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Apolipoprotein A-I (apoA-I), 90% of which is present in high-density lipoprotein
(HDL), is the main constituent of HDL, has anti-inflammatory and anti-oxidant
properties, and has received extensive attention in anti-atherosclerosis. Yet little is
known about apoA-I ’s role in peritoneal dialysis. In this study, by analyzing PD
patients (n = 81), we found that decreased apoA/HDL-C ratio is significantly
associated with rapid decline in peritoneal function. Further studies were
performed in animal experiments to determine the ascendancy of
apolipoprotein A-I mimetic peptide (D-4F) on peritoneum, we found that D-4F
administration reduced peritoneal fibrosis and peritoneal endothelial
mesenchymal transformation (EMT) induced by high glucose peritoneal
dialysate, such as N-cadherin, Fibronectin, Vimentin, and α-smooth muscle
actin (α-SMA) expression decreased. In mechanism, D-4F can significantly
inhibit Smad2/3 phosphorylation, which is the major pathway leading to
fibrosis. Furthermore, D-4F treatment inhibited NADPH oxidase and
thiobarbituric acid reactive substances (TBARS) expression, increased the
activity of certain enzymes, such as superoxide dismutase (SOD) and
glutathione peroxidase (GSH-Px). Finally, treatment with D-4F inhibits the
expression of interleukins-6(IL-6), Interleukin-1β(IL-1β), and tumor necrosis
factor-α(TNF-α). Taken together, based on the above research evidence, apoA-
I and its peptide mimic may regulate the oxidative stress, TGF- β1/Smads signaling
pathway and inflammatory response to reduce peritoneal fibrosis due to
peritoneal dialysis.
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Introduction

For patients with end-stage renal disease (ESRD), peritoneal dialysis (PD) is an effective
renal replacement therapy comparable to hemodialysis in terms of sufficiency, mortality rate
and other result parameters. While PD improves the quality of life for ESRD patients,
ultrafiltration failure is a serious complication of long-term PD therapy, which restricts
patients’ effective duration of dialysis. (Bitar et al, 2022). During peritoneal dialysis, patients’
peritoneum will be exposed to high-concentration glucose dialysate for an extended period
of time, which is the primary reason for peritoneal fibrosis and failure of ultrafiltration,
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leading to conversion to hemodialysis or death, for which there is no
effective treatment. Chronic inflammation, oxidative stress, and the
fibrotic process itself are implicated in the pathophysiology of
peritoneal fibrosis (Hishida et al, 2019; Roumeliotis et al, 2020).
oxidative stress and Inflammation often precede the development of
peritoneal fibrosis, although there is a bidirectional relationship in
which one induces the other (Balzer, 2020). The major causes of
oxidative stress in PD are the non-physiologic content of the
solutions, high glucose levels, high osmotic pressure, low pH,
etc., which promote oxidative reactions in the cells of the
peritoneum (Liakopoulos et al, 2017). In addition, when the
dialysate is heated for sterilization, it will lead to glucose
degradation. The accumulation of its breakdown products and
their contact with the peritoneum further promotes the
formation of glycosylation end products and pro-oxidant
molecules, which in turn results in an increase in fibrosis of the
peritoneum (Roumeliotis et al, 2020).Moreover, these factors can
lead to both local inflammation of the peritoneum and a
microinflammatory state in PD patients, which play a significant
role in fibrosis of the peritoneum. A hallmark of inflammation is the
production of a greater number of inflammatory mediators, such as
tumor necrosis factor-α (TNF-α), c-reactive protein and diver
interleukins (ILs) (Zhou et al, 2016). Therefore, the search for
biological molecules that are antioxidant and anti-inflammation
is likely to be one of the effective ways to prevent and treat peritoneal
fibrosis.

