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Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and
identified as a small molecule cancer inhibitor. PTL has the chemical structure
of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the
biological property of inhibiting DNA biosynthesis of cancer cells. In this review,
we summarise the recent research progress of medicinal PTL, including the
therapeutic effects on skeletal diseases, cancers, and inflammation-induced
cytokine storm. Mechanistic investigations reveal that PTL predominantly
inhibits NF-κB activation and other signalling pathways, such as reactive
oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several
cytokines, including RANKL, TNF-α, IL-1β, together with LPS induced activation
of NF-κB and NF-κB -mediated specific gene expression such as IL-1β, TNF-α,
COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL
could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via
blocking the activation of NF-κB signalling. Understanding the pharmacologic
properties of PTL will assist us in developing its therapeutic application for medical
conditions, including arthritis, osteolysis, periodontal disease, cancers, and
COVID-19-related disease.
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Introduction

Parthenolide (PTL or PAR) has been widely used as a herbal medicine for various health
conditions (Pareek et al., 2011). It was originally isolated from plants of the Asteraceae family
during the 1970s, is known to contain sesquiterpene lactones (SLs), and has been used for the
treatment of migraine, inflammation, arthritis, and tumors (Hall et al., 1980; Heinrich et al.,
1998; Schinella et al., 1998). It has been well established that sesquiterpene, sharing a similar
structural feature with lignans, diterpenes, triterpenes, and polyphenols and a biological
property on an inhibitory effect of nuclear factor kappa B (NF-κB) activity (Nam, 2006).
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NF-κB proteins exist in the cytoplasm in a complex with
inhibitors of NF-κB (IκB), which are in an inactivated state, but
become phosphorylated upon activation. They are subsequently
ubiquitinated and degraded by proteasome-mediated pathways
(May and Ghosh, 1997). This permits NF-κB proteins to be
released from the complex and translocates to the nucleus (May
and Ghosh, 1997), and regulate the transcription of a large number
of genes required for inflammatory response, chemokine activation,
cell adhesion and immune regulations (Nam, 2006).

PTL shares structural similarities with PTL analogues such as
germacrane-type sesquiterpenoids, which bares the same carbon
skeleton (7-isopropyl-4,10-dimethylcyclodecane) (Figure 1). They
all are highly oxygenated with ester functionalities. In addition, they
display structural differences, including the varied configurations of
carbon-carbon double bond and diverse types and substitutional
positions of ester functionalities (Figure 1). However, the
relationship of these diverse chemical structures and their
biological functions remains to be investigated.

Recent studies have shown the pharmacological effect of PTL on
cancers, and structural modification of PTL could improve
anticancer activity (Liu and Wang, 2022). In this review, we
summarize the recent progress of the role of PTL and analogues
in various conditions with emphasis on osteolytic diseases, primary
and metastasis bone cancers, and COVID-19, which helps to fill the
gap of knowledge through our investigation and discussion of the
role of PTL and its derivatives in skeletal disease and cytokine storm.
Understanding the pharmacological mechanisms of sesquiterpene
lactone in the pathogenesis of various diseases will be important in
developing an practical approach to prevent and treat these medical
conditions.

The role of PTL in skeletal disorders

Previous studies have shown that sesquiterpene lactone has anti-
inflammatory effects (Schinella et al., 1998). It was subsequently
revealed that it could block lipopolysaccharide (LPS)-induced
osteolysis via the inhibition of osteoclast formation and bone
resorption (Yip et al., 2004). Mechanically, PTL was found to
inhibit NF-κB activity induced by pro-inflammatory cytokines
such as tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and
receptor activator of nuclear factor kappa-B ligand (RANKL), all of
which have an inductive effect on osteoclast formation and
activation (Yip et al., 2004). Further, PTL was found to attenuate
polyethylene particles induced peri-implant osteolysis in a mouse
model (Li et al., 2014; Zawawi et al., 2015). Consistently, PTL also
was found to reduce empty lacunae and osteoclastic bone surface
resorption induced by polyethylene particles in a murine calvarial
model of peri-implant osteolysis for inflammation related
orthopaedic aseptic implant loosening (Zawawi et al., 2015).
Further, it prevents ovariectomy-induced bone loss in vivo by
inhibiting osteoclast activity (Idris et al., 2010). The inhibition of
osteoclast formation and bone resorption is vital to the therapeutic
inhibition and prevention of osteolysis.

