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Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different
types of malignancies due to its high efficacy and low cost. However, its use is largely
limited by acute kidney injury (AKI), which, if left untreated, may progress to cause
irreversible chronic renal dysfunction. Despite substantial research, the exact
mechanisms of CP-induced AKI are still so far unclear and effective therapies are
lacking and desperately needed. In recent years, necroptosis, a novel subtype of
regulated necrosis, and autophagy, a formof homeostatic housekeepingmechanism
have witnessed a burgeoning interest owing to their potential to regulate and
alleviate CP-induced AKI. In this review, we elucidate in detail the molecular
mechanisms and potential roles of both autophagy and necroptosis in CP-
induced AKI. We also explore the potential of targeting these pathways to
overcome CP-induced AKI according to recent advances.
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1 Introduction

Cancer represents a serious health threat and is considered one of the main deadly diseases
worldwide (Benyamini et al., 2003; Nguyen et al., 2022). In 2019, approximately 23.6 million
new cases and 10 million deaths were associated with cancer (Kocarnik et al., 2022). Cisplatin
(CP) is one of the most effective antineoplastic drugs for the management of several solid-organ
malignancies including Hodgkin’s and non-Hodgkin’s lymphomas, sarcomas, as well as head,
lung, neck, bladder, breast, testicular, ovarian, and cervical cancers (Dasari and Bernard
Tchounwou, 2014; Manohar and Leung, 2018). It has been reported that around 50% of all
patients are treated with CP in their chemotherapeutic regimens (Chen and Chang, 2019).
Interestingly, despite its earlier discovery in 1844 by the Italian chemist, Michele Peyrone, CP
did not attract much attention until 1965 (Dasari and Bernard Tchounwou, 2014). During that
year, Rosenberg et al. (1965) noticed that the platinum compound released from the platinum
electrodes into the growth medium of Escherichia colimarkedly affects its cellular division and
filamentation. This observation has driven a strong wave of preclinical and clinical research for
testing its anticancer effect afterward. In 1969, the anticancer effect of CP was evaluated in the
sarcoma mouse model (Rosenberg et al., 1969), and by 1971, CP had entered phase I clinical
trials and was finally approved by the US Food and Drug Administration for the management of
cancers in 1978 (Andrea and Reddy, 2018).

It is currently well established that CP mediates its tumoricidal effects through binding to
DNA, causing formation of intra- and interstrand cross-links. These cross-links distort the
DNA structure and subsequently prevent DNA synthesis and replication in rapidly
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proliferating cancer cells (Dugbartey et al., 2016) (Figure 1). Despite its
efficiency, the clinical use of CP is complicated by multiple side effects
such as ototoxicity, neurotoxicity, cardiotoxicity, hepatotoxicity, and
cancer cell resistance (Karasawa and Steyger, 2015; Ghosh, 2019)
(Figure 2). However, the main serious, dose-limiting, and potentially
irreversible side effect of CP is nephrotoxicity (Miller et al., 2010;
Hägerström et al., 2019).

CP-induced renal toxicity was originally reported by laboratory
animal research in 1971 (Kociba and Sleight, 1971). In humans, CP
nephrotoxicity reaches approximately one-third of patients
undergoing treatment. Notably, at least 40% of these patients failed
to complete the course of therapy owing to renal impairment,
which, in turn, negatively affects patients’ survival rate (Shiraishi
et al., 2000; Hamroun et al., 2019). CP nephrotoxicity may result in
a wide range of manifestations including distal renal tubular
acidosis, chronic kidney disease (CKD), defect in urinary
concentrating ability, thrombotic microangiopathy, transient
proteinuria, glucosuria, hyperuricemia, hypocalcemia, and other
electrolyte imbalances, most importantly magnesium and
potassium losses (Miller et al., 2010; Oh et al., 2014; Karasawa
and Steyger, 2015). However, the most common presentation of
CP-induced nephrotoxicity is acute kidney injury (AKI) (Miller
et al., 2010), which is characterized by the rapid decline of renal
excretory function leading to the accumulation of nitrogenous
waste products, water, and electrolytes (Ostermann and
Joannidis, 2016; Hu et al., 2021). AKI is a global health problem

associated with high mortality which far exceeds those of heart
failure, diabetes mellitus, breast, and prostate carcinoma
collectively (Lewington et al., 2013).

The pathogenesis of CP-induced AKI is complex and involves
multiple molecules and factors. Oxidative stress, mitochondrial
dysfunction, inflammation, and apoptosis are all participating in
the progression of CP-induced AKI (Xu et al., 2015; Liang et al.,
2016). Despite significant progress in elucidation of molecular
pathways underlying CP nephrotoxicity, there is no approved
treatment currently available for managing such nephrotoxicity
except amifostine, which is no longer recommended for this
purpose (Sharp and Siskind, 2017). This necessitates further
investigation of new molecular targets for preventing or
treating this problem. Interestingly, necroptosis and autophagy
pathways have emerged recently and have been shown to have a
crucial role in CP-induced AKI (Rovetta et al., 2012; Holditch
et al., 2019). While many reviews have addressed mechanisms of
CP nephrotoxicity, none cover the specific role of both autophagy
and necroptosis and their potential for therapeutic intervention.
In this review article, we focus on necroptosis and autophagy
pathways, giving a comprehensive understanding of their
molecular mechanisms, roles in CP-induced AKI, and the
potential of targeting necroptosis or autophagy pathways for
attenuation of CP-induced AKI. The review also highlights the
impact of such interventions on the effectiveness of CP
chemotherapy.

FIGURE 1
Mechanism of action of cisplatin (CP). The CP structure is composed of a platinum atom in the center, surrounded by two chloride atoms and two
ammonia atoms in the cis configuration. Following its intravenous infusion, CP is passed through the cell membrane by passive diffusion or active transport. In
the bloodstream, the high chloride concentration (~100 mM) retains CP in a relatively stable structure and prevents its hydrolysis. Once it enters the cell where
the chloride concentration is greatly reduced (~4–12 mM), the two chlorides are replaced by water molecules in a process termed aquation to produce
potent, positively charged electrophilic product. The resulting product covalently binds to the N7 atomof the purine bases, preferentially guanines, in the DNA
causing formation of either intrastrand cross-linking when the two organic bases are located on the sameDNA strand or interstrand cross-linking is produced
if the organic bases are on opposite strands. These cross-links distort the DNA structure and subsequently lead to cell cycle arrest and apoptosis.
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2 Materials and methods

The PubMed/MEDLINE, Google Scholar, Wiley, and Science
Direct databases were used to retrieve relevant publications
published until October 2022. We conducted searches using the
following search terms: “cisplatin”, “cancer”, “cisplatin
nephrotoxicity”, “acute kidney injury”, “cisplatin-induced AKI”,
“autophagy”, “AMPK-mTOR-mediated autophagy”, “necroptosis”,
“RIPK1/RIPK3/MLKL-mediated necroptosis”, “necroinflammation”,
“nephroprotective”, “autophagy activators”, and “necroptosis
inhibitors”. The abstracts or full texts of English-written papers
were reviewed to determine if they matched the relevant section.
Additional studies were obtained from the reference sections of
selected studies.