In the general population, HDL exerts protective effects by
affecting reverse cholesterol transport, besides the anti-
inflammatory and antioxidant effects (Rosenson et al, 2012;
Kontush, 2020; Xepapadaki et al, 2020; Jia et al, 2021). It has
been shown that the reduction in HDL levels in patients with
ESRD is due to decreased synthesis, increased decomposition,
and exception clearing of HDL (Zhong et al, 2019; Noels et al,
2021). Subsequent analyses demonstrated several changes in the
composition of HDL lipoprotein granules in patients with CKD,
including apoA-I, apoA-II and apoM levels decreasing and serum
amyloid a (SAA), apoC-II, apoC-III and apoA-IV levels increasing,
the changes in these components may be associated with HDL- C
dysfunction in PD patients (Zhong et al, 2019). However, because
apoA-I or HDL-C levels may not reflect key characteristics of
lipoproteins, it is unclear whether low apoA-I or HDL levels or
changes in their associated fraction ratios affect peritoneal
ultrafiltration function in PD patients. Therefore, one of the goals
of this project was to examine the relationship between changes in
plasma HDL-C, apoA-I and other lipid components and changes in
peritoneal ultrafiltration function in patients with PD.

ApoA-I mimics peptide 4F is a polypeptide with 18 amino acids,
in which 4 amino acids are replaced with phenylalanine, so it is
referred to as 4F. The properties of 4F are the same as those of
apolipoprotein A-I, such as lipid-binding properties. In addition,
ApoA-I mimetic peptide 4F has the advantage of small molecular
weight for clinical application and promotion as well as easy
synthesis, and it has been synthesized from all-L amino acids (L-
4F) and all-D amino acids (D-4F) (Van Lenten et al, 2009). At
present, D-4F has been shown in animal experiments to have an
anti-inflammatory, antioxidant, reverse lipid transport, and
angiogenesis regulation similar to that of apoA-I (Li et al, 2004;
Qin et al, 2012; Yao et al, 2015).However, it remains unknown

whether Apo-I mimetic peptide 4F can exert anti-inflammatory and
antioxidant effects under chronic inflammatory conditions induced
by PD fluid.

Therefore, the purpose of this present study was to investigates
the levels of lipid constituents in plasma of PD patients and their
ratio to HDL and analyze their correlation with the function of the
peritoneum. In addition, the effect and mechanism of D-4F on
peritoneal fibrosis induced by high glucose PD fluid in rats was
analyzed.

Materials and methods

Research design and population

This was a retrospective observational cohort study that was
conducted on 81 patients who undergoing continuous ambulatory
peritoneal dialysis (CAPD) in the provincial hospital affiliated to
Shandong First Medical University from October 2011 to August
2021. Study inclusion criteria were as follows: over 18 years of age
and maintained PD therapy for at least 1 month. Patients who met
the exclusion criteria were those with previous peritoneal infection,
previous history of kidney transplantation, ≥3 months of previous
hemodialysis, individuals with coronary atherosclerotic heart
disease, known history of familial hyperlipidemia, chronic liver
disease and severe liver dysfunction, concurrent pregnancy or
malignancy, blood transfusion therapy within 3 months prior to
study, and incomplete lipid data. All patients were classified into
low transport group (D/P 0.34–0.64) and high transport group (D/
P 0.65–1.03) based on the results of each peritoneal equilibration
test (PET), 153 times in total. Moreover, 39 patients with
peritoneal dialysis >24 months performed PET in both 3 and
24 months were selected and grouped according to the above
criteria. The patient’s past medical records were collected,
including LDL-C, HDL-C level, apolipoprotein A level,
apolipoprotein B level, PET D/p values, and other clinical
information. This research protocol was approved by the
Affiliated Provincial Hospital Clinical Research Ethics
Committee of Shandong First Medical University.

Animal models and animal groups

The experimental animal program was carried out in
conformity to the principles of the animal ethics committee of
Shandong First Medical University Affiliated Provincial
Hospital. 18 male rats from Shandong Provincial Hospital
Animal Center, aged 6–8 weeks, were randomly divided into
3 groups: 1) control group; 2) PDF group; and 3) PDF + D-4F
group. 4.25% glucose PDF (Baxter Healthcare Ltd., Deerfield, IL,
United States) injection was used as the peritoneal dialysis fluid
in rats, and 6 weeks of daily intraperitoneal injection in PDF rats
were used to successfully established peritoneal dialysis animal
model. Control group received the same quantity of saline (NS).
The D-4F + PDF group received oral D-4F at 20 mg/kg/D 2 weeks
after the start of the trial, the NS was used as a control for the rats
in the PDF group. After 4 weeks of oral administration of D-4F,
serum was taken, all died, and the parietal peritoneum was taken.
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Reagent