PTL consistently inhibits pro-inflammatory cytokine
production and exhibits protective effects against the progression
of collagen-induced arthritis in a rat model (Liu et al., 2015). PTL
could inhibit ADAMTS and MMP—mediated degeneration of

cartilage and osteoarthritis via its potential effect on
chondrocytes (Legendre et al., 2005; El Mabrouk et al., 2007). At
the cellular level, PTL can suppress LPS and TNF-α-induced
increases in matrix metalloproteinase (MMP)-1, MMP-3,
inducible nitric oxide synthase (iNOS), and IL-1β mRNA in
chondrocytes (Liu et al., 2015), and inhibits TNF-α induced
catabolism of aggrecan in cultured human chondrocytes (Zhou
et al., 2008). During chemotherapy, it could also inhibit
methotrexate (MTX)-induced osteoclastogenesis via attenuating
TNF-α levels and the activation of NF-κB (King et al., 2012).

PTL and analogues have a protective effect on arthritis (Nam,
2006; Parada-Turska et al., 2008; Xu et al., 2009; Li et al., 2010; Liu
et al., 2015). PTL inhibited the proliferation of rheumatoid arthritis
fibroblast-like synoviocytes (RA-FLS) (Parada-Turska et al., 2008),
as well as the expression of RANKL mRNA and protein in RA-FLS
(Li et al., 2010). Interestingly, PTL has been found to attenuate
neuropathy pains partly via the inhibition of intracellular signalling
pathways NF-κB and MEK1/2 (Popiolek-Barczyk et al., 2014;
Popiolek-Barczyk et al., 2015), which would be beneficial for
arthritis related pain.

More recently, PTL was found to enhance alkaline phosphatase
activity and mineralized nodule formation of osteoblasts in human
periodontal ligament-derived cells (Zhang et al., 2017). These
stimulated effect on osteoblasts were further evident by the
increased expression of osteogenesis-related gene/protein
expression of osteoblasts in the presence of TNF-α. Further, PTL
inhibited the NF-κB/p50 pathway and resisted the inhibition of
Wnt/beta-catenin signalling induced by TNF-α (Zhang et al., 2017).
Interestingly, PTL increased cell viability and inhibited H2O2-
induced apoptosis, indicating its role in inhibiting oxidative stress
and cellular apoptosis in osteoblasts (Mao and Zhu, 2018). However,
more recently, PTL was found to reduce the activity of ALP, alizarin
red-positive mineralization, and the expression of ALP and
osteocalcin mRNA using human periosteum-derived cells
(hPDCs) (Park et al., 2020). In addition, PTL also attenuated the
increased osteoblastic differentiation of TNF-α -treated hPDCs via
the suppression of JNK signalling (Park et al., 2020). Consistently,
PTL was previously found to have no inhibitory effects on osteoblast
function using primary calvarial osteoblasts (Idris et al., 2010). The
discrepancy observed in these studies might be due to the variation
of cell types and culture conditions used, indicating the need for
further research.

At the molecular level, PTL displays inhibitory effects on NF-κB,
both at its transcriptional level and by direct inhibition of associated
kinases, IKK-beta (IKK-β) (Mathema et al., 2012). Inhibition of NF-
κB will influence the gene expression, including IL-1β, TNF-α,
COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, and VCAM-1
(Nam, 2006). These molecules are critical for pro-inflammatory
response, chemokine activation, cell adhesion and immune
regulations (Nam, 2006).

NF-κB signaling is key to osteoclastogenesis. Previous studies
have found that NF-κB subunits p50−/− and p52−/− null mice
display osteopetrosis owing to lack of osteoclast formation
(Franzoso et al., 1997; Iotsova et al., 1997). Conversely, activation
of NF-κB resulted in excessive osteoclasts and osteolysis (Boyce
et al., 1999; Xu et al., 2009). PTL appears to inhibit
osteoclastogenesis and NF-κB activity induced by RANKL and
LPS. For example, research suggests PTL is able to inhibit NF-κB
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activation by the attenuation of TNF-α induced IκB kinase complex
activation (Hehner et al., 1999). Additionally, PTL and analogues
appear to suppress NF-κB activity and RANKL-induced IκBα
degradation (Yip et al., 2004; Qin et al., 2015).