3 Renal cellular uptake and
biotransformation of cisplatin (CP)

The kidney is the main route of CP excretion, since it has been
demonstrated that the concentration of CP in the kidneys is five-fold
greater than that in the blood, and therefore such accumulation of the
drug within the kidney cells contributes to its nephrotoxicity (Ozkok
and Edelstein, 2014; Abdel-Daim et al., 2019). CP is excreted via both
glomerular filtration and tubular secretion, and it is subsequently
accumulated in kidney cells, specifically in the proximal tubular cells.
Regarding tubular secretion, CP is actively transported into tubular
cells through twomembrane transporters, organic cation transporter 2
(OCT2) and copper transporter 1 (CTR1) (Gómez-Sierra et al., 2018).

It is currently believed that CP is actively metabolized in the
kidney cells to produce a potent nephrotoxic metabolite (Miller et al.,
2010). This pathway begins with the binding of CP to reduced
glutathione (GSH) by the action of the glutathione-S-transferase
(GST) enzyme in circulation (Gómez-Sierra et al., 2018). The
resulting GSH-conjugates are cleaved into a cysteinyl-glycine-
conjugate by gamma glutamyltranspeptidase which is localized on
the surface of the kidney proximal tubule (Miller et al., 2010; Gómez-
Sierra et al., 2018). Aminodipeptidase, also present on the surface of
these cells, further metabolized the resulting conjugates to yield
cysteine conjugates (Gómez-Sierra et al., 2018). Then, cysteine
conjugates are taken up into tubular cells, where they are
converted by cysteine-S-conjugate beta-lyase to form highly
reactive thiols (Miller et al., 2010). Finally, the formed thiols
bind to several cellular proteins and ultimately cause damage
and death of renal tubular cells (Zhang and Hanigan, 2003;
Peres and da Cunha, 2013).

4 Necroptosis in CP-induced acute
kidney injury (AKI)

4.1 Fundamentals of necroptosis

4.1.1 General overview of necroptosis
The term “programmed cell death” had been commonly used to

describe caspase-dependent apoptosis until caspase-independent
necrosis was identified (Linkermann et al., 2012). Necroptosis (also
called regulated necrosis) is a recently recognized form of cell death

FIGURE 2
Side effects associated with cisplatin (CP) administration. Numerous deleterious side effects continue to restrict the therapeutic efficacy of CP; with
nephrotoxicity especially acute kidney injury being the most serious issue.
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that is activated during apoptosis-compromised conditions and shares
characteristics of both accidental necrosis and apoptosis (Kaczmarek
et al., 2013; Dhuriya and Sharma, 2018; Oliveira et al., 2018).
Necroptosis is programmed (like apoptosis) and morphologically
characterized by cellular swelling, rupture of the plasma membrane,
and organelle dysfunction (like necrosis) (Weinlich et al., 2017;
Dhuriya and Sharma, 2018). Additionally, biochemical features of
necroptosis may include energy depletion, formation of reactive
oxygen species (ROS), and accumulation of calcium (Ca2+) (Cho,
2018). Physiologically, necroptotic cell death is emerging as an
important process for normal development and host defense
against various pathogens (Fulda, 2013; Wu et al., 2014; Nailwal
and Chan, 2019). However, dysregulation of necroptosis has been
shown to be associated with several diseases and tissue damages
including cancer (Dhuriya and Sharma, 2018), ischemia/reperfusion
injury (Fulda, 2013), acute pancreatitis (Wang G. et al., 2016), colitis
(Hou et al., 2019), drug-induced hepatotoxicity (Ramachandran et al.,

2013), atherosclerosis (Coornaert et al., 2018), and neurodegeneration
(Oliveira et al., 2018).

4.1.2 Molecular mechanism and regulation of
necroptotic cell death

Necroptosis is considered the best and most studied form of
regulated necrosis and its molecular mechanism is being
thoroughly investigated in recent years (Linkermann, 2016; Li L.
et al., 2021). A cascade of several kinases including receptor-
interacting protein kinase (RIPK)-1, RIPK3, and mixed lineage
kinase domain-like protein (MLKL) has been identified to play a
critical role in the regulation of the necroptotic pathway (Wang X.
et al., 2018; Shan et al., 2018). Necroptosis can be triggered by multiple
endogenous and exogenous stimuli including anticancer agents,
metabolic disturbance, ischemia/reperfusion injury, and activation
of death receptors such as tumor necrosis factor-α (TNF-α)
receptor (TNFR), toll-like receptors (TLRs) particularly TLR3/4, as

FIGURE 3
Signaling pathway leading to tumor necrosis factor-α (TNF-α)-receptor 1 (TNFR 1)-mediated necroptosis. Ligation of TNF-α to TNFR1 leads to the
generation of the membrane-bound complex I, in which cellular inhibitor of apoptosis proteins (cIAPs) and linear ubiquitin chain assembly complex (LUBAC)
polyubiquitinate receptor-interacting protein kinase (RIPK)-1 (RIPK1), directing it towards proteasomal degradation and stabilize complex I, which contributes
to inflammation and cell survival through stimulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pro-survival
pathways. However, the deubiquitination of RIPK1 induces the assembly of complex II involving Fas-associated death domain (FADD), RIPK1, and caspase-8.
Normally, caspase-8 cleaves RIPK1 and RIPK3, thereby triggering the activation of apoptosis. Nevertheless, upon caspase-8 inhibition, RIPK1 binds to RIPK3 to
form the necrosome complex, followed by phosphorylation and formation of mixed lineage kinase domain-like protein (MLKL) oligomers. These oligomers
either form pores in the cell membrane or recruit cation channels and calcium (Ca2+) channels, namely transient receptor potential melastatin related 7
(TRPM7), thereby allowing the influx of extracellular ions, disrupting osmotic pressure, leading to cell rupture and release of damage-associated molecular
patterns (DAMPs) which in turn provoke potent inflammatory responses. Besides, phosphoglycerate mutase family member 5 (PGAM5) on the mitochondrial
membrane is recruited and phosphorylated upon necroptosis activation. Once activated, PGAM5 phosphorylates cyclophilin D (CypD) and reverses
phosphorylation of dynamin-related protein 1 (Drp1), resulting in their activation where they contribute to mitochondrial fission and mitochondrial
permeability transition pore (mPTP) opening, eventually leading to necroptosis. Moreover, a small part of MLKL oligomers translocates into the nucleus,
facilitating necroptotic cell death, while other moves to the endoplasmic reticulum (ER), triggering stress response that causes intracellular Ca2+ overload.
Increased Ca2+ concentration executes necroptosis through damage to the cell membrane, overproduction of reactive oxygen species (ROS), which
promotes mPTP opening, and finally through stimulation of Ca2+-dependent enzymes like calpains and phospholipase leading to permeabilization of
lysosomemembrane and subsequent release of cathepsin B (CTSB) and D (CTSD) into the cytosol. These enzymes in turn lead to lysosomal dysfunction, and
increased oxidative potential, all of which events result in necroptosis.
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well as interferon (IFN) receptors (Wang G. et al., 2016; Seifert and
Miller, 2017; Dhuriya and Sharma, 2018). Despite diversity of stimuli
that responsible for necroptosis initiation, TNF-α remains the best-
characterized and probably the most important trigger of necroptosis
(Vandenabeele et al., 2010; Shan et al., 2018).