4F was synthesized using all D-amino acids in sequence (Ac-
DWFKAFYDKVAEKFKEAF-NH2) and was purchased from
Nanjing Peptide Biotechnology Co., Ltd. Antibodies against
Fibronectin (no.15613-1-AP), Collagen-I (no.14695-1-AP),
N-cadherin (no.22018-1-AP), α-SMA (no.14395-1-AP), TGF-β1
(no.21898-1-AP) were purchased from Proteintech. E-cadherin
(no.3195T), Antibodies against phospho-Smad2/3 (no.13820T),
phospho-NF-κB p65 (no. 3033T) were purchased from Cell Signaling
Technology. Antibodies against Vimentin (no.ab925470, NOX2
(no.ab129068), NOX4 (no.ab133303), phospho-Erk1/2 (no.ab201015)
were purchased from Abcam. Antibodies against GAPDH (no.AC002)
was purchased from Abclonal. Secondary antibodies conjugated to goat
anti-rabbit and goat anti-mouse horseradish peroxidase (ZB-2301 and
ZB-2305, respectively) were purchased from Zhongshan Jinqiao.
Thiobarbital acid reactant colorimetric (TBARS) test kit (E-BC-K318-
M), Superoxide dismutase (SOD) typing test kit (e-bc-k022-m) and
glutathione peroxidase (GSH-PX) colorimetric Kit (e-bc-k096-m) were
purchased from elabscience.

Western blot analyses

The appropriate amount of peritoneal tissue should be taken for
total protein extraction, and the concentration of total protein
extracted should be determined by the BCA protein method. The
same amount of protein (20 μg) is removed and added to 8%–12%
SDS-PAGE gel for separation of proteins and transferred to
polyvinyl fluoride membrane (Millipore). Dilutions of the
following antibodies were made and cocultured with the
membrane overnight at 4°C: E-cadherin (1:1,000), Fibronectin (1:
2000),N-cadherin (1:2,000), α-SMA (1:1,000), vimentin (1:1,000),
phospho-Smad2 (1:1,000), phospho-Smad3 (1:2,000), TGF-β1 (1:
1,000), phospho-NF-κB p65 (1:1,000), NOX2 (1:5000), NOX4 (1:
1000), phospho-Erk1/2 (1:1000) and GAPDH (1:5000). Then
incubate the membrane with horseradish peroxidase bound
secondary antibody (1:5000) for 1 h at room temperature. The
ECL system and Bio Rad electrophoretic image analyzer were
used to observe the immune reaction zone after the developer
was added.

Elisa

Obtained from rat serum by orbital blood collection and
centrifuging. Follow the instructions in the kit, the activity of
CuZn-SOD and GSH-Px in serum were detected in biochemical
kits. For MDA determination, peritoneal tissue homogenate was
first performed, and then the homogenate was centrifuged at
14.000rpm for 10 min at 4°C. The resulting supernatant was used
for MDA determination.

RNA extraction and real-time PCR

Total RNA extractions and concentration determinations.
cDNA synthesis according to the specification of SYBR Green.

The sequences of the primers used for real-time PCR are: IL-6,
forward 5′-AAGCCAGAGCTGTGCAGATGAGTA-3′ and reverse
5′-TGTCCTGCAGCCACTGGTTC-3′; TNF-α, forward 5′-CTG
CCTGCTGCACTTTGGAG-3′ and reverse 5′-ACATGGGCT
ACAGGCTTGTCACT-3′; IL-1β, forward 5′-CCAGGGACAGGA
TATGGAGCA-3′ and reverse 5′-TTCAACACGCAGGACAGG
TACAG-3′; and actin, forward 5′-ATTGCCGACCGAATGCAG
A-3′ and reverse 5′-ATGGAGCCACCGATCCAGAC-3′.

Morphological and immunohistochemical
analysis of peritoneum

The peritoneum samples fixed in 4% paraformaldehyde underwent
a series of standard procedures including successive dehydration in a
graded alcohol series (75%, 85%, 95%, and 100%, v/v), transparency in
dimethylbenzene and paraffin embedding, and thenwere sectioned into
5 µm thick slices. Dewaxing and hydration were performed on the
slices, followed by dropwise addition of hematoxylin staining solution,
differentiation solution, and eosin staining solution on the slices for

TABLE 1 Baseline characteristics of patients.

