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Introduction: Selaginella doederleinii Hieron is a traditional Chinese herbal
medicine, the ethyl acetate extract from Selaginella doederleinii (SDEA) showed
favorable anticancer potentials. However, the effect of SDEA on human cytochrome
P450 enzymes (CYP450) remains unclear. To predict the herb-drug interaction (HDI)
and lay the groundwork for further clinical trials, the inhibitory effect of SDEA and its
four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) on seven
CYP450 isoforms were investigated by using the established CYP450 cocktail
assay based on LC-MS/MS.

Methods: Appropriate substrates for seven tested CYP450 isoforms were selected to
establish a reliable cocktail CYP450 assay based on LC-MS/MS. The contents of four
constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) in SDEA were
determined as well. Then, the validated CYP450 cocktail assay was applied to test
the inhibitory potential of SDEA and four constituents on CYP450 isoforms.

Results: SDEA showed strong inhibitory effect on CYP2C9 and CYP2C8 (IC50 ≈ 1 μg/
ml), moderate inhibitory effect against CYP2C19, CYP2E1 and CYP3A (IC50 < 10 μg/
ml). Among the four constituents, Amentoflavone had the highest content in the
extract (13.65%) and strongest inhibitory effect (IC50 < 5 μM), especially for CYP2C9,
CYP2C8 and CYP3A. Amentoflavone also showed time-dependent inhibition on
CYP2C19 and CYP2D6. Apigenin and Palmatine both showed concentration-
dependent inhibition. Apigenin inhibited CYP1A2, CYP2C8, CYP2C9, CYP2E1 and
CYP3A. Palmatine inhibited CYP3A and had aweak inhibitory effect on CYP2E1. As for
Delicaflavone, which has the potential to develop as an anti-cancer agent, showed
no obvious inhibitory effect on CYP450 enzymes.

Conclusion: Amentoflavone may be one of the main reasons for the inhibition of
SDEA on CYP450 enzymes, the potential HDI should be considered when SDEA or
Amentoflavone were used with other clinical drugs. On the contrast, Delicaflavone is
more suitable to develop as a drug for clinical use, considering the low level of
CYP450 metabolic inhibition.
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1 Introduction

Numerous studies have shown that drug-drug interaction (DDI)
can cause serious adverse reactions, drug ineffectiveness and even
death (Han et al., 2012; Kozakai et al., 2012; Al-Ramahi et al., 2015;
Guengerich, 2021). Induction or inhibition of human Cytochromes
P450 (CYP450) enzyme by compounds is the main cause for drug-
drug metabolic interaction (Qin et al., 2013). About 60%–70% of the
clinical drugs are clear by phase I reaction, where 75% of the involved
metabolizing enzymes are CYP450 isoforms (Kim et al., 2005; Lee and
Kim, 2013). Usually, CYP450 inhibition leads to drug accumulation
and even toxicity (Lin and Lu, 1998; Guengerich, 2008; Hakkola et al.,
2020). Based on that, DDI test is necessary for a chemical from pre-
clinical stage into clinical trials in pharmaceutical industry. The
United States Food and Drug Administration (FDA) guidelines for
DDI test have recommended several major human CYP450 isoforms,
including CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and
CYP3A. Those CYP450 isoforms have account for mostly
enzymatic metabolism of clinical drugs (Prueksaritanont et al.,
2013; Sudsakorn et al., 2020). Although CYP2E1 was not clearly
specified in the FDA guidelines, many studies have revealed that
CYP2E1 can metabolize Coumarin, Quinoline, Isoniazid, ethanol,
Caffeine, acetaminophen and other substances. Therefore, it is
reasonable to include CYP2E1 when conducting the DDI study
(Valicherla et al., 2019).

Nowadays, many people consume herbal products for self-health
or medical use in their daily life. Similar to small molecule medicine,
when people take herbal products and drugs at the same time,
potential herb-drug interaction (HDI) should be considered as well
(van Breemen, 2015). In the past 20 years, more andmore studies have
shown that there are significant CYP450 enzyme interaction between
herbal products and prescription medicines, which will increase
patients’ risk of unnecessary and unintended adverse effect. For
example, Angelica dahurica root extract inhibited CYP450 enzymes
such as CYP2C, CYP3A and CYP2D1, and caused pharmacokinetic
and pharmacodynamic interactions with Tolbutamide and Diazepam
(Ishihara et al., 2000). Shenmai injection, one of the most popular
herbal medicines in China, has reported to inhibit CYP3A1/2 and
CYP2C6 (Xia et al., 2010). Researchers have found that Huanglian
[Rhizoma coptidis (L.)] has obvious inhibition on CYP2D6 (Han et al.,
2011). Newbouldia laevis extract inhibited the enzyme activities of
CYP1A2, CYP2C9, CYP2C19, and Newbouldia laevis showed time-
dependent inhibition effect on CYP1A2 (Thomford et al., 2016).
Licorice is a common use dietary supplement even is consumed as
a condiment, which was found to inhibit several CYP450 enzymes.
What’s more, three major licorice species (G. glabra, G. uralensis and
G. inflata) showed unique pattern pf enzyme inhibition (Li et al.,
2017). The most reported CYP450 isoforms involved in HDI are
CYP1A2, CYP2C, CYP2D6 and CYP3A, which is similar to the list of
small molecules DDI test according to FDA guideline (Choi et al.,
2016; Awortwe et al., 2018).