The binding of TNF-α to its receptor, TNFR1, can lead to either
cellular survival, apoptosis, or necroptosis (Seifert and Miller, 2017)
(Figure 3). Stimulation of TNFR1 induces certain conformational
changes in the receptor, enabling its cytosolic portion to recruit
several proteins to form the prosurvival complex I consisting of
TNFR-associated death domain (TRADD), TNFR-associated factor
2 and 5 (TRAF2/5), RIPK1, cellular inhibitor of apoptosis proteins 1/2
(cIAP1/2), and linear ubiquitin chain assembly complex (LUBAC)
(Nikoletopoulou et al., 2013; Seifert and Miller, 2017; Dhuriya and
Sharma, 2018). Within complex I, cIAPs and LUBAC trigger
RIPK1 ubiquitination leading to stabilization of complex I, which
in turn induces recruitment of TGF-β-activating kinase 1 (TAK1),
TAK1-binding protein 2 (TAB2), and TAB3 to generate TAK1-TAB2-
TAB3 complex (Liu et al., 2021; Seo et al., 2021). TAK1 phosphorylates
and activates the IκB kinase (IKK) complex and MAPK kinases
(MKKs), which in turn stimulates nuclear factor kappa B (NF-κB)
and activator protein 1 (AP-1) transcriptional activity leading to
inflammation and cell survival (Mihaly et al., 2014).

Alternatively, during specific conditions, where complex I is
destabilized or the ubiquitination process is inhibited,
RIPK1 dissociates from complex I and binds to Fas-associated
death domain (FADD) and caspase-8, forming apoptotic complex
II that results in induction of TNF-α-induced apoptosis (Seifert and
Miller, 2017; Dhuriya and Sharma, 2018; Seo et al., 2021). Within
complex II, caspase-8 inhibits necroptosis through proteolytic
cleavage of RIPK1 and RIPK3 (Nikoletopoulou et al., 2013).
However, exhaustion or reduced activity of caspase-8 shifts cellular
fate from apoptosis towards necroptosis (Cho et al., 2009; Leeper,
2016; Seifert and Miller, 2017). Thus, necroptosis acts as a backup
pathway for cell death during impairment of caspase-8-dependent
apoptosis (Zhang et al., 2016; Dhuriya and Sharma, 2018).

From a molecular point of view, the necroptosis pathway is
initiated by auto- and trans-phosphorylation of RIPK1 and
RIPK3 at Ser-227, resulting in stimulation of their kinase activity
and assembly of a heterodimer protein complex termed necrosome via
their RIPK homotypic interaction motif domains (Fulda, 2013; Cho,
2018; Dhuriya and Sharma, 2018; Oliveira et al., 2018; Hou et al.,
2019). Then, RIPK3 recruits and phosphorylates its substrate MLKL at
Thr-357/Ser-358 (Oliveira et al., 2018; Hou et al., 2019). Following
phosphorylation, MLKL oligomerizes and a small part of these
oligomers moves towards the cell membrane where they mediate
their effect in two different ways, either directly by facilitating the
formation of pores across the cell membrane mediated through
binding to membrane phospholipids like phosphatidylinositol
phosphate and cardiolipin or indirectly by increasing influx of ions
(Na+, K+, Mg2+, and Ca2+) through recruitment of cation channels and
Ca2+ channels, the transient receptor potential melastatin related 7
(TRPM7), thereby increasing osmotic pressure and eventually leading
to cell rupture (vanden Berghe et al., 2016; Seifert and Miller, 2017;
Dhuriya and Sharma, 2018; Li L. et al., 2021). Meanwhile, another part
of MLKL oligomers translocates into the membranes of various
organelles e.g., nucleus, mitochondria, endoplasmic reticulum (ER),
and lysosomes, causing their damage via necroptotic cell death (Li L.
et al., 2021; Jantas and Lasoń, 2021).

4.2 Emerging role of necroptosis in CP-
induced AKI

Cellular death and inflammation are largely found in the proximal
tubular cells, which concur with the main target of CP accumulation
(Xu et al., 2015; Ning et al., 2018). In the past, most of the previous
research has investigated and characterized apoptosis as the primary
cell death in the context of CP nephrotoxicity (Lau, 1999; Cummings
and Schnellmann, 2002; Jiang et al., 2004). As a result, strategies
targeting the apoptosis mediators have long been studied for the
treatment of CP-induced renal injury (Wei et al., 2007; Molitoris et al.,
2009; Pabla et al., 2011). However, inhibition of inflammation, tubular
necrosis, and necroptosis was sufficient to protect against CP
nephrotoxicity even in the presence of apoptosis (Kim et al., 2012;
Ozkok et al., 2016; Yoon and Kim, 2018). Moreover, two reports
surprisingly demonstrated that suppression of apoptosis alone fails to
ameliorate or stop the development of CP-induced nephrotoxicity
(Herzog et al., 2012; Sridevi et al., 2013). These data could reflect our
limited knowledge of the complex cell death mechanisms involved in
the pathogenesis of AKI. Recent advances suggest that in addition to
apoptosis, other forms of programmed cell death co-exist and play a
significant role in the pathogenesis of CP-induced renal injury. In
recent years, tremendous interest has been focused on necroptosis as
the most important mechanism of tubular death in CP-induced AKI.
The implication of necroptosis in CP-induced AKI was first reported
about a decade ago by Tristão’s group (Tristão et al., 2012). Following
this observation, several in vitro and in vivo studies demonstrated that
the expression of necroptosis-related proteins (RIPK1, RIPK3, and
MLKL) was simultaneously induced following CP administration
(Gao et al., 2016; Al-Salam et al., 2021). Interestingly, Xu et al.
(2015) reported that the CP-induced tubular damage could be
diminished by either knockout or inhibition of RIPK3 or MLKL
activity. Later, Gao et al. (2016) and Gwon et al. (2021) further
confirmed the implication of necroptosis in CP-induced AKI where
pharmacological inhibition of RIPK1/RIPK3/MLKL axis by
protocatechuic aldehyde and 6-shogaol, respectively significantly
attenuates renal injury. Similarly, pretreatment with novel
RIPK1 inhibitors, Cpd-71 and Cpd-2 mitigated CP nephropathy
(Wang et al., 2019; Li C. et al., 2022). Likewise, Liu et al. (2022b)
found that the novel heat shock protein (Hsp) 90 inhibitor, C-316-
1 facilitates ubiquitination and degradation of RIPK1, thereby
inhibiting RIPK1-mediated necroptosis and subsequently
attenuating CP-induced AKI. Recently, several investigators further
emphasized the significance of this contribution by showing that the
protective and detrimental effects of various proteins in the CP-
induced AKI model were mediated via modulation of necroptosis
signaling. In this regard, Gao et al. (2018) showed that in vitro and in
vivo enhancement of E-cadherin protein by PPBICA treatment
protects against CP-induced AKI by attenuating necroptosis and
necroptotic inflammation. In a comparable way, the protective role
of Numb and galectin-3 proteins against CP injury has been primarily
attributed to the inhibition of tubular necroptosis and/or its related
inflammatory response (Liu et al., 2020; Al-Salam et al., 2021). In
contrast, another preclinical study found that pyruvate dehydrogenase
kinase 4 aggravated CP-induced AKI at least partially by activating
necroptosis, while pharmacological or genetic disruption of its activity
dampened CP-induced necroptosis, thereby attenuating AKI in mice
(Oh et al., 2017). More recently, Yang et al. (2019); Yang et al. (2021)
and Wang F. et al. (2022) showed that Smad 2/3 and stratifin proteins
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play a detrimental role in CP-induced AKI by inducing necroptosis
and necroinflammation, and interestingly, targeting these proteins
suppressed the necroptosis signaling and thereby alleviating AKI.