General features Data

Age (years) 50.52 ± 14.56

Dialysis time (month) 17.8 ± 11.72

Gender (case%)

male 46 (57%)

female 35 (43%)

Primary disease (cases%)

Chronic glomerulonephritis 32 (40%)

Diabetes nephropathy 6 (7%)

Hypertensive nephropathy 31 (38%)

other 12 (15%)

BMI (Kg/m2) 22 ± 2.93

TG (mmol/l) 1.82 ± 0.99

TC (mmol/l) 4.79 ± 1.52

HDL-C (mmol/l) 1.22 ± 0.41

LDL-C (mmol/l) 2.82 ± 0.86

ApoA (g/l) 1.05 ± 0.23

ApoB (g/l) 1.00 ± 0.33

ALB (g/l) 35.09 ± 5.27

Cr (umol/l) 977.45 ± 320.93

eGFR (mL/min) 5.46 ± 2.73

Urine volume (ml) 1354.42 ± 504.06

Data are presented as means ± standard deviation (SD) or n (%). Abbreviations: BMI, body

mass index; TG, triglyceride; TC, total cholesterol; ApoA, apolipoprotein A; ApoB,

apolipoprotein B; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density

lipoprotein cholesterol; ALB, albumin; Cr, blood creatinine; eGFR, glomerular filtration

rate.
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Hematoxylin eosin (H & amp; E) staining. Masson staining was used to
study the fibrosis of peritoneal specimens.We utilized ImageJ (National
Institute of Health, Bethesda, MD), a computerized image analysis
software, to evaluate PF by measuring the percentage of peritoneal
membrane occupied by collagen fibers. In addition, peritoneum
thickness was assessed by measuring the distance from the surface
mesothelium to the upper limit of the muscular tissue with the aid of
ImageJ software. For each sample, select 5 regions. Peritoneal tissue
sections were subjected to immunohistochemical staining using a two-
step detection kit and a developed DAB reagent. The slices were
incubated in a wet box in a primary antibody at 4°C overnight. The
primary antibodies included anti-Fibronectin (1:500), anti-TGF-β1 (1:
400), and anti-α-SMA (1:500), Anti-collagen I (1:500). The next day,
Secondary antibodies (1:200) were incubated in slices for 2 h.
Observations by fluorescence microscopy.

Statistical analysis

All data are expressed as means ± SDs. Non-sample paired t-test
and paired sample t-test were used to determine statistical
significance. p < 0.05 was regarded as statistically significant.
Graphpad prism 8 and SPSS Statistics 22 were used for all
calculations.

Results

Clinical information and laboratory values of
study population

This study recorded and analyzed the relevant information of
81 CAPD patients. Table 1 lists the demographic and clinical data
characteristics of the selected patients. A comparison of the level of
blood lipid laboratory values between the high-transport and low-
transport groups is shown in Table 2. No significant differences were
observed in serum HDL-C, LDL-C, apoB, apoA, apoB/HDL-C,
apoA/apoB levels between the two groups (p > 0.05), however
the apoA/HDL-C level and D/D0 glucose in high transport group
were obviously lower than that in low transport group (p < 0.05).

ApoA/HDL-C ratios are related to the
filtration function of peritoneum

A total of 39 patients wih peritoneal dialysis >24 months performed
PET in both 3 and 24 months were selected and grouped according to
D/p values. The correlation of △D/P and △apoA/HDL-C between
3 and 12 months was analyzed. As showed in Table3 and Figure 1, the
△apoA/HDL-C was negatively correlated with the △D/p values
(r = −0.58, p < 0.01), and positively correlated with △D/D0 (r =
0.33, p < 0.05).

