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Myocardial remodeling refers to structural and functional disorders of the heart
caused by molecular biological changes in the cardiac myocytes in response to
neurological and humoral factors. A variety of heart diseases, such as hypertension,
coronary artery disease, arrhythmia, and valvular heart disease, can causemyocardial
remodeling and eventually lead to heart failure. Therefore, counteracting myocardial
remodeling is essential for the prevention and treatment of heart failure. Sirt1 is a
nicotinamide adenine dinucleotide+-dependent deacetylase that plays a wide range
of roles in transcriptional regulation, energymetabolism regulation, cell survival, DNA
repair, inflammation, and circadian regulation. It positively or negatively regulates
myocardial remodeling by participating in oxidative stress, apoptosis, autophagy,
inflammation, and other processes. Taking into account the close relationship
between myocardial remodeling and heart failure and the involvement of SIRT1 in
the development of the former, the role of SIRT1 in the prevention of heart failure via
inhibition of myocardial remodeling has received considerable attention. Recently,
multiple studies have been conducted to provide a better understanding of how
SIRT1 regulates these phenomena. This review presents the progress of research
involving SIRT1 pathway involvement in the pathophysiological mechanisms of
myocardial remodeling and heart failure.
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1 Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally. According to the World
Health Report, an estimated 17.9 million people died from CVD s in 2019, representing 32% of all
global deaths. Out of the 17million premature deaths (under the age of 70) due to non-communicable
diseases in 2019, 38% were caused by CVDs. Heart failure is a type of CVD. Almost all types of heart
failure are associated with myocardial remodeling. Myocardial remodeling is a compensatory process
caused primarily by obesity, hypertension, heart valve disease, and cardiovascular disease. In the early
phase, myocardial remodeling is characterized by the thickening of the ventricular wall and
improvement in myocardial systolic function. However, in the long-term, myocardial remodeling
is accompanied by interstitial fibrosis, systolic dysfunction, and abnormalities in gene expression,
protein expression, energy metabolism, and electrophysiological characteristics, eventually leading to
decompensated heart failure (Frey et al., 2004). The mechanisms of myocardial remodeling have not
been fully elucidated and aremainly related to the activation of various cellular signaling pathways. The
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most well-known mechanisms of myocardial remodeling are related to the
activation of the renin-angiotensin-aldosterone system, sympathetic
stimulation, apoptosis, inflammation, oxidative stress, myocardial
fibrosis, etc (Sciarretta et al., 2018). Sirtuin silent information regulator 1
(SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent histone
deacetylase (HDAC) that plays an important role in biological processes,
such as inflammation, apoptosis, and oxidative stress response
(Hajializadeh and Khaksari, 2022). This article reviews the role and
molecular mechanisms of Sirt1 protein in myocardial remodeling and
outlines the specific mechanisms by which Sirt1 improves different types of
myocardial remodeling and heart failure.

2 Sirtuins and cardiovascular regulation

Sirtuins are highly conserved class III histone deacetylases. Seven
sirtuin-encoding genes (SIRT1-7) have been identified and characterized
in mammals. They are localized in different cellular sites and play different
roles: regulation of metabolism, oxidative stress, apoptosis, inflammation,
and senescence. Sirtuins perform their functions by deacetylating target

proteins at different sites. They play an important role in cardiovascular
biology and may modulate cardiovascular health and age-dependent
cardiovascular diseases (Cencioni et al., 2015), different members of the
family playing different roles (Table 1). Recently, it has become clear that
SIRT1 deacetylates histone and non-histone proteins to participate in
multiple cellular process, including apoptosis, autophagy, calorie
restriction, energy metabolism, transcriptional regulation, cell survival,
DNA repair, inflammation, and circadian regulation (Luo et al., 2019).
SIRT1 is not only an important regulatory mechanism involved in the
pathologic occurrence of myocardial remodeling, but also involves many
therapeutic targets for improvingmyocardial remodeling with drugs. Based
on SIRT1, it has a broad prospect in revealing the pathological mechanism
of myocardial remodeling and developing new clinical drugs.

3 SIRT1-mediated apoptosis in
pathological myocardial remodeling

Apoptosis is a distinct type of cell death characterized by a series of
typical morphological events such as cell shrinkage, fragmentation

TABLE 1 Type, location, and function of various sirtuins.