Selaginella doederleinii Hieron belongs to Selaginella genus of the
Selaginellaceae family and is commonly used as a traditional Chinese
herbal medicine, which was reported to have anti-hyperglycemia, anti-
virus, anti-cancer and other pharmacological activities, and used in the
treatment of nasopharyngeal carcinoma, lung cancer and
trophoblastic tumor (Zheng et al., 2005; Chen et al., 2018). The
previous in vitro and in vivo studies have revealed that the ethyl
acetate extract from S. doederleinii (SDEA) had anti-cancer effect (Yao

et al., 2017), especially for lung and colorectal cancer (Sui et al., 2016;
Li et al., 2020). Those main ingredients from the extract, such as
Amentoflavone, Palmatine, Apigenin and Delicaflavone, may account
for the pharmacological activities of SDEA. Among those components,
Delicaflavone was proved to induce apoptosis in cervical cancer HeLa
cells (Yao et al., 2019), colorectal cancer cells (Yao et al., 2020) and
lung cancer cells (Sui et al., 2017). Moreover, Delicaflavone can reverse
cisplatin resistance via endoplasmic reticulum stress signaling
pathway in non-small cell lung cancer cells, which may serve as a
useful adjunct in treatment of cisplatin-resistant lung cancer (Wang
et al., 2020). Therefore, SDEA and Delicaflavone are the most
promising anti-tumor agents, whether use alone or in combination
with other drugs.

Although the pharmacological activities of SDEA and its bioactive
compounds have been extensively studied, there is no report on HDI
of SDEA on human CYP450 enzymes. As a plant extract, the
composition of SDEA is complex, whose metabolic process in
human body is not fully understood. Meanwhile, the HDI study
for the bioactive components of SDEA have not been conducted
either. The pre-clinical study on the ADME properties of candidate
compound is of great significance for improving success rate, reducing
cost and toxic risk, which is crucial for further drug development. This
rule also applies to herbal product drug development (Brantley et al.,
2014). Regulatory agencies in most countries, such as FDA, EMA,
NMPA, et al., all require that new chemicals should be clarified the
possible inhibition or induction effect on human CYP450 enzyme in
the investigational new drug (IND) application stage. For newly
developed medicines, they are likely to be accepted on the market
only if they have clear humanmetabolic information (Sudsakorn et al.,
2020). Based on that, it is necessary for SDEA and its bioactive
compounds to screen the potential HDI before moving into clinical
trials stage. Thus, a reliable HDI test assay is needed.

Compared to in vivo animal test, in vitro CYP450 probe substrate
approach can provide reliable context and prospective knowledge in
terms of less cost and time (Bjornsson et al., 2003; Venkatakrishnan
et al., 2003), which are widely used in DDI and HDI study. Moreover,
since human and animals (rat, mice et al.) have essential differences in
basic tissue, cell structure and metabolic types, in vitro HDI assay
usually uses commercial human liver microsomes (HLM) or human
recombinant CYP450 enzymes (Lu and Di, 2020). Traditional
CYP450 substrate method owns low efficiency because it only uses
one probe substrate to test the activity of one metabolic enzyme at a
time (“one-in-one” assay), which is difficult to meet the requirements
of high throughput screening (Lin and Lu, 1998). However, as the
development of high performance liquid chromatography-tandem
mass spectrometry (HPLC-MS/MS), this problem has been solved
finally. The triple quadrupole LC-MS can select specific substrate
metabolites for determination by using multiple reaction monitoring
(MRM), which has better selectivity and specificity compared with
other analytical methods (liquid chromatography-UV, fluorescence
and luminescence detections, etc.) (Youdim and Saunders, 2010).
Based on the advantages of LC-MS/MS, the cocktail CYP450 assay
(“N-in-one” assay) have been developed, which can simultaneously
test the inhibitory effects of several CYP450 isoforms in one assay,
with the effect of significantly reducing cost and time to evaluate DDI
or HDI (Li et al., 2015; Liua et al., 2015; Spaggiari et al., 2016). The
cocktail assay is very suitable for high-throughput screening in drug
development process, especially for early drug metabolism studies,
which is extremely important for dose design of those compounds
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with multiple metabolic pathways. It has been applied to monitor the
in vitro inhibition activity of various CYP450 enzymes and time-
dependent inhibition study (Chen et al., 2016). Therefore, in our
study, an in vitro cocktail CYP450 assay was established with LC-MS/
MS to reflect the activities of corresponding CYP450 isoforms. This
assay was able to monitor the metabolic changes of specific substrates
and validated by known enzymes inhibitors, so that it could achieve
more accurate detection, better sensitivity and less interference.