4.2.1 Necroptosis and oxidative stress
Intriguingly, how CP would activate tubular necroptosis is still

largely unknown, but one possible explanation could be related to the
prooxidant activity of CP. Upon administration, CP amplifies the
formation of ROS including hydrogen peroxide, hydroxyl radical, and
superoxide anion through stimulation of nicotinamide adenine
dinucleotide phosphate oxidase enzymes (Chirino et al., 2008;
Gómez-Sierra et al., 2018). In addition, CP also affects
mitochondrial function by inhibiting activities of various
antioxidant enzymes such as GST, GSH-peroxidase, and superoxide
dismutase, resulting in an imbalance between oxidant production and
endogenous antioxidant defense system, which constitutes oxidative
stress (Karasawa and Steyger, 2015). CP may also directly disrupt the
mitochondrial respiratory chain leading to the generation of ROS and
impairment of mitochondrial function (Pabla and Dong, 2008;
Manohar and Leung, 2018). Moreover, during its conversion to a
more potent nephrotoxic metabolite, CP binds to GSH, a powerful
antioxidant molecule leading to depletion of its cellular levels
(Manohar and Leung, 2018). A growing number of studies have
shown the reciprocal relationship between ROS and the necroptosis
pathway. ROS directly stimulates RIPK1 autophosphorylation,
thereby enabling RIPK3 recruitment and necrosome formation
(Zhang Y. et al., 2017). In addition, Fan et al. (2022) recently
found that increased levels of ROS induced necroptotic cell death
in renal tubules, while antioxidants like N-acetylcysteine significantly
attenuated this effect. Similarly, inhibition of ROS by butylated
hydroxyanisole suppressed activation of TNF-induced necroptosis,
suggesting the critical role of ROS in this form of cellular death (Lin
et al., 2004). Conversely, following necroptotic stimuli,
RIPK3 activates several metabolic regulatory enzymes, thereby
increasing energy metabolism and ROS, which in turn further
enhance necroptosis activation (Zhang et al., 2009). Similarly, Yang
Z. et al. (2018) showed that the necrosome-containing RIPK3 and
MLKL enhanced aerobic respiration, which in turn increased the
production of mitochondrial ROS. These ROS act in a positive
feedback circle to induce necroptosis. This connection was also
confirmed by Zhu et al.’s (2018) group who found that
upregulation of RIPK3 triggers ER stress which subsequently
increased Ca2+ overload and xanthine oxidase activity leading to
overproduction of ROS, all of which was reduced by
RIPK3 deletion. Collectively, these data may suggest that ROS
outbursts induced by CP treatment may represent a critical
mediator in regulating necroptosis induction.

4.2.2 Necroptosis and inflammation
Notably, necroptosis rather than apoptosis provokes the

inflammatory reaction in AKI (Meng et al., 2018). Dying of
proximal tubular cells by necroptosis induced the release of
endogenous components like damage-associated molecular patterns
(DAMPs) including high-mobility group box 1, Hsps, uric acid,
interleukin-33, etc., which in turn activate downstream
inflammatory signaling like TLRs signaling, thereby triggering
robust inflammatory responses (Gao et al., 2018; Seo et al., 2021).
Previous studies using genetic or small-molecule inhibitors of
necroptosis via RIPK1/RIPK3/MLKL axis have given accumulating

evidence regarding the essential role of necroptosis in ameliorating
multi-organ inflammation such as skin inflammation (Bonnet et al.,
2011), vascular inflammation (Lin et al., 2013), and inflammation of
the pancreas (Wu et al., 2013), liver (Gautheron et al., 2014), and
intestine (Welz et al., 2011; Lee et al., 2020). A similar situation was
observed in kidney research, where blockade of necroptosis signaling
greatly attenuates inflammatory response associated with
tubulointerstitial injury and nephrotoxic nephritis (Xiao et al.,
2017; Hill et al., 2018). In addition, Mulay et al. (2016a) also
demonstrated that RIPK3 and MLKL-deficient mice were protected
from tubular injury and interstitial inflammation induced by
crystal deposition. Furthermore, necroptotic inflammation is
also considered an important driving factor for kidney graft
failure. The proinflammatory DAMPs molecules released by
necroptosis in renal allografts triggered the inflammatory injury,
thereby accelerating allograft rejection. Conversely,
RIPK3 deficiency under this setting prevented necroptosis and
the subsequent release of DAMPs, thereby prolonging allograft
survival following transplantation (Lau et al., 2013). Besides the
direct cytotoxic and prooxidant effects of CP treatment,
necroptosis could be induced indirectly through the combined
action of cytokines, TNF-α, TNF-related weak inducer of
apoptosis, and IFN-γ, which were upregulated upon CP
administration. Interestingly, suppression of the necroptotic
pathway significantly diminished cytokines upregulation and
attenuated the inflammatory response in the CP-induced AKI
model (Xu et al., 2015). These data indicate the positive
feedback circle involving necroptosis and inflammation during
CP-induced AKI, where induction of one factor activates
another. Similarly in myocardial infarction, stroke, and acute
tubular necrosis, the inflammatory response which is activated
after initial insult further augmented necroptotic cell death (Mulay
et al., 2016b). This augmentation occurs either directly through the
stimulation of TNFR1 by TNF released from necrotic cells or
indirectly through the recruitment and activation of leukocytes
including macrophages, neutrophils, lymphocytes, and other
proinflammatory cells that contribute to tissue injury
(Linkermann et al., 2014; Anders, 2018).

4.2.3 Necroptosis in AKI–CKD transition
Importantly, recent data indicated that the reciprocal enhancement

between necroptosis and inflammation in this auto-amplification loop
could further promote kidney damage, leading to fibrosis and chronic
organ failure. Under the conditions of unilateral ureteral obstruction and
renal ischemia/reperfusion injury, tubular necroptosis is markedly
upregulated, which in turn promotes NOD-like receptor protein 3
(NLRP3) inflammasome activation leading to renal fibrosis. Whereas
genetic or pharmacologic inhibition of the necroptosis axis prevented
activation of necroinflammation and subsequent development of renal
fibrogenesis (Chen et al., 2018; Jiang et al., 2022; Xuan et al., 2022),
implying a relationship between necroinflammation and renal fibrosis.
Most importantly, in the CP-induced AKI model, Landau et al. (2019)
found that continuous activation of regulated necrosis following CP
treatment was shown to be the most important factor that drives
the transition and progression of AKI to chronic irreparable kidney
disease. These findings suggest involvement of necroptosis
signaling in both CP-induced acute and chronic kidney diseases,
further making necroptosis a valuable target for therapeutic
intervention during CP chemotherapy.
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TABLE 1 Summary of molecules targeting necroptosis in CP-induced AKI.