Sirtuins Location Model Function

SIRT1 Cytoplasm, nucleus Hypoxic mouse model Promotes autophagy, inhibits apoptosis Luo et al. (2019)

Ischemia/reperfusion injury Inhibits apoptosis, reduces oxidative stress Zhang et al. (2018)

Doxorubicin-induced cardiotoxicity Reduces oxidative stress, inhibits apoptosis, improves the ejection function Hu et al. (2020)

Inhibits inflammation and aging Zhang et al. (2021b)

Myocardial hypertrophy Reduces oxidative stress, inhibits apoptosis Ren et al. (2021)

SIRT2 Cytoplasm, nucleus Doxorubicin-induced cardiotoxicity Reduces oxidative stress Zhao et al. (2018a), Zhao et al. (2018b)

Myocardial hypertrophy Inhibits fibrosis, improves the ejection function Tang et al. (2017)

Dilated cardiomyopathy Inhibits inflammation Sun et al. (2022a)

SIRT3 Mitochondria Sepsis-induced myocardial injury Improves mitochondrial biogenesis Xin and Lu (2020)

Myocardial hypertrophy Reduces oxidative stress, improves endothelial dysfunction Dikalova et al. (2020)

SIRT4 Mitochondria Ischemia/reperfusion injury Inhibits apoptosis, improves mitochondrial biogenesis Zeng et al. (2018)

Sirt 4−/− rats Reduces oxidative stress, promotes cardiac hypertrophy, promotes pulmonary fibrosis Luo et al.
(2017)

Doxorubicin-induced cardiotoxicity Reduces apoptosis and autophagy He et al. (2022b)

SIRT5 Mitochondria Heart failure Inhibits inflammation, reduces oxidative stress, improves mitochondrial dysfunction Chang et al.
(2021)

SIRT6 Nucleus Hyperlipidemia Inhibits inflammation, reduces atherosclerosis Grootaert et al. (2021)

Diabetic cardiomyopathy Increases autophagy, inhibits mitochondrial dysfunction Yu et al. (2021)

Myocardial infarction

Doxorubicin-induced cardiotoxicity Reduces oxidative stress, reduces apoptosis Wu et al. (2021)

Aortic constriction-induced
cardiopathy

Inhibits inflammation, reduces fibrosis, regulates telomere shortening Li et al. (2017)

SIRT7 Nucleus Aortic constriction-induced
cardiopathy

Reduces myocardial fibrosis, improves cardiac hypertrophy Yamamura et al. (2020)

SIRT7−/− Increases lifespan, inhibits inflammation Vakhrusheva et al. (2008)

Promotes endothelial formation, increases smooth muscle proliferation Kimura et al. (2021)

Hypoxia/reoxygenation injury in vitro Reduces apoptosis Sun et al. (2018)
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into membrane-bound apoptotic vesicles, and rapid phagocytosis of
neighboring cells without inducing an inflammatory response (Kerr
et al., 1972). Apoptosis is thought to be the main cause of cell death
within the first few hours after acute myocardial infarction (Palojoki
et al., 2001). Sirt1 activates or inactivates apoptosis-associated proteins
through deacetylation, thereby inhibiting apoptosis to ameliorate
myocardial remodeling and delay the progression of heart failure.
The activation of Sirt1 signaling pathway mediates apoptosis by
various target signal.

3.1 Regulation of FoxO transcription factor

The transcription factor FoxO belongs to the forkhead protein O
family, being one of the important transcription factors in the human
body. It regulates the expression of genes that modulate glucose and lipid
metabolism, oxidative stress, apoptosis, autophagy, and endoplasmic
reticulum stress (Xing et al., 2018). It plays a key role in the
development of cardiac remodeling (Zhang et al., 2021a). The effect of
SIRT1 on FoxO function is complex and depends on FOXO target genes
(Karbasforooshan and Karimi, 2017). Treatment with Ang II increased
the acetylation of FoxO1 in vivo and in vitro, and subsequently the pro-
apoptotic protein Bim was upregulated. Sirt1 overexpression deacetylated
FoxO1, inhibiting Ang II-induced FoxO1 acetylation and reducing the
level of the pro-apoptotic protein Bim. However, these beneficial effects
were not observed after SIRT1 knockdown (Li et al., 2019b). Diabetic
cardiomyopathy (DCM) is one of the main causes of myocardial
remodeling. Notably, SIRT1-FoxO1 pathway was significantly inhibited
in DCM mice, accompanied by increased myocardial apoptosis. So,
Inhibition of SIRT1-FoxO1 pathway may be an important mechanism
mediating diabetic induced cardiomyopathy. To prevent ambiguity, we
have changed the description. Curcumin, a natural polyphenol isolated
from turmeric root, has antioxidant, anti-inflammatory, anti-apoptotic,
and anti-cancer effects. Curcumin partially restores SIRT1-FoxO1
pathway activity and inhibits apoptosis both in vitro and in vivo.
Furthermore, the effect of curcumin on improving apoptosis
disappeared after using EX527, a Sirt1 inhibitor (Ren et al., 2020). In
addition, Sirt1 reduces p53 expression and apoptosis by targeting the
FoxO3 transcription factor, and it deacetylates the DNA repair protein
Ku70, which binds to and inactivates the pro-apoptotic factor Bax
(Vahtola et al., 2008).