In addition to its inhibitory role in the regulation of NF-κB, PTL
was found to exert a biological effect as a phosphorylation inhibitor
for signal transducer and activator of transcription (STAT1 and
STAT3), and to prevent STAT1 and STAT3 DNA binding activity.
Through this property, PTL can inhibit STAT-mediated
transcriptional suppression of pro-apoptotic genes (Mathema
et al., 2012).

More recently, PTL was found to inhibit inflammasome activity
via the ATPase activity of nucleotide-binding oligomerization
domain (NACHT), leucine rich repeat (LRR) and pyrin domain
containing (PYD) 3 (NLRP3) (Juliana et al., 2010). NLRP3 is a
member of the NACHT, LRR and PYD domains-containing protein
3 (NALP3) inflammasome complex, an upstream activator of NF-κB
signalling. Through this action, PTL regulates the inflammatory
response, immune regulation, and apoptosis. Collectively, PTL and
sesquiterpene lactone compounds were able to affect NF-κB and
other signalling molecules that results in osteoclast formation, bone
resorption and osteolysis (Table 1).

The role of PTL in cancers

NF-κB signalling pathway is constitutively activated in many
types of cancer cells. Under physiological condition, inactive form of
NF-κB is mainly bound to its inhibitor IκB and present in the
cytoplasm. Upon activation by signalling molecules, IκBα is
phosphorylated and degraded and releases NF-κB, which will
transfer from the cytoplasm to the nucleus (Karin, 1999).

Targeting NF-κB to reduce overexpression or activation of
NF-κB, and its anti-apoptotic effect hint a role of PTL as a
potential therapeutic target for the treatment of cancers (Fuchs,
2010), including gastric cancer (Li et al., 2018; Liu et al., 2020),
pancreatic cancer (Yip-Schneider et al., 2005; Liu et al., 2010; Liu
et al., 2017), hepatic cancer (Carlisi et al., 2011; Kim et al., 2012; Liu
et al., 2013), lung cancer (Li et al., 2020; Sun et al., 2020; Wu et al.,
2020), ovarian cancer (Lee et al., 2012; Takai et al., 2013; Kwak et al.,
2014), glioblastoma (Anderson and Bejcek, 2008; Hexum et al., 2015;
Ding et al., 2020), and oral cancer (Yu et al., 2015; Baskaran et al.,
2017), just to name a few examples. In this review, we will focus on
our discussion in more detail regarding the role of PTL in cancers
related to the skeletal system (Table 1).

Research suggests that PTL could be a therapeutic agent for the
treatment of osteosarcoma. PTL was found to sensitize
radioresistant osteosarcoma cells and greatly reduce the
prevalence of relapse and metastatic progression (Sugiyasu et al.,
2011; Zuch et al., 2012). PTL also induced cell death in human
osteosarcoma cells via reactive oxygen species (ROS)-mediated
autophagy (Yang et al., 2016), and through caspase-independent
and AIF-mediated signalling molecules (D’Anneo et al., 2013). In a
murine animal model, PTL was able to inhibit lung colonization of
osteosarcoma cells (Kishida et al., 2007). Taken together, these
findings suggested that PTL through its inhibitory effect on
NF-κB might serve as an antimetastatic drug.