Compound Classification Experimental
evidence

Molecular
target

Effects on CP-
induced AKI

Use of
necroptosis
inhibitor or
genetic

knockout of
necroptotic
molecules

Effect of
necroptosis

inhibitor on CP’s
chemosensitivity

References

In
vitro

In vivo

Wogonin Natural
monoflavonoid

HK2 C57BL/
6 mice

RIPK1 Inhibition of
necroptosis suppresses
renal inflammation

and tubular death and
protects against AKI

Reversed
protection

Combining wogonin with
CP significantly promoted
the anticancer effect of CP
in hepatoma HepG2 cells,

but did not affect
proliferation of hepatoma
BEL-7402 and gastric
cancer SGC-7901 cell

lines

Meng et al.
(2018)

Necrostatin-1 RIPK1 kinase
inhibitor

n/a C57BL/
6 mice

RIPK1 Inhibition of
necroptosis

alleviates AKI

n/a In combination,
Necrostatin-1

significantly attenuated
CP-induced cancer cell
apoptosis in KYSE510,

but not in
KYSE410 esophageal
cancer cell lines

Ning et al.
(2018); Zhang
et al. (2021b)

7-
Hydroxycoumarin
(umbelliferone)

Coumarin
derivative

HK-2 C57BL/
6 mice

RIPK1, RIPK3,
and p-MLKL

Inhibition of
necroptosis prevents
the development of
necroinflammation

and AKI

n/a Coadministration of
umbelliferone with CP
significantly increased

cytotoxicity of CP in HL-
60 leukemia and HeLa
cervical cancer cell lines

Wu et al.
(2020b); Ali
et al. (2021)

Hydrogen sulfide Gaseous signal
molecule

n/a dogs
(beagles)

RIPK1 and
RIPK3

Inhibition of
necroptosis reduces
expressions of pro-
inflammatory factors
and mitigates AKI

n/a The combination of two
agents had no impact on
antitumor activity of CP
in liver cancer HepG2 and
breast cancer MCF7 cells

Cao et al.
(2018); Wang
et al. (2022b)

Protocatechuic
aldehyde

Phenolic aldehyde HK2 Mice RIPK1, RIPK3,
and p-MLKL

Inhibition of
necroptosis attenuates
renal inflammation

and AKI

n/a Coadministration of
protocatechuic aldehyde
with CP did not alter the
anticancer efficiency of
CP in malignant glioma
U87, liver cancer SMCC-
7721 and BEL-7402 cell

lines

Gao et al.
(2016)

C-316-1 Hsp90 inhibitor HK2 C57BL/
6J mice

RIPK1 Inhibition of
necroptosis
ameliorates
inflammatory

response and AKI

n/a n/a Liu et al.
(2022)

Compound-71 Novel
RIPK1 inhibitor

HK2 C57BL/
6J mice

RIPK1 Inhibition of
necroptosis reduces
oxidative stress and
inflammation induced
by CP and protects

against AKI

n/a n/a Wang et al.
(2019)

6-Shogaol Active compound
of ginger

n/a C57BL/
6N mice

RIPK1, RIPK3,
and p-MLKL

Inhibition of
necroptosis attenuates

CP-induced
inflammation and AKI

n/a n/a Gwon et al.
(2021)

Kahweol Natural coffee-
specific diterpene

n/a C57BL/
6N mice

RIPK1, RIPK3,
and p-MLKL

Inhibition of
necroptosis attenuates

inflammatory
responses and AKI

n/a n/a Kim et al.
(2020)

Melatonin Pineal hormone TCMK-
1

C57BL/
6N

RIPK1 and
RIPK3

Inhibition of
necroptosis

ameliorates CP-

n/a Combined treatment of
melatonin and CP
reinforced the

Fernandez-Gil
et al. (2019);

(Continued on following page)
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4.2.4 Targeting necroptosis in CP-induced AKI
Given the central role of the necroptotic pathway and its associated

inflammation in the pathogenesis of CP-induced AKI along with their
potential role in AKI-to-CKD transition, multiple agents with anti-
necroptotic activity were tested in the CP-induced AKI model.
However, currently available agents are still limited (Table 1) and
despite their considerable merits, multiple concerns were raised
concerning the use of these inhibitors, specifically those targeting
RIPK1. The first issue associated with RIPK1 inhibitors like wogonin
and PPBICA is their low water solubility and limited bioavailability (Baek
et al., 2018; Liu et al., 2022), together with cardiovascular problems of
hydrogen sulfide (Beck and Pfeilschifter, 2022), all of which greatly limits
the clinical application and translation of these agents. Likewise, the first
identified RIPK1 inhibitor, Necrostatin-1 has somehow limited utility due
to low solubility, short half-life of about 1 h along with narrow
structure–activity relationship profile (Degterev et al., 2008; Oliveira
et al., 2018; Wang et al., 2019). Another critical issue that was raised
regarding Necrostatin-1 is its non-specificity. For example, it was shown
that Necrostatin-1 blocked apoptosis and partially inhibits the two human
kinases, PAK1 and PKAcα (Biton and Ashkenazi, 2011; Hill et al., 2018).
Shortly thereafter, Takahashi N. et al. (2012) demonstrated that
Necrostatin-1 also inhibits the activity of other enzymes as
indoleamine 2,3-dioxygenase, which plays an important role in the
innate and adaptive immune systems. Thus, this could necessitate
careful interpretation of its biological effect in vivo and suggests
importance of targeting and assessing other more specific downstream
mediators, i.e., RIPK3 and MLKL for suppressing necroptosis. Other
factors that should be taken into account are the dose and duration of
treatment for these inhibitors. Necroptosis is usually induced after the
administration of high doses of CP or following its long-time exposure at
low concentrations. Therefore, the ability of these agents to produce
notable protective effects and ameliorate renal injury is expected to
observe several days after treatment (Deng et al., 2021).

4.2.5 Interplay between necroptosis and apoptosis in
CP-induced AKI

Undoubtedly, both apoptotic and necroptotic cell death coexist in
the pathophysiological course of AKI (Wang S. et al., 2016). In in vivo

model of CP-induced nephrotoxicity, both apoptotic and necroptotic
cell death pathways were shown to be concomitantly induced in
kidney tubules following CP treatment; whereas in vitro various
forms of regulated cell death are activated at different stages of
renal injury depending on CP concentration (Kim et al., 2020;
Deng et al., 2021; Gwon et al., 2021). Interestingly, these various
forms, specifically necroptosis and apoptosis could interplay at various
cellular and molecular levels and thus could mutually influence each
other. A recent study by Zhang S. et al. (2019) revealed the important
role of RIPK3 in mediating renal tubular cell apoptosis in endotoxin/
sepsis-induced AKI. Reducing RIPK3 expression or inhibiting its
activity significantly reversed the elevation of cleaved caspase-3 and
proapoptotic protein Bax, thereby ameliorating AKI. Furthermore,
this interplay is well exemplified by the findings of previous studies
that showed that administration of pan-caspase inhibitor, zVAD-fmk
potentially facilitated RIPK-mediated necroptosis in several renal models
including AKI induced by CP (Linkermann et al., 2013; Tristão et al., 2016;
Zhu et al., 2016; Zhu et al., 2018). Therefore, although the apoptosis
pathway has been considered an important target for the attenuation of
CP-induced AKI for many years, inhibition of apoptosis only could
paradoxically sensitize tubular death through necroptosis signaling.
Therefore, optimal protection against such injury may necessitate the
antagonizing of both pathways.