3.2 Regulation of the tumor suppressor
gene p53

Overexpression of protein p53 owing to mutations of the tumor
suppressor gene p53 leads to rapid loss of cell viability, which is
characteristic of apoptosis. Increased levels of tumor suppressor
p53 are associated with left ventricular hypertrophy and
remodeling (Veeroju et al., 2020). MicroRNAs (miRNAs) are
highly conserved, non-coding, single-stranded RNAs in eukaryotes.
They can specifically recognize and complementarily bind to target
mRNAs, leading to the post-transcriptional degradation of target
genes (Henning, 2021). Downregulation of miR-128 in mice with
heart failure significantly improved myocardial remodeling and
counteracted Ang II-induced apoptosis, by targeting the SIRT1/
p53 signaling pathway. Conversely, treatment with
EX527 abolished the beneficial effect of miR-128 downregulation

(Zhan et al., 2021). Taurine, a free intracellular β-amino acid, has
cardioprotective effects. In mice with aortic constriction (TAC)-
induced cardiomyocyte hypertrophy, compared to control, taurine
significantly decreased the levels of acetylated (at Lys382) p53/p53.
Taurine increased the NAD+/NADH ratio, promoted
SIRT1 expression, inactivated p53 deacetylation, and inhibited
cardiomyocyte apoptosis. Furthermore, EX527 mitigated the
beneficial effects of taurine on cardiac function, levels of natriuretic
peptide, and apoptosis (Liu et al., 2020). Anthracycline
chemotherapeutic agents, such as doxorubicin (DOX), cause
cardiotoxicity. DOX treatment leads to apoptosis through
p53 activation. Thus, by regulating the levels of p53 expression,
SIRT1 activation significantly reduces DOX-induced fibrosis,
hypertrophy, and apoptosis in H9c2 cardiomyocytes (Lohanathan
et al., 2022). CTRP3 preserves DOX-induced cardiac dysfunction
and alleviates DOX-induced cardiac inflammation and apoptosis by
activating SIRT1, So, sirt1 is an important therapeutic target for
correcting DOX induced cardiac remodeling (Yuan et al., 2018).

3.3 Upregulation of SIRT1 expression via
adenosine 5′-monophosphate-activated
protein kinase (AMPK) modulates apoptosis

AMPK is considered cellular fuel. Cellular energy is a key regulator
of the AMPK system (Carling, 2017). The cellular energy imbalance
that occurs during stress leads to an increase in the intracellular AMP/
ATP ratio, resulting in AMPK activation. This helps cells survive
without oxygen (Horman et al., 2012). In myocardial tissue, under
pathological conditions, such as hyperglycemia, hypoxia, and pressure
overload, AMPK activation is significantly downregulated (Li et al.,
2019a; Zhang et al., 2020). In diabetic rats, treatment with metformin
and atorvastatin reduced the levels of expression of caspase-3 and
increased the Bcl-2/Bax ratio. Furthermore, in diabetic rats, the levels
of expression of p-AMPK and Sirt1 were downregulated, and this was
reversed by the combination treatment, which subsequently increased
NAD+ levels and reduced apoptosis in cardiomyocytes (Jia et al., 2021;
Laddha and Kulkarni, 2021). It’s worth noting that AMPK is a trimeric
serine/threonine protein kinase comprising a catalytic α subunit and
non-catalytic β and γ subunits, which are encoded by seven different
high-homologous genes (α1, α2, β1, β2, γ1, γ2, γ3). However, in the
existing literature, the differences in the regulation of SIRT1 by AMPA
coding from different high-homologous genes have not been clarified.

4 SIRT1 regulates oxidative stress in
pathological myocardial remodeling

An imbalance between the production of ROS and the ability of
the body to detoxify reactive intermediates results in oxidative stress.
Prolonged pathological stimulation, release of inflammatory
cytokines, and activation of mitogen-activated protein kinases lead
to the generation of high levels of oxygen free radicals. Detoxification
of ROS is ensured by the activity of antioxidant enzymes such as Mn-
SOD, catalase, glutathione reductase, and peroxidase (Rababa’h et al.,
2018). Oxidative stress is a major stimulus for signal transduction in
cardiac myocytes. It causes abnormal Ca2+ metabolism associated with
subcellular remodeling, defective energy production, inflammation,
apoptosis, fibrosis, and cardiomyocyte loss, all of which are thought to
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contribute to myocardial remodeling and heart failure (Shah et al.,
2021). Sirt1 suppresses oxidative stress, preventing pathological
myocardial remodeling by.