D-4F reduced the peritoneal fibrosis by
regulating the EMT process in PD rats

With the aim of researching the role and mechanism of apoA in
fibrosis of the peritoneum, we investigate the role of D-4F, one of the
apoA-I mimic peptides, in a rat model of peritoneal dialysate-induced
peritoneal fibrosis. Rats were given saline or PDF for 6 weeks, with or
without D-4F (20 mg/kg/d) orally for 4 weeks (Figure 2). As expected,
pronounced sub-mesothelial thickening developed after a 6 weeks
exposure to PDF, while D-4F treatment showed a greater rescuing
effect in terms of peritoneal thickness (Figure 3A, A1). EMT from
peritoneal mesothelial cells has been shown to play a significant role in
PF. Immunohistochemistry or Western blot analysis determined the
expression of the epithelial adhesion protein marker E-cadherin, the
mesenchymal marker α-smooth muscle actin (α-SMA), N-cadherin
and vimentin, and the fibrosis markers Fibronectin and collagen type I
(Figures 3B,C). The results showed that high-glucose treatment
increased the expression of N-cadherin, α-SMA, Fibronectin,
vimentin and Collagen I in peritoneal tissue, but significantly
decreased the expression of E-cadherin. The effect was blunted by
oral administration of D-4F (Figures 3A–C).

D-4F suppressed the TGF-β1/smad signaling
pathway in peritoneal fibrosis rats

To further investigate the mechanism behind the anti-fibrotic
effect of D-4F, we investigated whether D-4F was acting on the TGF-

TABLE 2 Lipid composition between high transport group and low transport group.

Biochemical index High transport group Low transport group p-value

HDL-C (mmol/l) 1.30 ± 0.42 1.41 ± 0.84 0.32

LDL-C (mmol/l) 3.63 ± 0.78 2.84 ± 0.72 0.34

ApoA (g/l) 1.07 ± 0.21 1.13 ± 0.34 0.22

ApoB (g/l) 0.95 ± 0.26 0.98 ± 0.29 0.51

ApoA/HDL-C 0.76 ± 0.15 0.89 ± 0.28 0.00

ApoB/HDL-C 0.71 ± 0.23 0.77 ± 0.31 0.17

ApoA/apoB 1.16 ± 0.36 1.24 ± 0.37 0.23

D/D0 0.37 ± 0.11 0.47 ± 0.1 0.00

Means ± standard deviations (SDs) are expressed for normally distributed variables. Abbreviations: ApoA, apolipoprotein A; ApoB, apolipoprotein B; HDL-C, high-density lipoprotein

cholesterol; LDL-C, low-density lipoprotein cholesterol; D/D0: 4 to 0 h dialysate glucose.

Frontiers in Pharmacology frontiersin.org04

Lu et al. 10.3389/fphar.2023.1106339

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1106339


β1-induced activation of the Smad pathway. Western blot analysis
revealed that the TGF-β1/Smad signal transduction activity of the
PDF group was higher than that of the control group, which showed
increased TGF-β1 expression and increased phosphorylation of
Smad2/3. However, D-4F treatment significantly suppressed
TGF-β1 and p-Smad2/3 levels (Figure 4A, A1). TGF-β1 has the
same trend as Western blotting by immunohistochemical analysis
(Figure 4B).

D-4F attenuated the oxidative stress in PD
rats

Moreover, oxidative stress is strongly associated with chronic
inflammation and secondary fibrosis of PD. In order to elucidate the
effect of D-4F on oxidative stress, we detected the expression of
NOX2, NOX4 and p-Erk in PD rats by Western blotting. As showed
in shown in Figure 5A, A1, the expression of NOX2 NOX4 and

TABLE 3 ApoA/HDL-C ratios are related to the filtration function of the peritoneum.

Biochemical index Difference △D/P △D/D0

r P r P

△HDL-C 0.06 ± 0.45 0.08 0.64 −0.28 0.09

△LDL-C −0.01 ± 0.75 0.05 0.77 −0.16 0.33

△APOA −0.07 ± 0.27 −0.24 0.14 −0.05 0.75

△APOB −0.05 ± 0.32 −0.03 0.87 −0.11 0.53

△APOA/HDL −0.08 ± 0.21 −0.58 0.00 0.33 0.04

△APOB/HDL −0.04 ± 0.25 −0.2 0.22 0.12 0.47

Abbreviations: ApoA, apolipoprotein A; ApoB, apolipoprotein B; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol,△, the 24-month dialysis minus the

3-month dialysis value.