In addition, PTL has potential effects on multiple myeloma
(MM) (Suvannasankha et al., 2008; Gunn et al., 2011; Kong et al.,
2015). It was found that PTL has anti-cancer stem cell activity (Gunn
et al., 2011), as well as direct effects on MM cells and the bone
marrow microenvironment in myeloma (Suvannasankha et al.,
2008). The inhibitory effects of PTL in MM via targeting tumor
necrosis factor receptor-associated factor 6 (TRAF6) and NF-κB

FIGURE 1
PTL and its analogues 1–9. Structural similarity: 1) they are all germacrane-type sesquiterpenoids sharing the same carbon skeleton (7-isopropyl-
4,10-dimethylcyclodecane); 2) they all are highly oxygenated and have ester functionalities. Structural differences: 1) the configuration of carbon-carbon
double bond (blue) is varied; 2) the types and substitutional positions of ester functionalities (red) are diverse.
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pathways (Kong et al., 2015). PTL-induced apoptosis in MM cells
involves ROS generation and cell sensitivity depends on catalase
activity (Wang et al., 2006). In addition, PTL has inhibitory effects
on angiogenesis induced by human MM cells (Kong et al., 2008).

PTL also has effects on cancers that are accompanied by bone
osteolytic conditions such as breast cancer (Chen et al., 2009; Idris
et al., 2009; Marino et al., 2017). It is therefore suggested that
targeting NF-κB may be of value in the treatment of breast
cancer related osteolysis (Marino et al., 2017), and the
administration of PTL might be effective in preventing breast
cancer mediated osteolysis (Chen et al., 2009; Idris et al., 2009).

Leukemia is often accompanied with severe bone loss due to
the dysregulation in leukemia cells and bone microenvironment
during leukemogenesis (Cheung et al., 2018; Anderson et al.,

2020). PTL as a natural product has been suggested to target the
leukemia stem cells (LSCs) in acute myeloid leukemia (AML)
(Siveen et al., 2017) via regulating ROS levels and the anti-
proliferative activity of cancer cells (Kempema et al., 2015). A
panel of novel modified PTL analogues were found to possess
significantly improved anti-leukemic potency against primary
AML cells, with low toxicity against normal mature and
progenitor hematopoietic cells via P450-mediated pathways
(Kolev et al., 2014). PTL was found to have a
radiosensitization effect in prostate cancer cells. Further, PTL
inhibits NF-κB activity and the expression of phosphatase and
tensin homologue deleted on chromosome 10 (PTEN) that is
involved in the radiosensitization effect (Sun et al., 2007; Watson
et al., 2009; Mendonca et al., 2017).

TABLE 1 Therapeutic effects and cellular mechanisms of PTL.

Proposed therapeutic effects Potentials cellular mechanisms References

Skeletal and dental system

LPS-induced osteolysis Anti-osteoclastogenesis and bone resorption, anti-RANKL
signalling

Yip et al. (2004), Qin et al. (2015)

Per-implant osteolysis Anti-born resorption Li et al. (2014), Zawawi et al. (2015)

Ovariectomy-induced osteoporisis Anti-osteoclastic born resorption Idris et al. (2010)

Methotrexate-induced bone loss Anti-osteoclastogenesis and bone resorption, anti-inflammation King et al. (2012)

Collagen-induced arthritis Anti-inflammation in osteoclast-like cells and in chondrocytes Liu et al. (2015)

Rheumatoid arthritis Inhibit fibroblast-like synoviocytes (RA-FLS) Parada-Turska et al. (2008), Mathema et al. (2012)

Periodontitis Anti-inflammation in periodontal ligament-derived cells Zhang et al. (2014), Zhang et al. (2017)

Cancers (related to skeletal system)

Bone metastasis with breast cancer Inhibit growth or promote apoptosis of W256 cells, anti-
osteoclast

Idris et al. (2009), Marino et al. (2017)

Prostate cancer related osteolysis Inhibit prostate cancer cells, mediate osteoclasts and osteoblasts Marino et al. (2019)

Multiple myeloma Anti-cancer stem cell activity, anti-TRAP6 Suvannasankha et al. (2008), Gunn et al. (2011), Kong et al.
(2015)

Osteosarcoma Induce autophagic cell death in osteosarcoma cells sensitize
tumor

Zuch et al. (2012), Yang et al. (2016)

Osteosarcoma with lung metastasis Inhibit cell proliferation and the expression of VEGF Kishida et al. (2007)

Acute myeloid leukemia (AML) Inhibit AML xenograft tumor growth, reverse drug resistance Yip et al. (2004), Wang et al. (2006)

Oral cancer Prevent tumor formation, chemopreventive, induce apoptosis Yu et al. (2015), Baskaran et al. (2017)