4.1 Regulation of FoxO1 transcription factors

In an angiotensin-induced hypertension model,
SIRT1 overexpression attenuated Ang II-induced ROS formation.
Sirt1-mediated deacetylation of FoxO1 directly controlled the
expression of catalase and MnSOD, thereby promoting the
breakdown of ROS and suppressing oxidative stress (Li et al.,
2019b). In H9C2 cells, Ang II increased the concentration of
malondialdehyde and decreased SOD activity, thus inducing
oxidative stress. Furthermore, it reduced the levels of expression of
SIRT1 and FoxO1. Conversely, addition of a SIRT1 agonist attenuated
the Ang II-induced oxidative stress index (Jiang et al., 2021).
Fibroblast growth factor 20 (FGF20) is a member of the fibroblast
growth factor family and is involved in apoptosis, senescence,
inflammation, and autophagy. FGF20 upregulates
SIRT1 expression, leading to FOXO1 deacetylation, which
promotes the transcription of downstream antioxidant genes,
thereby suppressing oxidative stress. It has anti-hypertrophic effect
which is greatly counteracted in SIRT1 knockout mice. Furthermore,
these mice also presented an increase in oxidative stress (Chen et al.,
2022b).

4.2 Regulation of NF-κB

NF-κB, a classical signaling pathway, is involved in the
development of myocardial remodeling, and inhibition of its
phosphorylation can help treat myocardial hypertrophy (Yu et al.,
2013). A major component of ginseng, ginsenoside Rg3, has anti-aging
effects [27] and ameliorates Ang-II-induced myocardial remodeling.
The underlying mechanism consists of the regulation of the Sirt1/NF-
κB pathway leading to downregulation of the expression of superoxide
dismutase, malondialdehyde, heme oxygenase-1 (HO-1), and nuclear
factor (erythroid-derived 2)-like2 (Nrf2). This reduction of oxidative
stress ameliorates myocardial remodeling, and the phenomenon is
counteracted by the administration of Sirt1 inhibitor AGK2 (Ren et al.,
2021).

4.3 Regulation of transforming growth factor
beta (TGF-β)

In an animal model of DCM, Sirt1 decreased the activity of TGF-β
and prevented myocardial remodeling by inhibiting p300.
Sirt1 deacetylates p65 subunit of NF-kB, leading to reduced
binding of NF-KB-P65 to DNA. Subsequently, this reduces cardiac
hypertrophy and oxidative stress by diminishing the transcription of
subunits of NADPH oxidase (NOX1 and NOX2) (Karbasforooshan
and Karimi, 2017). Epithelial mesenchymal transition (EndMT) is
closely associated with pathogenesis of myocardial remodeling.
EndMT is strongly induced by TGF-β. SIRT1 pathway inhibits
EndMT by inhibiting the TGFβ/Smad pathway, thereby reducing
cardiac fibrosis and reversing myocardial remodeling (Liu et al.,
2019). Thus, ellagic acid, a phytochemical found mainly in nuts

and some fruits (e.g., raspberries, grapes, and pomegranates),
activated SIRT1 and inhibited TGF-β, suppressing oxidative stress
and inhibiting myocardial remodeling caused by DCM (Altamimi
et al., 2020). TGF-β promotes the development of fibrotic disease by
enhancing collagen expression and inducing cell differentiation into
myofibroblasts. And SIRT1 binding to Smad2/3 inhibited Smad2/
3 nuclear translocation, thereby regulating myocardial remodeling via
the TGF-β/Smad2/3 pathway in cardiac fibroblasts (Liu et al., 2019).

4.4 Regulation of the expression of
peroxisome proliferator-activated receptor
gamma coactivator 1 (PGC-1)

Mitochondrial biogenesis is a central player in the
pathophysiology of many cardiovascular diseases, including
myocardial remodeling (Forte et al., 2021). Oxidative stress is
closely associated with mitochondrial biogenesis. One major
regulator of this phenomenon is PGC-1α which is activated by
Sirt1 through deacetylation. Subsequently, mitochondrial function
improves and ROS production is reduced (Waldman et al., 2018).
Neuraminidase-1 (NEU1) is involved in the response to multiple
signals and regulates a variety of cellular metabolic processes.
Furthermore, it is closely associated with the onset and progression
of cardiovascular disease. NEU1 knockdown attenuates
cardiomyocyte injury by regulating the SIRT1/PGC-1α signaling
pathway, thereby promoting mitochondrial biogenesis and
function. Canagliflozin is used to treat type 2 diabetes and
improves myocardial remodeling, and therefore being
recommended in heart failure guidelines. This effect is mediated by
the activation of the AMPK/SIRT1/PGC-1α signaling pathway,
upregulating PGC-1α expression and reducing cardiac hypertrophy,
fibrosis, and oxidative stress (He et al., 2022a).