FIGURE 1
GraphPad Prism 8 was used to make the correlation analysis chart of △ApoA/HDL-C and △D/P, △D/D0.

FIGURE 2
Schematic of the study design. Male SD rats were subjected to 6 weeks of daily treatment with either saline or high-glucose (4.25%)-containing PD
fluid (PDF) ± D-4F (20 mg/kg body weight).

Frontiers in Pharmacology frontiersin.org05

Lu et al. 10.3389/fphar.2023.1106339

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1106339


p-Erk was increased by exposure to peritoneum dialysate, which was
significantly blocked by D-4F. Furthermore, we found that D-4F
treatment significantly reduced the concentration of TBARS in
Peritoneal tissue and enhanced the activity of CuZn-SOD and
GSH-Px in plasma, indicated that D-4F reversed a decrease in
anti-oxidant activity (Figure 5B).

D-4F reduced inflammatory cytokines
secretion in PD rats

We further explored the effects of D-4F on inflammation. From
these results, it is known that the mRNA levels of IL-1β, IL-6 and
TNF-α in the PDF group were significantly increased, whereas D-4F

FIGURE 3
Peritoneal dialysis fluid-induced fibrosis in mice is attenuated by D-4F. (A) Masson trichrome staining and H&E staining of peritoneum with or
without D-4F treatment is illustrated in photomicrographs (magnification: ×200; scale bars = 100 μm). Mean peritoneal membrane thickness and
peritoneal fibrosis score in rat are shown in (A1). (B) Collagen I, Fibronectin, α-SMA expression levels were observed using immunohistochemistry
(magnification: ×200; scale bars = 100 μm). (C) the peritoneum was taken for immunoblot analysis of E-cadherin, N-cadherin, Vimentin,
Fibronectin, α-SMA and GAPDH. Representative immunoblots from three experiments are shown. (C1) Using GAPDH as loading control for quantitative
analysis. The data represent an analysis of at least three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with the Con group; #p <
0.05 and ##p < 0.01 compared with the PDF group.
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treatment obviously inhibited this pro-inflammatory component
(Figure 6A). The NF-κB is among the classic transcription factors
that can direct the expression of multiple cytokine/chemo kinesins.
As shown in Figure 6B, high levels of phosphorylation of NF-κB
were detected in PD rats by Western blotting, and the expression
was obviously downregulated by D-4F. Moreover, in H;E staining
(Figure 3A), we found that the number of peritoneal inflammatory
cells in the PDF group was significantly higher than that in the Con
group and the D-4F + PDF group, which is consistent with our
conclusion.

Discussion

Peritoneal dialysis (PD) has been used extensively in patients
with end-stage renal disease (ESRD). The other side of the shield,
chronic exposure of the peritoneum to bioincompatible PD
solutions during long-term dialysis leads to peritoneal fibrosis
(PF), thus contributing to the failure of ultrafiltration, which is,
at least in part, related to lipid abnormalities. In this study, we
describe that apoA-I is a protective factor of peritoneal ultrafiltration
function in patients with PD. D-4F treatment ameliorated the high-
glucose-induced PF by suppressing EMT via TGF-β/Smad signaling
in rats. In addition, D-4F significantly reduced the levels of
inflammatory cytokines and oxidative stress, indicating the
possible mechanism of apoA-I in reduced PF.

Apolipoprotein A-I (ApoA-I) takes up the majority of the high
density lipoprotein (HDL) components. Despite the fact that each HDL
particle contains five apoA-I molecules, the systemic apoA-I levels were

used as an indicator for HDL cholesterol concentrations (Catapano
et al, 2016). It has been suggested in previous studies that PD patients
will have changes in lipid mass spectrometry during dialysis with an
increase in serum total cholesterol, very low-density lipoprotein
cholesterol (VLDL), and low-density lipoproteins (LDL) levels,
whereas high-density lipid cholesterol and apolipoprotein A (apoA)
levels decrease (Steele et al, 1989; Holzer et al, 2015). One of the largest
meta-analyses of prospective studies in general populations
demonstrates an inverse association between apoA-I and incident
coronary artery disease (Holmes et al, 2018). Furthermore, a higher
apoB/apoA-I ratio is highly correlated with an increase in all-cause
mortality and cardiovascular events in PD patients (Zhan et al, 2018).
Recent research demonstrates that HDL: apoA-I ratio has an
independent relationship with all-cause mortality in patients with
PD (Zeng et al, 2021). However, the relationship between apoA-I
and peritoneal ultrafiltration function remains unclear.