In summary, we established an in vitro cocktail CYP450 assay by
LC-MS/MS to detect the inhibitory effects of SDEA and its four
constituents (Amentoflavone, Palmatine, Apigenin and
Delicaflavone) on seven human CYP450 isoforms: CYP1A2,
CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A. To
determine whether SDEA and its components are the potential
inhibitors of any of those important human CYP450 isoforms. Our
research could reveal the metabolic interactions between
CYP450 enzymes and SDEA constituents, which could clarify the
clinical safety issues and promote the drug development of SDEA and
its constituents.

2 Materials and methods

2.1 Materials and chemicals

Pooled mixed gender human liver microsomes from 50 donors
were purchased from XenoTech (Lenexa, United States), β-
nicotinamide adenine dinucleotide phosphate (NADPH) were
purchased from solarbiobiotech (Beijing, China), Omeprazole
(HPLC purity> 99%), Taxol (HPLC purity> 99%), Tolbutamide
(HPLC purity> 99%), Chlorzoxazone (HPLC purity> 99%),
Dextromethorphan Hydrobromide (HPLC purity> 98%), Alpha-
Naphthoflavone (HPLC purity> 98%), Fluconazole (HPLC purity>
98%), Quercetin (HPLC purity> 98%) and Ketoconazole (HPLC
purity> 99%) were purchased from Dalian Meilunbio. Co. Ltd
(Dalian, China), Phenaceti (HPLC purity> 99%), Sulfaphenazolum
(HPLC purity> 99%), Quinidine (HPLC purity> 99%) were purchased
from Shyuanye Biotechnology Co. Ltd (Shanghai, China),
Testosterone (HPLC purity> 98%) were purchased from Derick
Biotechnology Co. Ltd (Chengdu, China), 4-Methylpyrazole (HPLC
purity> 97%) were purchased from J&K Scientific (San Jose,
United States).

The SDEA extract was prepared following our previously
described procedure (Sui et al., 2016; Yao et al., 2017).
Delicaflavone (purity≥ 98%, determined by the peak area
normalization method using HPLC-PDA) were isolated from S.
doederleinii and the structure was fully elucidated by MS, UV,
1H-NMR and 13C-NMR, which was confirmed by comparison with
the literatures (Li et al., 2013; Li et al., 2014; Yao et al., 2017; Chen et al.,
2018). Amentoflavone (HPLC purity> 98%) and Apigenin (HPLC
purity> 98%) were purchased fromDalianMeilunbio. Co. Ltd (Dalian,
China), Palmatine (HPLC purity> 98%) was purchased from
Shyuanye Biotechnology Co. Ltd (Shanghai, China).

Methanol and acetonitrile (HPLC grade) were purchased from
Merck KGaA (Darmstadt, Germany), formic acid (HPLC grade) was
purchased from Aladdin (Shanghai, China), ethanol (analytical grade)
was obtained from Sinopharm Chemical Reagents (Shanghai, China),
and ultrapure water was prepared by a Millpore Milli-Q system
(Beddford, United States).

2.2 Quantitative analysis of four constituents
in SDEA

Amentoflavone, Delicaflavone, Apigenin, Palmatine and Rutin
(internal standard) were precisely weighed and dissolved in
methanol to obtain a stock solution with a concentration of 1 mg/
ml, which was stored in refrigerator at 4°C. Before use, the stock
solution was diluted with methanol into standard working solution
and quality control working solution.

The concentrations of Amentoflavone and Apigenin standard
curve working solution were: 3.125, 6.25, 12.5, 25, 50, 100, 200,
400 and 800 ng/ml; the concentrations of Amentoflavone and
Apigenin quality control (QC) working solution were as 30,
150 and 650 ng/ml. The concentrations of Palmatine standard
curve working solution were: 0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25,
50, 100 and 200 ng/ml; three level QCs were as 3, 30, and 150 ng/ml.
The concentrations of Delicaflavone standard curve working solution
were: 3.125, 6.25, 12.5, 25, 50, 100 and 200 ng/ml; and three QCs were
as 8, 30 and 150 ng/ml. SDEA solid was accurately weighed and
dissolved with methanol, then sonicated until complete dissolution.
Diluted it with methanol to 1, 5, 25, 40 μg/ml and mix with the 40 ng/
ml internal standard (Rutin) respectively. The mixture was vortexed
for 2 min, then centrifuged at 13000 rpm for 10 min at room
temperature. The supernatant was acquired for LC-MS/MS
quantitative analysis.

2.3 Establishment of cytochrome
P450 cocktail inhibition assay

Potassium phosphate buffer (200 µl, 0.1 M, pH 7.4) containing
1 mM NADPH, 0.5 mg/mL human liver microsomes, and a cocktail
assay of seven probe substrates (Phenacetin for CYP1A2, Paclitaxel for
CYP2C8, Tolbutamide for CYP2C9, Omeprazole for CYP2C19,
Dextromethorphan for CYP2D6, Chlorzoxazone for CYP2E1,
Dextromethorphan and Testosterone for CYP3A) or a single
substrate (≤Km) were incubated at 37°C for 15 min
(Supplementary Table S1). The contents of organic solvent and
DMSO in incubation mixture was under 1% (v/v) and 0.1% (v/v)
respectively. Reactions were terminated by adding 200 µL of an ice-
cold stop solution consisting of methanol containing Rutin (2 µg/ml)
as internal standard. Samples were subsequently cooled in ice bath to
precipitate proteins. Supernatants were collected into clean tubes after
centrifugation at 12000 rpm at 4°C for 10 min prior to inject into LC-
MS/MS.