Additionally, the levels of expression of SIRT1 are modulated by
AMPK, which thus, is implicated in the control of ROS levels. During
the development of cardiac remodeling, energy deficits can exacerbate
cardiac insufficiency. Elevated expression of antioxidants (SOD1,
catalase, and MnSOD) and reduced mitochondrial ROS production
mitigates myocardial remodeling. AMPK is an upstream regulator of
Sirt1. As mentioned before, in reality, AMPK and Sirt1 regulate each
other and share many common target molecules; AMPK increases
NAD+ levels and activates Sirt1 (Wang et al., 2020b). The expression
levels of p-AMPK and SIRT1 were reduced in diabetic mice and in
H9C2 cells exposed to high concentrations of glucose. Combined
treatment with metformin and atorvastatin activated the AMPK/
SIRT1 signaling pathway, thereby attenuating cardiomyocyte
fibrosis, hypertrophy, and oxidative stress (Jia et al., 2021).
Aldehyde dehydrogenase 2 (ALDH2) is an essential mitochondrial
enzyme that controls cardiac function. It exacerbates aging-induced
cardiac hypertrophy, oxidative stress, and mitochondrial damage.
AMPK/SIRT1 activation (resveratrol and SRT1720) prevented
ALDH2-induced contractile dysfunction in cardiomyocytes. AMPK
enhances SIRT1 activity by increasing cellular NAD+ levels, leading to
deacetylation and regulation of the activity of downstream targets of
SIRT1, including PGC1α, thereby reducing oxidative stress in
cardiomyocytes (Zhang et al., 2014).

In summary, the main molecular mechanism of SIRT1-mediated
regulation of oxidative stress is the modulation of the levels of
expression of catalase and MnSOD through SIRT1-mediated
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FoxO1 deacetylation, which leads to the inhibition of the production
of ROS and suppression of oxidative stress. PGC-1α and NF-κB are
activated by SIRT1 through deacetylation, thereby improving
mitochondrial function and counteracting the pro-oxidant effect of
cell stress, thereby reversing cardiomyocyte remodeling.

5 SIRT1 signaling mediates inflammatory
responses in pathological myocardial
remodeling

Inflammatory cytokines play an important role in the pathophysiology
of adverse myocardial remodeling and are significantly elevated in both
heart failure and adverse myocardial remodeling (Hanna and
Frangogiannis, 2020). The early inflammatory response after myocardial
infarction may increase myocardial fibrosis and remodeling (Gao et al.,
2019). The prevalence of DCM in diabetes is approximately 17%, and
patients with type 1 and type 2 diabetes have a significantly increased risk of
heart failure. DCM progresses in part through inflammation, leading to
structural changes in the diabetic heart (Elmadbouh and Singla, 2021).
SIRT1 signaling mediates inflammatory responses in pathological
myocardial remodeling by various mechanisms, the main one being
regulation of transcriptional co-activator PGC-1a. Obese mice show
significant cardiac hypertrophy, inflammatory cell infiltration, reduced
SIRT1 activity, altered mitochondrial signaling and oxidative
homeostasis, and overexpression of inflammatory markers. Melatonin
prevents cardiac remodeling caused by obesity by activating SIRT1,
which regulates cellular metabolic signaling by acetylating and activating
the coactivator PGC-1α. This induces mitochondrial transcription factors,
thereby enhancing mitochondrial content and cellular metabolic oxidative
capacity, reducing oxidative stress and inflammation. Nrf2, a transcription
factor regulated by PGC-1α, is significantly reduced in the hearts of obese
mice, leading to a significant decrease in the levels of HO-1 expression and
an increase in lipid peroxidation and the levels of the pro-inflammatory
markers NLRP3, tumor necrosis factor-α, and IL-6. The SIRT1/PGC-1α/
Nrf2/HO-1 pathway is a key for preventing adverse obesogenic myocardial
remodeling (Favero et al., 2020). Tongguan capsule dramatically decreased
the expressions of TNF-α, IL-1β, and IL-6 Post-myocardial Infarction
Remodeling through Sirt1 Activation. And the induction of Sirt1 by TGC
was inhibited by the specific inhibitor EX527. In the presence of EX527,
TGC-induced autophagy-specific proteins were down-regulated, while
inflammatory factors were upregulated (Mao et al., 2018). And in
streptothromycin-induced diabetic mouse models, phloetin exerts anti-
inflammatory effects by docking with SIRT1, thereby protecting against
cardiac injury and remodeling (Ying et al., 2019). Therefore, SIRT1-
mediated inflammatory response is also an important therapeutic target
for myocardial remodeling.

6 SIRT1 signaling regulates cellular
autophagy in pathological myocardial
remodeling

Besides necrosis and apoptosis, autophagy is another type of cellular
death (Glick et al., 2010). Autophagy involves the formation of autophagic
vesicles, which encapsulate degraded or long-lived proteins and organelles
and then fusewith lysosomes. Autophagy playsmultiple roles inmyocardial
hypertrophy. In hypertrophic cardiomyocytes, autophagy can ensure the
degradation of excess harmful substances, reduce cytotoxic damage caused

by misfolded protein aggregation, mitigate oxidative stress, and maintain
cell survival. Because cardiomyocytes are terminally differentiated cells,
their survival is overly dependent on autophagy to self-clean abnormal
substances; therefore, effective autophagy is essential for the stability of the
cardiovascular internal environment (Bravo-San Pedro et al., 2017).
Increasing evidence suggests that dysregulation of cardiomyocyte
autophagy is associated with the progression of myocardial remodeling
(Shirakabe et al., 2016). Excessive autophagy can exacerbate mitochondrial
damage and impair energy metabolism by non-selectively degrading
normal mitochondria and mitochondria-associated proteins, thereby
resulting in energy disorders. In summary, basal levels of autophagy are
essential for ensuring a proper functioning of cardiomyocytes and
dysregulated autophagy can lead to cardiomyocyte hypertrophy (Zheng
et al., 2021). SIRT1 signaling regulates cellular autophagy in pathological
myocardial remodeling by various mechanisms.