In this regard, a previous report by Linkermann et al. (2013)
compared RIPK3- to caspase 8/RIPK3–double knockout mice in the
CP-induced AKImodel. The authors found that caspase 8/RIPK3–double
knockout mice showed a significant improvement in survival kinetics in
this model, indicating that combined blockade of necroptotic and
apoptotic pathways could provide additional protection. Later, multiple
studies have further highlighted this concept by demonstrating that
several agents attenuate CP-induced renal injury through dual
suppression of both CP-induced apoptosis and necroptosis processes
(Kim et al., 2019; Kim et al., 2020; Gwon et al., 2021). Recently, the impact
of such synergism has been investigated and confirmed to be effective in
mitigating CP-induced nephrotoxicity. Tristão’s group confirmed in
2 publications that the simultaneous use of apoptotic inhibitor,
Z-VAD-fmk, and necroptotic inhibitor, necrostatin-1 synergistically
attenuates CP nephrotoxicity (Tristão et al., 2012; 2016). Similar

TABLE 1 (Continued) Summary of molecules targeting necroptosis in CP-induced AKI.

Compound Classification Experimental
evidence

Molecular
target

Effects on CP-
induced AKI

Use of
necroptosis
inhibitor or
genetic

knockout of
necroptotic
molecules

Effect of
necroptosis

inhibitor on CP’s
chemosensitivity

References

In
vitro

In vivo

induced inflammation
and AKI

effectiveness of CP against
Cal-27 and SCC-9 head
and neck carcinoma cell

lines

Kim et al.
(2019)

PPBICA Small molecule
discovered by

high-throughput
screening

mTECs C57/BL
mice

RIPK1 and
RIPK3

Inhibition of
necroptosis attenuated

CP-induced
inflammatory

response and AKI

Attenuated
protection

n/a Gao et al.
(2018)

Abbreviations: CP, cisplatin; AKI, acute kidney injury; HK2, human tubular epithelial cells; RIPK1, receptor-interacting protein kinase 1; RIPK3, receptor-interacting protein kinase 3; p-MLKL,

phosphorylated mixed lineage kinase domain-like protein; Hsp90, heat shock protein 90; TCMK-1, mouse renal tubular epithelial cells; mTECs, mouse kidney proximal tubular epithelial cell line, ↑;
increased, ↓; decreased, n/a; not assessed.
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to the CP-induced AKI model, necroptosis inhibitors synergize
apoptosis inhibitors to attenuate renal injury in the rat subtotal
nephrectomy model (Zhu et al., 2016).

5 Autophagy in CP-induced AKI

5.1 Introduction of autophagy pathway

5.1.1 An overview of autophagy and its main types
In the late 1960s, Christian de Duve, the Nobel Laureate, first

introduced the concept of autophagy. The expression derives from
Greek words which originally mean self-eating (Deter and de Duve,
1967; Klionsky, 2008; Glick et al., 2010). Autophagy is a highly
conserved and tightly controlled cellular process responsible for the
degradation of the damaged cytoplasmic organelles, misfolded proteins,
and other macromolecules within the lysosome (Miller et al., 2010;
Levine and Klionsky, 2017). Once degraded, the resulting autophagic
products including amino acids, fatty acids, and sugars are recycled for
energy production and protein synthesis. In this manner, autophagy
maintains cellular homeostasis during periods of stress and starvation
(Kaushal, 2012; Sciarretta et al., 2018). In response to DNA damage or
oxidative stress, autophagy is strongly induced, allowing for cell survival
through utilization of autophagic products for energy production and
protein synthesis (Levine and Yuan, 2005). In contrast, inhibition of
autophagy under such conditions resulted in cellular damage and
apoptosis (Amaravadi et al., 2007).

Various types of autophagy have been recognized in mammalian
cells, involving i) macroautophagy, ii) microautophagy and iii)
chaperone-mediated autophagy, all of which act through the
lysosome-dependent pathway but differ in the machinery used to
deliver autophagic cargo to the lumen of lysosomes (Ravikumar et al.,
2009; Glick et al., 2010; Kaushik et al., 2011) (Table 2).

The most common type of autophagy is macroautophagy
(henceforth referred to as autophagy). It is a process in which cells
sequester the autophagic cargoes within double-membrane vesicular
structures, named autophagosomes, which finally fuse with lysosomes,
where sequestered materials are degraded and recycled for reuse (Yang
et al., 2008; Ravikumar et al., 2009; Levine and Klionsky, 2017; Danieli
and Martens, 2018). On the other hand, in microautophagy, lysosomes
can directly sequester cytosolic components by invagination of the
lysosomal membrane (Ravikumar et al., 2009). It should be noted that
the sequestration process in the macro-and micro-types can be either
non-selective, which primarily occurs during nutrient starvation, or
selective when targeting specific cargoes towards autophagosomes.
These cargoes may include protein aggregates (named aggrephagy),
damaged organelles (e.g., mitochondria, so-called mitophagy), and

invasive pathogens (termed xenophagy) (Mizushima et al., 2008;
Glick et al., 2010; Kaushik et al., 2011; Hou et al., 2013; Levine and
Klionsky, 2017). In contrast to the former two types, chaperone-
mediated autophagy is responsible for selective degradation of
specific soluble proteins bearing a particular pentapeptide motif
named “KFERQ” (Dice, 2007). This motif is detected by the
Hsp70 chaperone complex, which allows the interaction between this
substrate protein and the lysosomal receptor. Subsequently, the
substrate unfolds and crosses the lysosomal membrane for
degradation (Ravikumar et al., 2009; Cuervo, 2011; Kaushik et al., 2011).

5.1.2 Molecular mechanism of autophagy pathway
Our advanced understanding of autophagic machinery and its

regulation is attributed to a series of investigations conducted in
molecular biology laboratories. These investigations led to the
discovery of at least 30 genes named autophagy-related genes
(Atg) that are essential for the execution of each step of the
autophagic pathway (Ravikumar et al., 2009). The autophagic
pathway moves through multiple steps, including the formation
of the phagophore, autophagosome, and eventually, autolysosome
where degradation of sequestered substances occurs (Yang and
Klionsky, 2010; Liu et al., 2017).

The formation of phagophore (also called isolation membrane or
autophagosome precursor) occurs primarily at the ER which ultimately
elongates and encloses forming the autophagosome structure (Ravikumar
et al., 2009). The phagophore, and hence autophagosome formation
requires the generation of an initiation complex named Unc51-like
kinase 1 (ULK1) complex composed of ULK1, Atg13, FIP200, and
Atg101 (Yang et al., 2015; Chen et al., 2016). The ULK1 phosphorylates
activating molecule in Beclin1-regulated autophagy protein 1 (AMBRA1)
leading to translocation of Bcl-2-interacting myosin-like coiled-coil protein
(Beclin-1) towards the ER. The Beclin-1, in turn, forms a complex with
vacuolar protein sorting (VPS)-34, VPS15, andAtg14L. In this complex, the
lipid kinase, VPS34 phosphorylates phosphatidylinositol into
phosphatidylinositol 3-phosphate, which acts as a recruitment signal for
multiple proteins that are necessary for the nucleation of phagophore
(Karakaş andGözüaçik, 2014; Lee, 2014; Ryter andChoi, 2015;Mercer et al.,
2018; Pavlinov et al., 2020).