2.3.1 Determination of linearity of metabolite
formation

To determine the optimal incubation time for each CYP
substrate, human liver microsomes (0.5 mg/mL) were
incubated at 37°C for 0, 5, 10, 20, 30 and 60 min with each
CYP substrates. All substrates concentration were 1 µM. After
quantitative analysis using LC-MS/MS, the linearity of metabolite
formation was evaluated.

2.3.2 Validation of direct CYP450 inhibition
For the determination of inhibition curves using single substrate

and the cocktail, seven selective CYP inhibitors were used at different
concentrations as follows: 0.05–1 µM α-Naphthoflavone for
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CYP1A2, 1–50 μM Fluconazole for CYP2C19, 0.1–15 µM Quercetin
for CYP2C8, 0.01–5 µM Sulfaphenazole for CYP2C9, 0.005–2 µM
Quinidine for CYP2D6, 0.1–5 µM 4-Methylpyrazole for CYP2E1,
and 0.005–1 µM Ketoconazole for CYP3A (Supplementary
Table S2).

2.4 Concentration-dependent inhibitory
effect of SDEA on CYP450 isoforms

Inhibitory effect of SDEA on CYP450 isoforms was determined by
cocktail assay. SDEA at 10 concentrations from 0 to 200 µg/ml were
used to measure IC50 value. The amount of metabolites produced by
incubation without SDEA (control group) was taken as 100%, then
draw inhibition efficiency curve.

2.5 Concentration-dependent inhibitory
effect of four components in SDEA on
CYP450 isoforms

Single-point inhibition was assessed by Delicaflavone,
Amentoflavone, Apigenin and Palmatine at 10 µM, using the same
protocol as described in Section 2.3. Percentages of control activity
were calculated to determine inhibition potency. The inhibition curves
were obtained by incubating the cocktail of substrates with
10–11 different compounds’ concentrations, where Delicaflavone
and Amentoflavone were 0–50 µM.

2.6 Time-dependent inhibition study of SDEA,
Delicaflavone and Amentoflavone

In order to explore whether SDEA, Delicaflavone and
Amentoflavone have time-dependent inhibition on
CYP450 isoforms, the cocktail inhibition assay (Section 2.3.) was
used. First, SDEA (0.5 µg/ml), Delicaflavone (2 µM), and
Amentoflavone (0.1 µM) were incubated with HLM (0.5 mg/ml) in
the presence and absence of 1 mM NADPH for 35 min. After pre-
incubation, a 20 µl aliquot of the incubationmixture was transferred to
180 µl potassium phosphate buffer (0.1 M, pH 7.4) containing 1 mM
NADPH and mixed probe substrates for secondary culture, then
stopped reaction after 15 min. Enzymes that may be involved in
time-dependent were pre-incubated for 0, 5, 10, 15 and 35 min
respectively, and then re-incubated to determine the type of
inhibition. Residual enzyme activity pre-incubated without NADPH
was set as the control group, then drawing suppression curves based
on the measured data.

2.7 LC-MS/MS conditions

All metabolites and surrogate standards were analyzed by using
LC-MS/MS on a Shimadzu (Kyoto, Japan) LCMS-8040 triple
quadrupole mass spectrometer. Chromatographic separation was
performed using an Ultimate® XB-C18 (100 × 2.1 mm, 3 μm) with
gradient elution of water (0.2% formic acid) and methanol at 0.3 mL/
min (gradient B). Column maintained at 40°C. 5 μl of supernatant was
injected for LC-MS/MS analysis.

The following optimized MS parameters were used: ion spray
voltage: 6.0 kV; Nebulizer gas flow: 3 L/min; Drying gas flow: 12 L/
min; DL temperature: 250°C; Heatblock temperature: 400°C.

2.7.1 Quantitative analysis of SDEA constituents
The gradient elution procedure is: 0–1 min, 30%–45% B;

1–3 min, 40%–75% B; 3–5 min, 75%–85% B; 5–8 min, 85%–95%
B; 8–12 min, 95% B; 12–13 min, 95%–30% B; 30% B for
equilibration.

Detection was carried out using electrospray with polarity
switching, collision-induced dissociation, and multiple reaction
monitoring (MRM). The MRM mode transition: m/z 536.90 →
375.00 (−) for Amentoflavone; m/z 538.9 → 256.95 (+) for
Delicaflavone; m/z 352.00 → 336.10 (+) for Palmatine; m/z 271.15
→ 153.05 (+) for Apigenin; m/z 611.00 → 302.85 (+) for Rutin (IS).
The collision energies (CE) of the four components were
33 V, −45 V, −35 V, −35 V and −35 V respectively.