6.1 Interaction with AMPK

Among drugs that prevent myocardial remodeling,
angiotensin-converting enzyme inhibitors (ACEIs) are
commonly used in clinical practice. Furthermore, they promote
autophagy in cardiomyocytes (Wu et al., 2013) owing to the
activation of the AMPK pathway (Hernández et al., 2014).
Metformin is an activator of AMPK and is used clinically for
the treatment of diabetes. It can reduce the serious
complications of diabetes, including myocardial remodeling and
heart failure by upregulating SIRT1 and AMPK and subsequently,
promoting autophagy (Xie et al., 2011). Sodium-glucose
cotransporter (SGLT2) is not expressed in the heart but
SGLT2 inhibitors are recommended by the latest treatment
guidelines in patients with heart failure, with or without
diabetes mellitus. SGLT2 inhibitors may directly bind to SIRT1,
thus inhibiting autophagy (Osataphan et al., 2019).

6.2 Regulation of FoxO1 transcription factor

Treatment of rat cardiomyocyte cell lines with Ang II results in
insufficient cardiomyocyte autophagy and interferes with the
expression of the autophagy-associated proteins beclin1 and
p62. Ginkgolide B Protects Cardiomyocytes from Angiotensin
II-Induced Hypertrophy via Regulation of Autophagy through
SIRT1-FoxO1 (Jiang et al., 2021). Another study showed that
SIRT1-dependent deacetylation of the transcription factor
Foxo1 is involved in cardiac senescence: SIRT1 activates FoxO1,
promoting its nuclear localization, and Akt inhibits it by
phosphorylation, preventing nuclear translocation. The
inhibition of SIRT1-Foxo1-mediated autophagy in aged mice
can be counteracted by the ablation of Akt2, an enzyme that has
the opposite effect (Ren et al., 2017).

6.3 Modulation of FGF21 expression

FGF21 is a novel peptide ligand involved in a variety of
physiological and pathological processes, including regulation of
glucose and lipid metabolism and reduction of atherosclerotic
plaque formation in large blood vessels. It also plays a
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cardioprotective role in myocardial infarction, cardiac ischemia-
reperfusion injury, cardiac hypertrophy, and DCM (Geng et al.,
2020). In animal models of DCM, diabetes-induced oxidative
damage and inflammation inhibited cardiac autophagy, suggesting
that these phenomena contribute to the pathogenesis of diabetic heart
disease (Zhang et al., 2016). Fenofibrate (FF), a peroxisome
proliferator-activated receptor-α (PPARα) agonist, is used clinically
to treat hypertriglyceridemia. In a mouse model of diabetic
cardiomyopathy, pre-treatment with FF partially restored
autophagy in diabetic hearts. Furthermore, the cardioprotective
effect of FF in type 1 diabetes mellitus is dependent on FGF21.
The upregulation of cardiac FGF21 expression may increase
SIRT1-mediated autophagy, which plays a key role in preventing
diabetes-induced cardiac inflammation, oxidative stress, fibrosis, and
dysfunction (Zhang et al., 2016). In vitro studies using H9C2 cells also
showed that exposure to high glucose (HG) significantly increased
inflammatory responses, oxidative stress, and pro-fibrotic responses,
and significantly inhibited autophagy. The effects of HG were
inhibited by treatment with FF. Inhibition of autophagy by 3-
methyladenine (3 MA) or SIRT1 by sirtinol (SI) counteracted the
beneficial effects of FF. Thus, FF may prevent cardiac pathology and
functional abnormalities caused by type 1 diabetes by increasing
FGF21 levels, which may upregulate SIRT1-mediated autophagy.
Moreover, FGF21 is involved in multiple disease processes through
SIRT1-dependent autophagy, including wound healing (Chen et al.,
2022a), osteoarthritis (Lu et al., 2021b), and acute liver injury (Yang
et al., 2022), which overlaps with the pathological mechanism of
myocardial remodeling So, SIRT1-dependent autophagy mediated by
FGF21 may be an important mechanism involved in pathological
myocardial remodeling.

In summary, SIRT1-dependent deacetylation of FoxO1 prevents
cardiac senescence and enhances cellular autophagy. SIRT1 plays a key
role in preventing diabetes-induced cardiac inflammation, oxidative
stress, and dysfunction. Ang-II induces cardiac hypertrophy by
suppressing SIRT1 expression, whereas ginkgolide B counteracts it
by enhancing autophagy through the activation of the SIRT1-FoxO1
pathway.

