nanocarriers for
delivery of genes and genes

4.3.1 Mesoporous silica nanoparticles (MSNs)
MSNs have attracted great attention as potential gene delivery

systems due to their good stability and easy-to-modify high surface area.
Wang et al. (Wang Y. et al., 2020) developed iRGD-modified
mesoporous silica nanoparticles for the co-delivery of siPlk1-siRNA
and miR-200c-miRNA for metastatic cancer treatment. Indocyanine
green (ICG) coating on the carrier surface can promote the connecting
ability of iRGD to achieve targeted binding. The results showed that
ICG could promote lysosomal escape and RNA release, kill metastatic
breast cancer cells and inhibit tumor growth. As another example of
using mesoporous silica (MS), Shahidi et al. (Shahidi et al., 2022) co-
delivered miR-34-miRNA and siPD-L1-siRNA to treat bladder cancer.
These c (RGDfK)-modified MS nanoparticles showed good blood
stability and effective RNA release. In addition, this nanocarrier
demonstrated biological stability in the serum environment and
effectively protected RNAs against degradation. Upon releasing
RNAs, adjustments of PD-L1 and miR-34a resulted in a decreased
expression of CD44 and inhibited the growth of cancer cells in bladder
tumor models.

4.3.2 Other inorganic-based carriers
Nucleic acids decompose rapidly in plasma and are negatively

charged under physiological conditions, which limits their entry into
the cells. A specific delivery system is needed to ensure the delivery
of nucleic acid drugs to the target tissue. Cationic gold nanoparticles
can be combined with negatively charged nucleic acids and delivered
to target cells. Some studies showed that the surface modification of
AuNP can improve its stability, such as in cationic carbosilane
dendrites (Alle et al., 2022). It is possible to realize polygenic delivery
of nanoparticles through LbL assembly technology. Bishop et al.
(Bishop et al., 2015) used gold nanoparticles as the core and
degradable polymers as the coating, which were added layer by
layer to the surface of gold nanoparticles to deliver DNA and siRNA.
When each layer of polymer is coated, the zeta potential will be
reversed to achieve the purpose of drug loading. The final composite
nanoparticles have a particle size of about 200 nm and can be
internalized by human primary brain cancer cells. It was
observed by TEM that better gene knockout efficiency and
foreign DNA expression could be obtained in cells. Thus, it can
be seen that LbL assembly technology may provide gene
combination therapy for cancer treatment.

Carbonate apatite (CO3Ap) nanoparticles have also been widely
studied as drug delivery systems due to efficient endocytosis and
rapid response to pH in vivo (Alhaji et al., 2014). To overcomeMDR,
Li et al. (Li et al., 2012) used CO3Ap nanoparticles to co-deliver
siRNAs targeting ABCG2 and ABCB1 gene transcripts to reverse
MDR in breast cancer and improve sensitivity to chemotherapeutic
drugs. The results showed that the siRNA introduced into cells
enhanced the sensitivity to chemotherapy drugs and dose-
dependently increased chemosensitivity. The nanocarrier has a
high application prospect in clinical research, which may be
applied in multi-drug resistance settings of malignant tumors in
the future.
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5 Future perspectives and conclusion

The mechanism of tumor genesis and development is complex,
requiring different drugs for different targets. With the development
of RNAi technology, gene-level cancer treatment is becoming a
reality, and nucleic acids, such as siRNA, miRNA, shRNA, etc., are
being used as drugs for cancer treatment. Despite great
achievements in single-drug delivery, the mechanism of MDR is
complex; thus, combination chemotherapy is extremely important,
but the possibility of increased risks of adverse events and poor
compliance should be carefully considered, especially when multiple
drugs are being simultaneously administered. Therefore, one
delivery carrier simultaneously delivering multiple drugs could
significantly improve patient compliance and therapeutic effects.
To achieve accurate targeted delivery, the delivery and release of
drugs using nanocarriers seem a promising strategy. Due to the
different physical and chemical properties of chemotherapeutic
drugs, such as hydrophilicity and hydrophobicity, gene drugs and
chemotherapy agents also have differences in positive and negative
charges. Therefore, future research in this field should focus on
developing multifunctional nanocarriers and delivery mechanisms
using appropriate materials to package drugs or genes and carrying
out reasonable modifications to achieve accurate delivery. Although
there are many difficulties in combined delivery, some progress have
made in synergistic therapy. Vyxeos (CPX-351) was the first dual
drug liposome approved by FDA in 2017, and it is a liposomal
nanoparticle for the treatment of acute myeloid leukemia (AML)
that incorporates the drugs cytarabine and daunorubicin (Lancet
et al., 2018). In addition, Tabernero et al. (Tabernero et al., 2013)
initiated a trial of ALN-VSP, an LNP formulation of siRNAs
targeting VEGF and KSP, in cancer patients. These data of
clinical trial form the basis for further development in cancer.

In this review, we focused on the commonly used materials and
dosage forms of co-delivery nanocarriers, discussed the research

progress of different vectors, described the challenges and strategies
in the delivery process, and highlighted future developmental
prospects. Although the combined delivery still has some
shortcomings, such as insufficient stability of the delivery carrier,
difficult preparation process and miss target effect, etc., with
increasing research in this field, the synergistic delivery strategy
might be implemented in future cancer treatment.
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