2.7.2 Determination of the inhibitory effects of SDEA
and four constituents on CYP450 enzymes by
cocktail assay

A gradient condition was applied with the following program:
0–1 min, 10%–20% B; 1–1.01 min, 20%–75% B; 1.01–3 min, 75%–77%
B; 3–5 min, 77%–80% B; 5–8 min, 80%–85% B; 8–9 min, 85%–95% B;
9–12 min, 95% B; and then 10% B for equilibration. For specific MRM
parameters, please refer to Supplementary Table S3.

2.8 Data analysis

Quantitative LC-MS/MS data were analyzed using Shimadzu
LabSolutions software (Kyoto, Japan). The Km and IC50 values
were determined by using the GraphPad Prism 5.0 software (San
Diego, United States).

3 Results

3.1 The content of four constituents in SDEA

The structures of Amentoflavone, Delicaflavone, Palmatine, and
Apigenin were shown in Figure 1. Amentoflavone and Apigenin were
linearly related in a range of 3.125–800 ng/mL by using 1/X2

weighting. Palmatine showed a linear relationship in the range of
0.391–200 ng/ml, and Delicaflavone showed a linear relationship in
the range of 3.125–200 ng/ml. The four SDEA constituents showed a
good linear relationship over their concentration range with
coefficient of determination r2 ≥ 0.99 (Supplementary Table S4).

QC samples in three levels (Low QC, Medium QC and High QC)
were prepared separately and used to evaluate those quantitative
methods, all samples were analyzed by three replicates. The related
standard deviation (RSD) of the tested compounds ranged
from −8.88% to 12.60% (Supplementary Table S4). MRM mass
spectrum of blank sample and Limit of Quantity (LOQ) were
displayed in Supplementary Figure S1. As well, all of them
demonstrated the feasibility of this analytical methods.

1 μg/ml, 5 μg/ml, 25 μg/ml and 40 μg/ml SDEA samples were
prepared and injected into LC-MS/MS respectively. Using the
established quantitative method, the content of four constituents in
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SDEA was determined. The average w/w % (Weight compound/
weight extract) showed that Delicaflavone, Palmatine, Apigenin
were 2.21%, 0.019% and 0.024% respectively, and Amentoflavone
reached 13.65%, which was the most abundant one in those four
constituents (Table 1).

3.2 Development of CYP450 cocktail assay

The probe substrates in this cocktail assay were recommended
based on FDA guidance. CYP3A sub-family can bind multiple

structurally different substrates (Wrighton et al., 2000; Ekroos
and SjOgren, 2006; Watanabe et al., 2007), it is necessary to use
more than two CYP3A in vitro marker reactions to evaluate the
activity of CYP3A (Wrighton et al., 2000), so that can show more
accurate results (Galetin et al., 2005). We selected Testosterone
and Dextromethorphan as two different substrates of CYP3A
subfamily, their specific products metabolized by CYP3A were
Testosterone: 6β-hydroxytestosterone; Dextromethorphan: 3-
methoxmorphine. The MRM parameters of substrates
corresponding to seven human CYP450 isoforms were
summarized in Supplementary Table S3. LC-MS/MS

FIGURE 1
Structural formula and molecular weight of the components in SDEA.

TABLE 1 Contents (% w/w) of the four constituents in SDEA. (Higher SDEA concentrations were used because Apigenin and Palmatine are less in SDEA).

Compound SDEA conc. (μg/ml) Content (%) Average content (%)

% weight compound/weight extract

Amentoflavone 1 13.78 13.65

5 13.53

Delicaflavone 1 2.29 2.21

5 2.13

Palmatine 5 0.019 0.019

25 0.019

Apigenin 25 0.026 0.024

40 0.023
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chromatography of substrates and their metabolites were
included in Supplementary Figure S2.

To determine the optimist incubation time for all substrates, we
measured time-dependent trends in amount of metabolites produced
by seven CYP450 enzyme substrates. Although Dextromethorphan
(CYP2D6), Chlorzoxazone (CYP2E1), Paclitaxel (CYP2C8) remained
linear for first 20 min and metabolic rates of Tolbutamide (CYP2C9),
Omeprazole (CYP2C19), Phenacetine (CYP1A2) were linear for up
15 min, Testosterone (CYP3A4) remained linear only for first 10 min

and then flattened out. Trend diagram of the generation of metabolites
for seven enzyme substrates with time was included in Supplementary
Figure S3. Compromising sensitivity to detect metabolites formed at
low substrate concentrations and high inhibitor concentrations, an
incubation time of 15 min was finally determined.