7 SIRT1 improves mitochondrial
dysfunction mitigating myocardial
remodeling

The heart is the most metabolically active organ, accounting for
approximately 8% of ATP consumption daily (Brown et al., 2017).
Impaired mitochondrial function is involved in the development and
progression of maladaptive cardiac hypertrophy and heart failure
(Tham et al., 2015). In myocardial remodeling and heart failure,
mitochondrial production of energy gradually decreases. This leads
to increased production of ROS and cytoplasmic release of
cytochrome c, which promote programmed cell death,
cardiomyocyte injury, and ultimately, heart failure (Elorza and
Soffia, 2021). Histidine attenuates pressure overload and
phenylephrine (PE)-induced myocardial hypertrophy through
upregulation of SIRT1, which prevents mitochondrial dysfunction
and oxidative damage in response to hypertrophic stimuli and
maintains mitochondrial respiratory function and ATP synthesis.
Inhibition of SIRT1 could reverse the protective effect of histidine
on myocardial hypertrophy (Wang et al., 2020b). SIRT1 was shown to

regulate mitochondrial energy transduction, ATP synthesis, and
biogenesis by upregulating the activity of PPARα and PGC-1
(Planavila et al., 2011).

ATP deficiency can cause myocardial contractile dysfunction,
whereas adenosine monophosphate activated protein kinase
(AMPK) activity is regulated by the ADP/ATP ratio. SIRT1 is
required for the activity of AMPK (Price et al., 2012). It has been
demonstrated that activation of SIRT1 can prevent the decrease in
ATP while promoting the transcription of energy metabolism-related
genes (Um et al., 2010). Meahwile, Sirt1 stimulates the ability of PGC-
1α to coactivate hepatocyte nuclear factor 4αand to inhibit glycolytic
genes in response to pyruvate, thereby positively regulating
gluconeogenic genes in response to pyruvate in hepatic cells
(Rodgers et al., 2005). Additionally, Loss of Sirt1 activity led to
dilated cardiomyopathy in adult hearts, which is accompanied by
mitochondrial dysfunction (Planavila et al., 2012). However, another
study has shown that Sirt1 is upregulated in failing hearts and inhibits
the expression of genes associated with mitochondrial function (Oka
et al., 2011). Therefore, the effects of Sirt1 on cardiac mitochondrial
function and metabolism are also complex and may be dose-
dependent or even bidirectional.

8 Inducers and inhibitors of SIRT1

8.1 Inducers of SIRT1

Since SIRT1 and its regulation play an important role in human
diseases, there is an increasing interest in discovering small molecules
that modulate its activity. Common agonists of SIRT1 are reviewed
here. The polyphenol resveratrol (RSV), a natural compound, was the
first SIRT1 agonist. Resveratrol exhibits a wide range of physiological
and biochemical activities, including antioxidant, anti-inflammatory,
antiplatelet, and anticoagulant activities, suggesting that its
administration is beneficial for cardiovascular diseases (Bonnefont-
Rousselot, 2016). RSV inhibits cell membrane lipid oxidation, protects
low-density lipoprotein from oxidation, and increases the
concentration of high-density lipoprotein (Berrougui et al., 2009).
RSV has antithrombotic effects and inhibits thrombosis by inhibiting
prostaglandin and thromboxane synthesis and platelet activity
(Snopek et al., 2018). In the cardiovascular system, disturbances in
intracellular calcium homeostasis lead to cardiovascular system
dysfunction, including cardiac systolic dysfunction, arrhythmias,
remodeling, and apoptosis. RSV differentially regulates Ca2+

handling by stimulation of NO production or antioxidant activity,
maintaining Ca2+ homeostasis under normal and pathological
conditions (Liu et al., 2017). Other SIRT1 agonists include small
molecules that are structurally different from RSV, but hundreds of
times more potent, such as SRT1720 and SRT501.

8.2 SIRT1 inhibitors

SIRT1 agonists are considered beneficial in a variety of diseases, as
demonstrated in various animal models. However, SIRT1 inhibitors
might be beneficial in cancer, Parkinson’s disease, and infection with
human immunodeficiency virus (HIV) (Pagans et al., 2005; Alcaín and
Villalba, 2009). Sirtinol induces senescence-like growth arrest in
human breast cancer MCF-7 and lung cancer H1299 cells (Ota
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et al., 2006). Sirt1 activation promotes chronic granulocytic leukemia
(CML) cell survival, and proliferation is associated with the
deacetylation of multiple SIRT1 substrates, including FoxO1, p53,
and KU70. Treatment of mice with the SIRT1 inhibitor tenovin-6
prevents cancer progression (Yuan et al., 2012). Table 2 shows both the
inducers and inhibitors of SIRT1.