As noted above, we found that the serum apoA/HDL-C levels of PD
patients with elevated peritoneal transport function based on PET
findings were reduced. △ApoA/HDL-C value between 3 and
24 months after the first PD treatment was also found to be
negatively correlated with △D/p-value, indicating that apoA exerts a
protective effect on the peritoneal ultrafiltration function of patients with
PD. This study further investigated the effect of apoA-I on peritoneal
fibrosis in rat PF models induced by high-glucose peritoneal dialysis
solution. The results showed effectively anti-fibrotic effects of apoA-I
mimicking peptides (D-4F) on peritoneal fibrosis, which participated in
regulating EMT, inflammatory and oxidative stress.

Recent research has demonstrated that there are a variety of
causes of peritoneal fibrosis including inflammation, oxidative

FIGURE 4
D-4F can inhibit TGF-β/Smad pathway. (A) The peritoneum was taken for immunoblot analysis of TGF-β1, p-smad2, p-smad3 and GAPDH.
Representative immunoblots from three experiments are shown. (A1) Using GAPDH as loading control for quantitative analysis. The data represent an
analysis of at least three independent experiments. *p < 0.05, **p < 0.01 comparedwith the Con group; #p < 0.05 and ##p < 0.01 comparedwith the PDF
group. (B) TGF-β1 expression levels were observed using immunohistochemistry (magnification: ×200; scale bars = 100 μm), and semiquantitative
analysis of data shown in (B) *p < 0.05, **p < 0.01 compared with the Con group; #p < 0.05 compared with the PDF group.
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stress, and epithelial-to-mesenchymal transition (EMT), and that
these processes interact and promote each other (Balzer, 2020). The
basic properties of EMT are to destroy cell polarity and adhesion and
to obtain mesenchymal characteristics including migration and
invasion (Thiery and Sleeman, 2006; Dongre and Weinberg,
2019). Previous studies have indicated that high-glucose
treatment induces EMT in human peritoneal mesothelial cells,
which is associated with a decline in peritoneal function as a
result of peritoneal fibrosis (Yang et al, 2018; Su et al, 2020).
During the study of patients with idiopathic lung fibrosis,
apolipoprotein A-I (apoA-I) in the BAL solution was found to be
significantly decreased (Kim et al, 2010). D-4F was used for further
research, which demonstrated that D-4F inhibited TGF-β1 induced
EMTs in alveolar cells and IL-4 induced alternative activation of
macrophage in human acute monocytic leukemia cells (You et al,
2016; Song et al, 2019). However, while studies have shown that
apoA-I has specific anti-fibrotic potential, only a handful of studies
have provided information on the role of D-4F peritoneal fibrosis. In
this study, we reveal for the first time that apoA-I participates in
peritoneal fibrosis through the regulation of EMT. EMT is a process
induced by a variety of growth factors, in particular transformative
growth factor-β (TGF-β), which was considered to be a key mediator
of mesothelial EMT both in vitro (Yang et al, 2003) and in vivo
(Margetts et al, 2005). Two TGFβ1-induced signal transduction
pathways have been identified, the Smad-dependent pathway and

the Smad-independent pathway, and most profibrotic effects are
accomplished via the Smad dependent canonical pathway (Wang
et al, 2005; Bottinger, 2007; Lan, 2011; Zhou et al, 2016). TGF-β1
initiates the EMT process with multiple steps. First, it interacts with
TGF-β Type II receptor binding activates TGF-β Type I receptors
then phosphorylate the downstream Smad2/3 proteins following
their phosphorylation and Smad4 binding transmits signals to the
nucleus, where they initiate the EMT process in conjunction with
transcription factors such as snail and twist (Shi and Massague,
2003; Aroeira et al, 2007; Hao et al, 2019). Inhibition of SGLT-2
using empagliflozin has been reported to ameliorate peritoneal
fibrosis via suppressing TGF-β/Smad signaling (Shentu et al,
2021). We indeed found in this study that peritoneal dialysate
induced EMT consistent with increased TGF-β1 and
phosphorylated-Smad2/3 expression, which can be suppressed by
D-4F treatment. The results of this study have important
implications for understanding the cellular mechanisms of apoA-
I in peritoneal fibrosis.