Considering the linear curve of metabolic reaction, the final
concentration of substrate is usually lower than its Km value in
order to ensure linear relationship of metabolic rate range and high
affinity. What’s moreover, enzyme-substrate affinity data illustrated

FIGURE 2
Inhibition curves each substrate incubated with cocktail assay and single substrate method. Note: 3A-T, CYP3A (Testosterone); 3A-D, CYP3A
(Dextromethorphan).
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that the Km value should be similar for a specific enzyme and
substrate, regardless of enzyme source (Donnell et al., 2007). Since
the incubated substrates could interact with each other (Spaggiari
et al., 2014), reducing substrate concentration is the most direct and
effective way to reduce the interference (Pillai et al., 2013). Therefore,
the final incubation concentration of each substrate was ideal when it
was below Km. According to the recommended data in literature
(Spaggiari et al., 2014) and sensitivity of MS, final substrate
concentration in assay were determined: Phenacetin (1A2),
Paclitaxel (2C8) and Tolbutamide (2C9) were 10 μM,
Dextromethorphan (2D6) and Testosterone (3A) were 5 μM,
Omeprazole (2C19) was 2 μM, and Chlorzoxazone (2E1) was
15 μM. All data were summarized in Supplementary Table S1.

The IC50 values obtained by cocktail assay was compared with a
single substrate using known inhibitors of each enzyme reaction alone,
so as to verify the feasibility of this assay. a-Naphthoflavone was
inhibitor of CYP1A2, our cocktail assay showed that IC50 value of
a-Naphthoflavone on CYP1A2 was 0.18 µM, and the value was
0.31 µM from single substrate assay, which indicated similar
results. The IC50 value of Quercetin on CYP2C8 was 5.43 µM in
cocktail assay, while the number was 6.07 µM in single substrate
experiment, all of them were located in desirable range by
literature (Kozakai et al., 2012; Chen et al., 2016; Valicherla et al.,
2019). IC50 values of other CYP450 isoforms inhibitors
(Sulfaphenazole for CYP2C9, Fluconazole for CYP2C19, Quinidine
for CYP2D6, 4-Methylpyrazole for CYP2E1, Ketoconazole for
CYP3A) on cocktail assay and single substrate method were also

performed and compared. Inhibition curves were shown in Figure 2
and IC50 values were summarized in Supplementary Table S2, all of
them showed good agreement between cocktail assay and single-
substrate approach, which indicated the accuracy of this cocktail
inhibition assay.

3.3 Concentration-dependent inhibition
effect of SDEA and four constituents on
CYP450 isoforms

The established cocktail assay was used to determine potential
HDI of SDEA. Results showed that SDEA has strong inhibitory effect
on CYP2C8 and CYP2C9, where IC50 values were 1.04 μg/ml and
1.06 μg/ml. SDEA also showed moderate inhibitory ability on
CYP2C19 (IC50 was 2.22 μg/ml), CYP2E1 (IC50 was 8.90 μg/ml)
and CYP3A (IC50 was 5.18 μg/ml for Testosterone and 7.97 μg/ml
for Dextromethorphan). The inhibition activities for CYP1A2,
CYP2D6 were mildly, both IC50 values were above 10 μg/ml
(Figure 3).

We also determined the inhibitory effects of SDEA constituents on
seven cytochrome P450 isoforms. At the concentration of 10 μM,
Amentoflavone showed more than 50% inhibitory effect on seven
enzyme types, the inhibitory effect of Apigenin on CYP1A2, CYP2C8,
CYP2C9, CYP2E1 and CYP3A (Testosterone) was more than 50%.
Palmatine inhibits CYP3A (Testosterone) by more than 50% and has a
weak inhibitory effect on CYP2E1. Delicaflavone has a weak inhibitory

FIGURE 3
Inhibitory potency curves and IC50 values of SDEA on seven CYP450 enzyme isoforms. Note: 3A-T, CYP3A (Testosterone); 3A-D, CYP3A
(Dextromethorphan).
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FIGURE 4
Inhibition of CYP enzymes by Amentoflavone, Delicaflavone, Apigenin, and Palmatine at 10 μM. Inhibition Activity was expressed as a percentage of
remaining activity compared to a control test without enzyme inhibitor. Note: 3A-T, CYP3A (Testosterone); 3A-D, CYP3A (Dextromethorphan).

FIGURE 5
Inhibition curves and IC50 values of Amentoflavone (A) and Delicaflavone (B) against seven CYP450 isoforms. Note: 3A-T, CYP3A (Testosterone); 3A-D,
CYP3A (Dextromethorphan).
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effect on CYP2E1 and CYP3A, but it had no obvious inhibitory effect
on the other CYP450 isomers at this concentration (Figure 4).

Amentoflavone were most abundant in four SDEA constituents
(13.65% w/w, Table 1), which showed a broad-spectrum potent CYP
enzymes inhibitory effect. The IC50 values were less than 5 μM for the
seven cytochrome P450 isoforms, especially for CYP2C9, CYP2C8 and
CYP3A, the IC50 values were even less than 0.5 μM (Figure 5A). In
contrast, Delicaflavone only had a moderate inhibitory effect on
CYP3A (Testosterone), weak inhibitory effect on CYP2C8,
CYP2E1 and had almost no inhibitory effect on the other CYP
isoforms (Figure 5B).