SIRT1 activators have been proposed as a therapeutic strategy for
treating and preventing vascular disease. A clinical trial proved that
the defective Sirt1 may be correlated to the abnormal IFNγ expression
in severe aplastic anemia patients, and activation of Sirt1 signaling by
SRT3025 may help improve the inflammatory status of severe aplastic
anemia (Lin et al., 2019). And Sowmya found SRT2104, an activator of
SIRT1, appears to be safe and well tolerated and associated with an
improved lipid profile without demonstrable differences in vascular or
platelet function in otherwise healthy cigarette smokers based on a

double-blind trial (Venkatasubramanian et al., 2013). At present, more
ongoing clinical trials areunderway to investigate the efficacy,
pharmacokinetics, and safety of Sirtuin modulator compounds
inseveral diseases (http://clinicaltrials.gov). Unfortunately, there are
still reports about the use of sirt modulators in clinical trials. So, future
research should aim to elucidate the role of Sirt1 completely and to
develop pharmacological strategies that can allow its action to be
modulated (Table 2).

9 Discussion

(4) Myocardial remodeling is a common pathophysiological
process in heart failure, and its amelioration is a cornerstone of
chronic heart failure treatment. However, drugs capable of

TABLE 2 Inducers and inhibitors of Sirt-1.

Number Name Data source References

Sirt1 inducers

1 Resveratrol A review Bhullar and Hubbard (2015)

2 Salvianolic acid A rat model of chronic alcoholic liver disease Zhang et al. (2017b)

3 Quercetin A rat model of osteoarthritis Qiu et al. (2018)

4 Fisetin 3T3-L1 cells model Kim et al. (2015)

5 Panaxtriol saponins PC12 cells and zebrafish Zhang et al. (2017a)

6 Ginsenoside Rg3 Aged rats model Yang et al. (2018)

7 Ginsenoside Rb2 H9C2 cell line Huang et al. (2019)

8 Ginsenoside Rc HEK293T cell line Kim et al. (2014)

9 Ophiopogonin D H9c2 cell line Wang et al. (2016)

10 SRT1720 Obese mice model Minor et al. (2011)

11 Strigolactone analogue GR24 Rat L6 skeletal muscle cell line Modi et al. (2017)

12 SIRT1460 Obese mice model Milne et al. (2007)

13 SRT2183 sirt1−/− mice model Gurt et al. (2015)

14 A03 Alzheimer’s disease mouse model Campagna et al. (2018)

15 MHY2233 db/db mice model Kim et al. (2018)

16 SRT2104 Clinic trial Lin et al. (2019)

17 SRT3025 Clinic trial Venkatasubramanian et al. (2013)

Sirt1 inducers

1 Sirtinol Rats model Safari et al. (2017)

2 cambinol RPMI8226 and U266 cells Lu et al. (2021a)

3 inauhzin HCT116 and DLD1 cells Sun et al. (2022b)

4 EX527 U87MG and LN-299 glioma cell lines Wang et al. (2020a)

5 AGK2 A549 and H1299 non-small cell lung cancer cells Ma et al. (2018)

6 Suramin Structure–activity Study Trapp et al. (2007)

7 Tenovin HCT116 cells Ueno et al. (2013)

8 Salermide BxPC-3 pancreatic cancer cell line Yar Saglam et al. (2016)
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reversing myocardial remodeling are scarce; thus, representing a
current clinical unmet need. SIRT1 plays a key role in the
pathogenesis of cardiovascular diseases. It mediates oxidative stress,
apoptosis, autophagy, inflammation, and mitochondrial dysfunction
in cardiomyocytes. Its activation reverses myocardial remodeling and
other cardiac diseases, such as coronary atherosclerosis, which
accelerates the onset of heart failure and increases heart failure-
related morbidity and mortality. We have summarized the role of
SIRT1 in cardiac remodeling of various etiologies, and the underlying
mechanisms, including 1) SIRT1-mediated apoptosis by FoxO
transcription factor, p53 and AMPK pathway; 2) SIRT1 regulates
oxidative stress by FoxO1 transcription factors, NF-κB, TGF-β and
PGC-1 pathway. 3) SIRT1 regulates inflammatory responses through
acetylation and activation of the coactivator PGC-1α; 4)
SIRT1 signaling regulates cellular autophagy by interaction with
AMPK, regulation FoxO1 transcription factor and modulation of
FGF21 activity. The specific molecular pathways involved are
shown in Figure 1.

Although the specific mechanisms of myocardial remodeling have
not yet been fully elucidated, some critical elements have been identified.
Thesemight represent relevant therapeutic targets that are associated with
the pathogenesis of myocardial remodeling. Preclinical data indicate that
SIRT1 is a promising target - increasing evidence suggests that
SIRT1 activation ameliorates or prevents myocardial remodeling,
delaying the progression of heart failure.
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FIGURE 1
Sirt1 is involved in the pathological mechanism of myocardial remodeling through inflammation, apoptosis, oxidative stress and autophagy.
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