The elongation and closure of the autophagosomal membrane are
regulated by two ubiquitylation-like systems; the Atg5-Atg12-Atg16L
complex and light chain 3 (LC3) (Ravikumar et al., 2009; Karakaş and
Gözüaçik, 2014). On the elongating membrane, pro-LC3 is first
cleaved to produce the cytosolic form of LC3 (LC3-I). Then, LC3-I
is combined with phosphatidylethanolamine to generate the
membrane-bound form of LC3 (LC3-II) by the action of many
Atgs including Atg7, Atg3, and Atg5-Atg12-Atg16L complex
(Ravikumar et al., 2009; Klapan et al., 2022). Upon closure, mature

TABLE 2 The main characteristics of different types of autophagy.

Macroautophagy Microautophagy Chaperone-mediated
autophagy

References

Process selectivity Can be selective or non-
selective

Can be selective or non-selective Selective Feng et al. (2014); Napolitano
et al. (2015)

Cargo Includes proteins and
organelles

Includes proteins and organelles Includes proteins only Massey et al. (2004)

Mechanism of cargo
uptake

Involves autophagosome
formation

Occurs by lysosomal membrane
invagination

Occurs through lysosomal receptor/
substrate interaction

Massey et al. (2004); Feng et al.
(2014)
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autophagosome engulfs the autophagic cargoes and subsequently
fuses with lysosomes. Finally, the autophagic cargoes are
metabolized by hydrolytic enzymes of lysosomes, and degraded
contents are returned into the cytoplasm through lysosomal efflux
permeases for reuse (Jing and Lim, 2012; Jin and Klionsky, 2014; Xu
et al., 2020) (Figure 4).

5.1.3 Regulation of autophagy in mammalian cells
Multiple kinases are responsible for regulation of mammalian

autophagy, among them, the mechanistic target of rapamycin (mTOR)
and adenosine monophosphate (AMP)-activated protein kinase (AMPK)
play important and antagonistic roles (Tamargo-Gómez andMariño, 2018).

The mTOR is a serine/threonine protein kinase, belonging to the
phosphatidylinositol 3-kinase-related kinase family and it is widely
known for its negative regulation of the autophagy process (Rabanal-
Ruiz et al., 2017; Yuan et al., 2018). The mTOR exists in two complexes
called mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2) (Hall, 2008). These two complexes vary in their
sensitivities to rapamycin, structures, and functions (Yu and Cui,
2016). There is a general consensus that the mTORC1 is the main
modulator of autophagy, whereas mTORC2 primarily controls
cytoskeleton reorganization (Karakaş and Gözüaçik, 2014).

Under the rich nutrient state, mTORC1 binds to the ULK1 complex
and inhibits the initiation of autophagy through inhibitory
phosphorylation of ULK1 at Ser-757 (Kim et al., 2011; Jain et al.,
2013; Lee, 2014). However, suppression of mTORC1 activity either

physiologically by starvation, stress, and certain immunological signals
or pharmacologically by rapamycin triggers its dissociation from the
ULK1 complex, thus enabling ULK1 to induce autophagy (Ravikumar
et al., 2009; Lee, 2014; Liu et al., 2017). It is important to note that, mTOR
can directly suppress the activity of Atg13 through inhibitory
phosphorylation on Ser-258, thereby preventing association and
activation of the ULK1 complex (Jain et al., 2013; Puente et al., 2016).
Moreover, it has been found that mTOR may also phosphorylate
AMBRA1 to further disrupt the autophagic pathway (Nazio et al., 2013).

Recently, mTOR has also been shown to regulate the autophagy
process by controlling the subcellular localization of transcription factor
EB (TFEB) (Tong and Song, 2015). The TFEB is widely known for its
roles in lipid catabolism, cell metabolism, and lysosomal biogenesis
(Soukas and Zhou, 2019). In response to nutrient abundance,
mTORC1 phosphorylates TFEB at the lysosomal membrane, thereby
inhibiting its migration to the nucleus and promoting its retention in the
cytosol in an inactive state (Tong and Song, 2015; Zhitomirsky et al.,
2018). In contrast, under conditions of nutrient deprivation, oxidative
stress, and lysosomal dysfunction, inhibition of mTOR activity and
concurrent activation of calcineurin triggers TFEB dephosphorylation
(Medina et al., 2015; Tong and Song, 2015; Napolitano et al., 2018).
During these conditions, the lysosome releases Ca2+, which in turn
activates the Ca2+-activated phosphatase, calcineurin (Zhang et al.,
2020). Upon activation, calcineurin dephosphorylates and stimulates
TFEB, which in turn translocates into the nucleus where it binds to the
coordinated lysosomal expression and regulation (CLEAR) sequence to

FIGURE 4
Molecular mechanism of the autophagy pathway. (A) the scheme depicts the sequential steps involved in the autophagy process. This process starts with
the formation of isolation membrane by the Unc51-like kinase 1 (ULK1) complex primarily at the endoplasmic reticulum (ER) followed by nucleation of this
membrane to produce the cup-shaped phagophore. Subsequently, the Atg5–Atg12-Atg16L complex along with processed light chain-II (LC3-II) extended
this phagophore to encase autophagic cargo in a double-membraned autophagosome. The loaded autophagosome thenmerges with the lysosome for
breaking down of infused cargo and recycling. Notably, the Atg5–Atg12-Atg16L complex is dissociated from the autophagosomal membrane while LC3-II
continues to attach to the mature autophagosomes until vesicle degradation, making it a specific and reliable autophagosomal marker. (B) LC3 processing.
Upon activation of autophagy, pro-LC3 is first cleaved by Atg4B to produce LC3-I. This is followed by lipidation of LC3-I with phosphatidylethanolamine (PE)
to generate LC3-II with the help of Atg7 and Atg3 as well as the Atg5-Atg12-Atg16L complex.
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upregulate expression of several genes involved in the autophagic
pathway (Tong and Song, 2015; Slade and Pulinilkunnil, 2017;
Sciarretta et al., 2018).

The AMPK is another important regulator of autophagicmachinery
(Karakaş and Gözüaçik, 2014). The AMPK has a unique heterotrimeric
structure consisting of one catalytic subunit (α) along with two
regulatory subunits (β and γ) (Garcia and Shaw, 2017). It is tightly
regulated by ATP to AMP ratio which is greatly reduced during glucose
deprivation leading to AMPK activation (Jung et al., 2010). During the
nutrient deprivation state, AMPmolecules bind to the AMPK γ subunit
and cause certain conformational changes in the heterotrimeric
complex, thereby exposing Thr-172 on the catalytic α subunit for
phosphorylation as well as activation by liver kinase B1 (Zaha and
Young, 2012). Importantly, AMPK stimulates the autophagic pathway
through several mechanisms. Among these mechanisms, AMPK
suppresses mTOR signaling either directly via inactivation of
regulatory-associated protein of mTOR or indirectly by activation of
its downstream negative regulator tuberous sclerosis complex-1 and -2
(Jung et al., 2010). Moreover, AMPK also stimulates autophagy
independently of the mTOR signaling pathway through activating
phosphorylation of ULK1 (Kim et al., 2011) (Figure 5).