3.4 Time-dependent inhibition study

Possible time-dependent inhibition of SDEA, Amentoflavone and
Delicaflavone was tested using cocktail assay. Single point screening
assay showed that SDEA (0.5 μg/ml) demonstrated a time-dependent

inhibition on CYP2C19, CYP2D6, CYP3A (Testosterone) (Figure 6A),
and Amentoflavone (0.1 μM) showed the time-dependent inhibition on
CYP2C19, CYP2D6 (Figure 6B). While Delicaflavone (2 μM) did not
produce time-dependent inhibition effect on those enzymes (Figure 6C).

Based on these results, we have determined the inhibition effect of
incubation time with SDEA or Amentoflavone on CYP2C19, CYP2D6,
CYP3A (Testosterone) activity. When HLM was co-incubated with SDEA
(0.5 μg/ml) in presence of NADPH for 0–35min, the metabolic activity of
CYP2C19 decreased from 95.5% to 69.5%; the activity of
CYP2D6 decreased from 84.5% to 63.5% and CYP3A (Testosterone)
decreased from 98.5% to 63% (Figure 7A). As for Amentoflavone
(0.1 μM), the CYP2C19 activity decreased from 92% to 61% and
CYP2D6 activity decreased from 91% to 56%, during the 0–35min of
incubation with HLM and NADPH (Figure 7B). The control group was
without NADPH, after 0–35min co-incubation of HLM with SDEA or
Amentoflavone, no significant change in enzymes activity was observed.
Those data indicated that SDEA and Amentoflavone may follow a time-
dependent inhibition on CYP450 enzymes.

FIGURE 6
Percentage reduction in activity of seven enzymes after incubation with SDEA (A), Amentoflavone (B) and Delicaflavone (C) using a single point time-
dependent inhibition screening assay. The experiment was carried out three times. Note: (1) a. presence of NADPH; b. without NADPH. (2) 3A-T, CYP3A
(Testosterone); 3A-D, CYP3A (Dextromethorphan).
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4 Discussion

In vitro model of human CYP450 enzymes inhibition cocktail
assay used in this study can discover the potential of interaction
between herb and drugs, reduce the risk of using clinical drug, lay a
foundation for clinical medication. Incubation time (15 min) and
substrate concentration were determined by combining literature
data with experimental conditions (Supplementary Table S1). The
established cocktail assay was then validated with known
CYP450 enzymes inhibitors, and was applied to evaluate whether
SDEA and its bioactive constituents produce concentration-
dependent or time-dependent inhibition on the selected
CYP450 enzymes. Amentoflavone and Delicaflavone are the main
active pharmacological components of SDEA and have high content in
SDEA. Palmatine and Apigenin are also SDEA constituents and have
been reported to show inhibitory effects on CYP450 enzymes (von
Moltke et al., 2004; Kim et al., 2000). Moreover, Palmatine and
Apigenin are more common in everyday life than other
ingredients, the results will be more practical. Thus, those four
compounds were selected for HDI test.

The experiment results showed that SDEA had a strong
concentration-dependent inhibition effect on CYP2C9 and CYP2C8
(Figure 3), time-dependent inhibition effect on CYP2D6, CYP2C19 and
CYP3A (Figure 7A), which may lead to some serious adverse effects in
clinical use. CYP3A subfamily is a particularly important CYP
metabolizing, mediating over 50% in vivo biotransformation of
clinical drugs (Liu et al., 2006; Xia et al., 2015). In addition, CYP3A
subfamily also plays an important role inmaintainingmetabolic balance
of important endogenous substances such as bile acids, steroid

hormones and cholesterol (Liang et al., 2015; Xia et al., 2015; Liang
et al., 2016), and it is also the main metabolic enzyme of many narrow-
window drugs, such as Paclitaxel, Bortezomib, and Gefitinib. SDEA not
only inhibits CYP3A (IC50 < 10 μg/ml), more importantly, after 35 min
co-incubation of SDEA with NADPH, CYP3A activity was reduced
from 98.5% to 63%, which significantly increases the risk of herb-drug
interaction with serious consequences. Some oral hypoglycemic agents,
such as Glyburide, Rosiglitazone, and Repaglinide, are mainly
metabolized by CYP2C8 or CYP2C9, it may increase hypoglycemia
risk when those medicines are used together with SDEA. For epilepsy
patients, SDEA should be used with caution when taking Phenytoin and
Valproic acid (metabolized by CYP2C19) at the same time, in order to
avoid serious adverse reactions.