Other cancers (as examples)

Gastric cancer Sensitize gastric cancer cells, reverse drug resistance Li et al. (2018), Liu et al. (2020)

Pancreatic cancer Suppresses pancreatic cancer cell growth, induce apoptosis Yip-Schneider et al. (2005), Liu et al. (2010), Liu et al. (2017)

Hepatic cancer Sensitize cancer cells, reverse drug resistance, induce apoptosis Carlisi et al. (2011), Kim et al. (2012), Liu et al. (2013)

Lung cancer Inhibit cancer cell growth, sensitize cancer cells Li et al. (2020), Sun et al. (2020), Wu et al. (2020)

Ovarian cancer Inhibit cancer cell growth and invasion, induce apoptosis Lee et al. (2012), Takai et al. (2013), Kwak et al. (2014)

Glioblastoma Suppresses cancer cell growth, induce apoptosis Anderson and Bejcek (2008), Hexum et al. (2015), Ding et al.
(2020)

Cytokine storm

COVID-19 Anti-inflammation, immunomodulators Bahrami et al. (2020), Soleymani et al. (2022)
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More recently, PTL was found to inhibit the growth of prostate
cancer cells dose-dependently and reduce prostate cancer cell-
osteoclast co-cultures mediated osteoclast formation, suggesting
that PTL could reduce prostate cancer related osteolysis (Marino
et al., 2019).

The role of PTL in cytokine storm

Cytokines play a vital role in the homeostasis of the immune
system. A cytokine storm could occur when a large number of
cytokines are released in the body instantaneously, which may be
life threatening and lead to multiple organ failure. A cytokine
storm is also called hypercytokinemia, which is usually induced
by an infection, autoimmune disorder, or other inflammatory
disease.

A cytokine storm triggered by COVID-19 has been associated
with respiratory failure and lung fibrosis (Cao, 2020; Yang et al.,
2020; Lowery et al., 2021). It is evident that multiple inflammatory
cytokines, including TNF-α, IL-1β, IL-6, and IL-10 play a significant
role in the pathogenesis of COVID-19 induced morbidity and
mortality (Peddapalli et al., 2021). For instance, increased IL-6
levels in circulating were tested in patients with cardiovascular
conditions with a poor prognosis of COVID-19 (Clerkin et al.,
2020; Guo et al., 2020). NF-κB signalling pathways are common to

COVID-19 induced cytokine responses (Kircheis et al., 2020;
Kandasamy, 2021; Peddapalli et al., 2021). The inhibition of NF-
κB has therefore been proposed to be a target for the treatment of
COVID-19 (Kircheis et al., 2020; Kandasamy, 2021; Kircheis et al.,
2021). For example, propolis and digitoxin have been found to
suppress levels of the cytokines and have benefits for the treatment
of the comorbidities in COVID-19 patients (Berretta et al., 2020;
Pollard et al., 2020).

In line with this, PTL, as a previously identified NF-κB inhibitor
has been proposed to treat COVID-19 (Bahrami et al., 2020;
Soleymani et al., 2022). Interestingly, using molecular docking,
PTL analogues were found to binds with high affinity to the
selected target of SARSCoV-2, which might serve as a potential
candidate for anti-SARS-CoV-2 therapy (Ouled Aitouna et al., 2021;
Lakhera et al., 2022). Consistently, feverfew which contains the
major ingredient of PTL has long been used as a traditional medicine
for the treatment of fever, migraine headache, and inflammatory
conditions (De Weerdt et al., 1996; Koprowska and Czyz, 2010).
More recently, PTL was found covalently bind to Cys-191 or Cys-
194 of the coronavirus papain-like protease and inhibit its
deISGylation and activity by allosteric regulation (Zou et al.,
2022). Collectively, PTL is thought to be beneficial for the
treatment of COVID-19 via the inhibition of cytokine storm with
NF-κB signalling pathways activation (Bahrami et al., 2020; Ouled
Aitouna et al., 2021; Soleymani et al., 2022) (Table 1).