Under repeated stimuli of long-term non-physiological
peritoneal dialysate components, peritonitis, uremia toxin, or
other micro-inflammation, oxidative stress (OS) throughout the
whole process of peritoneal fibrosis.

Previous studies have demonstrated that, in terms of a healthy
control population, the serum levels of markers of OS are markedly
lower than those of patients with PD (Kocak et al, 2008). Moreover,

FIGURE 5
D-4F may inhibit oxidative stress during peritoneal dialysis. (A) Western blot was used to detect the expressions of NOX2, NOX4 and p-Erk in the
control group, peritoneal dialysis model group and D-4F treatment group. (A1) Using GAPDH as a loading control, the results were quantitatively
analyzed, *p < 0.05, **p < 0.01, compared with the Con group; #p < 0.05 and ##p < 0.01 compared with the PDF group. (B) The concentration of TBARS
and the activities of serum CuZn-SOD, GSH-PX in the control group, peritoneal dialysis model group and D-4F treatment group were detected by
colorimetry.
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compared to patients undergoing hemodialysis, significantly
elevated plasma levels of myeloperoxidase (MPO) and the state
of lipid peroxidation were reported (Taylor et al, 1992; Al-Hweish
et al, 2010). D-4F has been reported to reduce ROS generation by
inhibiting PKC, P47 activation, and eNOS uncoupling via AMPK
(Guo et al, 2020). To further investigate the antioxidant effect of D-
4F in preventing peritoneal fibrosis, we examined the activity of
CuZn-SOD and Px-GSH in serum and the protein expression of
NOX2 and NOX4 in peritoneal tissue of PF rats. Similar results have
been obtained in our current study, suggesting that apoA-I has a
potential antioxidant stress effect on PF induced by high-glucose
peritoneal dialysis solution.

Peroxidation-antioxidation imbalance not only increase the level of
oxidative stress, but also activate monocyte chemoattractant protein-1
[MCP-1], TNF-a, IL-1β and other proinflammatory factors, as well as
infiltration of various inflammatory cells (Wang et al, 2016). Monocyte
and macrophage infiltration and excessive proinflammatory cytokine
production have been shown to accelerate peritoneal fibrosis (Bellon

et al, 2011; Ko et al, 2019; Terri et al, 2021). The anti-inflammatory
property of HDL could directly lead to cell adhesion molecules and
tumor necrosis factor-alpha (TNF-α) downregulation of expression
level (Wang et al, 2018). There is no doubt that NF-κB pathway is an
important transcription factor regulating gene expression or production
of various inflammatory cytokines and chemokines under various
pathologic conditions (Chen et al, 2015). In this study, the
expression of TNF-a, IL-6, IL-1β, and NF-κB was significantly
elevated in the peritoneum of PF rats, which was inhibited by D-4F
treatment.

In summary, we found that apoA-I plays a protective effect on
peritoneal ultrafiltration function of PD patients. This beneficial
effect may be due to suppression of multiple profibrotic signaling
pathways, oxidative stress and inflammatory responses. Therefore,
application of apoA-I could be an effective method for preserving
the ultrafiltration ability of the peritoneal membrane. Additional
studies are needed to assess the practicability and validity of apoA-I
substitutes in patients with fibrosis of the peritoneum.

FIGURE 6
D-4F can inhibit inflammatory reaction during peritoneal dialysis. (A) The expression levels of IL-6, IL-1β and TNF-α in the control group, peritoneal
dialysis model group and D-4F treatment group were detected by Real-time PCR. Using β-ACTIN as a loading control, the results were quantitatively
analyzed. (B)Western blot was used to detect the expression of p-NF-κB p65 in the control group, peritoneal dialysis model group and D-4F treatment
group. (B1) Results were quantitatively analyzed using GAPDH as a loading control. *p < 0.05, **p < 0.01, ***p < 0.001 comparedwith the Con group;
#p < 0.05, ##p < 0.01and ###p < 0.001 compared with the PDF group.
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