The contents of Amentoflavone and Delicaflavone in SDEA were
13.65% w/w and 2.21% w/w respectively, which were similar to results of
previous studies (Li et al., 2013) (Table 1). Amentoflavone not only shows
pharmacological activities, such as anti-tumor (Ndongoa et al., 2015),
antiviral (Coulerie et al., 2013), antioxidant (Arwa et al., 2015), anti-
inflammatory (Abdallah et al., 2015), but also has therapeutic effects on
central nervous (Zhang et al., 2015) and cardiovascular system (Yu et al.,
2017). The data indicated that Amentoflavone may be the main
contributor for SDEA to inhibit CYP enzymes activity. Amentoflavone
showed high content in SDEA and strong ormoderate inhibitory effect on
CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A
(Figure 5A). The inhibitory effect was even stronger than some
specific inhibitors of CYP2C9, CYP2C8 and CYP3A. In previous
reports, Amentoflavone had a strong inhibitory effect on various
CYP450 isoforms such as CYP2C9, CYP2C19, CYP2D6 and CYP3A4
(von Moltke et al., 2004; Kimura et al., 2010), which were consistent with

FIGURE 7
Effect of incubation time on the inhibition of CYP3A, CYP2D6 and CYP2C19, with SDEA (A) and Amentoflavone (B). Note: 3A-T, CYP3A (Testosterone).
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the experiment results. It should be noted that this paper found a strong
inhibitory effect on CYP2C8 and a moderate inhibitory effect on
CYP1A2 and CYP2E1 by Amentoflavone, which were not reported in
previous article (vonMoltke et al., 2004). The researchers did not find the
inhibitory effect of Amentoflavone on CYP1A2, which may be related to
the differences in enzyme sources, substrate types and concentrations.

Similar to SDEA, Amentoflavone also has time-dependent inhibitory
effects on CYP2D6 and CYP2C19 (Figure 7B). Although
CYP2D6 accounts for a small fraction of CYP450 expression in liver,
it participates in metabolism of various drugs. As a therapeutic drug for
breast cancer, Tamoxifen (TAM) has better pharmacological activity only
after the formation of 4-hydroxy-N-demethylamoxifen (Endoxifen),
which is a metabolite catalyzed by CYP2D6 (Kleina et al., 2013).
What’s more, CYP2D6 is the most polymorphic metabolic enzyme,
which is of great significance in genetics, especially in
pharmacogenetics. CYP2D6 and CYP2C19 are jointly involved in the
metabolism of psychotropic drugs, such as Selective Serotonin Recycle
Inhibitors (SSRIs), Clozapine (CZ) (Caetano1 and Piatkov, 2016; Menkes
et al., 2018) and Risperidone. For those patients who have weak
CYP2D6 and CYP2C19 activities, the inhibition is more dangerous
and may lead to serious consequences (Lymperopoulos et al., 2015). A
recent study has found that Amentoflavone was a strong and broad-
spectrum UDP-glucuronosyltransferase (UGT) inhibitor (Lv et al., 2018).
Since UGT enzymes involve in the most phase II elimination in body, the
inhibition of UGT would bring potential risks for those medicines mainly
clearing by this pathway. Considering the relationship of SDEA and
Amentoflavone, we speculate that SDEA may also have the potential to
produce significant inhibition on UGT, which needs further experiments
to confirm.

Because the content determination and single concentration
inhibition showed that Palmatine and Apigenin contents were low
(Table 1), and the inhibitory effect on enzyme type was not as strong
as Amentoflavone (Figure 4), so no further time-dependent study was
conducted for Palmatine and Apigenin. Unlike SDEA, Amentoflavone,
Apigenin or Palmatine, Delicaflavone shown no significant inhibition
effect on the selected CYP450 isomers at 10 μM, only a weak inhibitory
effect on CYP2E1 and CYP3A. Although Delicaflavone is the isomer of
Amentoflavone, the difference on CYP450 enzymes inhibition effect may
account in the steric hindrance. There are active site (responsible for
substrate biding and NADPH-CYP450 oxidase reaction) and allosteric
site (responsible for outside molecules to modulate enzyme activity) in
CYP450 enzymes (Deodhar et al., 2020). It is possible that Amentoflavone
binds to the allosteric site on CYP450 enzymes and lead to a strong
inhibition effect. Delicaflavone did not bind to or weakly work on the
allosteric site on CYP450 enzymes, resulting in the different
CYP450 inhibition activities for those two isomers. Delicaflavone also
has excellent anti-cancer and tumor-suppressing ability, the less influence
on the CYP450 enzymes activity will make it a better candidate for next
step drug development than SDEA or Amentoflavone.

5 Conclusion

Through the established reliable cocktail assay, SDEA was found to
have concentration-dependent inhibition on several CYP450 enzymes,
and inhibited CYP2D6, CYP2C19, CYP3A in a time-dependent
manner. The inhibition activity may be mainly due to the higher
content of component: Amentoflavone (13.65%). Amentoflavone has
inhibitory effects on all tested CYP450 enzymes, the inhibitory effects on

CYP2C9, CYP2C8 and CYP3A were even greater than the
corresponding specific inhibitors. Amentoflavone also has time-
dependent inhibition on CYP2D6 and CYP2C19. The other two
constituents from SDEA, Apigenin and Palmatine, both showed
concentration-dependent inhibition. For Delicaflavone, no significant
inhibitory effect on CYP450 enzymes was observed. Since Delicaflavone
owns excellent anti-cancer ability and low HDI potential, it was more
suitable to develop as a new anti-cancer drug.
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