FIGURE 2
The role of PTL in cytokines-mediated signalling activation. Cytokines TNF-α, RANKL, IL-1β, IL-6, upon binding to their respective receptors, activate
several signalling cascades leading to down-stream the transcriptions of genes such as IL-1β, TNF-α, COX-2, iNOS, IL-8, PTEN, MCP1, RANTES, ICAM,
VCAM. Note that PTL displays inhibitory effects on NF-κB by direct inhibition of IKK-β, inflammasome activity via NLRP3, or ROS. PTL also act as a
phosphorylation inhibitor for STAT1 and STAT3. Abbreviations: TNF-α, tumor necrosis factor alpha; RANKL, receptor activator of nuclear factor
kappa-B ligand; IL-1β, interleukin 1 beta; IL-6, interleukin 6; COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase; IL-8, interleukin 8; PTEN,
phosphatase and tensin Homolog; MCP-1, monocyte chemoattractant protein-1; RANTES, regulated upon activation, normal T cell expressed and
secreted; ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1.
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The role of PTL in periodontal disease

Periodontal disease is one the most common non-
communicable diseases in humans, where nearly 1 billion people
are affected (GBD, 2016 Disease and Injury Incidence and
Prevalence Collaborators, 2017). The disease involves gingivitis
and periodontitis and is caused by oral infection (Li et al., 2000).
The current understanding of periodontal disease pathogenesis
demonstrates host-related inflammatory responses triggered by
bacterial pathogens whereby an influx of immune-host mediators
such as prostaglandins, leukotrienes, complement activation
products, chemokines, and cytokines are released to form a
sophisticated network of interactions between elements of innate
and adaptive immune systems (Hajishengallis et al., 2020). These
complex interactions lead to inflammation-induced bone loss,
primarily mediated by a triad of RANKL and NF-κB signalling
pathway (Hajishengallis et al., 2020).

Recent research has explored the potential therapeutic effects of
PTL for periodontal disease in both an in vitro model and on human
alveolar bone tissue (Zhang et al., 2014; Zhang et al., 2017). PTL appears
to inhibit the activation of major inflammatory pathways involved in
periodontal disease viaNF-κB and ERK signalling pathways, in addition
to the expression of inflammatory and osteoclastogenic genes in
lipopolysaccharide-stimulated human periodontal ligament cells
(Zhang et al., 2014). Whilst PTL could also promote osteoblast
differentiation via the Wnt/β-catenin signaling pathway and might
be a pivotal target for periodontal bone regeneration (Zhang et al.,
2017). Periodontitis would be a significant health burden if it was left
without treatment. It will not only lead to teeth loss, but it can cause
severe consequences to general health. The systemic-oral link is well
established, and poorly controlled periodontitis can complicate the
management of systemic conditions such as diabetes and cardiovascular
diseases (Kane, 2017). PTL offers an excellent opportunity to enhance
the current regimens in the management of periodontal disease, and
further studies are required.

Conclusion

In short, PTL has therapeutic effects on skeletal diseases,
primary and metastasis bone cancers, and inflammation-induced
cytokine storm. As summarised in Figure 2, PTL displays inhibitory
effects on cytokine-mediated NF-κB by direct inhibition of IKK-β
(Mathema et al., 2012), or indirect inhibitory effects on
inflammasome activity via NLRP3 (Juliana et al., 2010) and ROS
(Kempema et al., 2015) (Figure 2). PTL also act as a phosphorylation
inhibitor for STAT1 and STAT3 (Mathema et al., 2012) (Figure 2).
Further understanding the mechanistic insights into the role of PTL
in a disease specific manner will enable us to develop therapeutic

applications of PTL for arthritis, osteoporosis, periodontal disease,
cancer, and COVID-19. In addition, there are limitations regarding
the clinical use of PTL, including pharmacological doses, routes of
drug delivery and double-blind clinical trial studies, and future
studies in addressing these issues will enhance the clinical
applications of PTL in various diseases. Previous studies have
focused on the efficacy of PTL in various conditions with a lack
of reports on toxicity assessments. As a general rule, since PTL is an
NF-κB inhibitor, it might cause liver toxicity when used to overdose.
Thus, further systemic evaluation of liver toxicity will help to better
understand the druggability of PTL.
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