5.2 Role of enhancing autophagy in CP-
induced AKI

There is mounting evidence suggesting that basal autophagic activity
in the kidney is clearly required for the maintenance and function of the
proximal tubule (Kimura et al., 2011; Havasi and Dong, 2016; Zhu et al.,

2020). Recently, autophagy has attracted unprecedented interest due to its
importance in several renal diseases including AKI induced by CP (Pallet
et al., 2008; Ding et al., 2014; Li T. et al., 2017; Nam et al., 2019; Shen et al.,
2021). It is currently known that CP induces oxidative stress and DNA
damage leading to autophagy induction (Yang et al., 2008; Takahashi A.
et al., 2012). In contrast to CP-induced apoptosis which is going through
the preapoptotic lag phase (Kaushal et al., 2001; Cummings and
Schnellmann, 2002), it has been demonstrated that treatment of
kidney epithelial cells with CP immediately and transiently activated
autophagy within a few hours of CP administration (Periyasamy-
Thandavan et al., 2008; Yang et al., 2008). Activation of autophagy
during the initial phase of CP injury could provide a suitable
environment for maintaining cell homeostasis before reaching the CP-
induced apoptosis threshold (Herzog et al., 2012). However, importantly,
high concentrations (≥50 μM) or prolonged treatment of CP have
significantly reduced autophagy, thereby dominating apoptotic cell
death in kidney cells (Rovetta et al., 2012; Zhang D. et al., 2017).

The cytoprotective and prosurvival role of autophagy in CP-induced
AKI has been proved in many pharmacological and Atg-gene knockout
studies (Periyasamy-Thandavan et al., 2008; Jiang et al., 2012; Rovetta
et al., 2012; Liu J. et al., 2018). It has been reported that stimulation of
autophagy after exposure to CP delayed caspase activation and increased
the survival of renal cells (Yang et al., 2008; Liu et al., 2016). It was also
found that overexpression of autophagic proteins Atg5 or beclin-1
blocked the activation of caspase-3 and cell death induced by CP
(Herzog et al., 2012). In contrast, inhibition of autophagy either by
chloroquine or knockout of proximal tubule-specific Atg7 worsens
kidney function (Jiang et al., 2012). Similarly, Takahashi A. et al.
(2012) found that deficiency of autophagy in proximal tubule cells

FIGURE 5
A simplistic diagram showing the antagonistic role of themechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) in regulation
of mammalian autophagy. The cellular energy status is closely monitored by the two kinases, mTOR and AMPK. (A): under rich nutrient state and absence of
environmental stress, mTOR is activated and suppresses autophagy by disrupting the activation of Unc51-like kinase (ULK1) and Bcl-2-interacting myosin-like
coiled-coil protein (Beclin-1) complexes. mTOR also inhibits autophagy by phosphorylating transcription factor EB (TFEB), which, in turn, sequesters
TFEB in the cytosol and prevents it from being translocated into the nucleus. (B): Conversely, following starvation or stress response, AMPK is activated and
induces autophagy either by direct phosphorylation of ULK1 or indirectly through downregulation of mTOR signaling.
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TABLE 3 Summary of renoprotective approaches targeting autophagy/mitophagy in CP-induced AKI.

Compound Experimental evidence Autophagy/mitophagy
marker change

Molecular
mechanism

Effects on CP-
induced AKI

Use of autophagy
inhibitor or
autophagy-

deficient mice

Effect of autophagy
activator on CP’s
chemosensitivity

References

In
vitro

In vivo

Retinoic acid (vitamin A
derivative)

NRK
and OK

Atg5flox/flox or Cagg-
Cre and Atg5flox/flox:
Cagg-Cre mice

↑ LC3-II/I ratio and autophagy
puncta, and ↓ p62

n/a Activation of autophagy
alleviates AKI

Attenuated protection The combination of retinoic
acid and CP enhanced CP’s

cytotoxicity against
gastrointestinal cancer stem
cells and re-sensitized resistant

lung cancer cells to CP

Najafzadeh et al.
(2015); Wu et al.

(2020a); MacDonagh
et al. (2021)

Metformin (biguanide
antihyperglycemic)

NRK-
52E

CD1 mice ↑ LC3-II and LC3B puncta and
↓ p-S6

AMPKα activation Activation of autophagy
attenuates CP-induced tubular

cell apoptosis and AKI

Abolished protection Combining metformin with
CP significantly strengthened
the anti-cancer effect of CP
against meningioma both

in vitro and in vivo

Li et al. (2016); Guo
et al. (2021)

Penicilliumin B (deep-sea-
derived fungi)

HKC-8 C57BL/6 mice ↑ Beclin-1, Atg5, PINK1,
autophagic vacuoles, LC3B

puncta, LC3B, LC3-II/I ratio, and
autophagosome–lysosome fusion,

and ↓ p62

AMPK/PGC-1α, and
AMPK/mTOR

signaling

Activation of autophagy and
mitophagy ameliorates

impairment in mitochondrial
biogenesis and tubular cell

apoptosis induced by CP and
attenuates AKI

Blocked protection n/a Shen et al. (2021)

Lithium (mood stabilizer) TKPT C57BL/6 mice ↑ LC3B, LC3BII/I ratio, LC3B
puncta, autophagosomes, and

↓ p62

AMPK/mTOR
signaling

Activation of autophagy
attenuates CP-induced tubular

cell apoptosis and AKI

Abrogated protection The combination of two drugs
reversed CP’s chemoresistance

in esophageal cancer
OE19 and KYSE450 cell lines

O’Donovan et al.
(2015); Bao et al.

(2019)

Canagliflozin
(SGLT2 inhibitor,
antihyperglycemic)

HK-2 C57BL/6 mice ↑ LC3B, and LC3B-II AMPK/mTOR
signaling

Activation of autophagy
inhibits CP-induced tubular

apoptosis and AKI

Abolished protection Concurrent treatment with
canagliflozin and CP neither
significantly increased nor
decreased antitumor efficacy
of CP in lung cancer A549 and
colon cancer HCT116 cell

lines

Song et al. (2020);
Park et al. (2022)

Astragaloside IV (natural
triterpenoid saponin)

n/a Sprague-Dawley rats ↑ LC3 II/I ratio, and ↓ p62 n/a Activation of autophagy
inhibits CP-induced activation
of NLRP3 inflammasome and

attenuates AKI

n/a Combined treatment
significantly enhances CP’s
chemosensitivity against

hepatocellular carcinoma both
in vitro and in vivo

Qu et al. (2019), Qu
et al. (2020)

Trehalose (natural non-
reducing disaccharide)

HK2 C57BL/6 mice ↑ LC3-II, P62, PINK1, Parkin, and
LC3/mitochondria colocalization

Activation and
nuclear translocation

of TFEB

Activation of autophagy and
mitophagy inhibit CP-induced
mitochondrial dysfunction and

apoptosis and protect
against AKI

Abrogated protection Treatment with trehalose
significantly counteracts CP-

induced apoptosis in
Me21 melanoma cells

del Bello et al. (2013);
Zhu et al. (2020)

Catalpol (natural iridoid
glycoside)

HK-2 Kunming mice ↑ LC3-II/I ratio AMPKα activation Activation of mitophagy
inhibits mitochondrial

membrane potential changes,
ROS production, and apoptosis

Abolished protection Coadministration of catalpol
with CP did not affect the
tumoricidal activity of CP in
sensitive A549 lung cancer

Zhang et al. (2021a)

(Continued on following page)
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TABLE 3 (Continued) Summary of renoprotective approaches targeting autophagy/mitophagy in CP-induced AKI.

Compound Experimental evidence Autophagy/mitophagy
marker change

Molecular
mechanism

Effects on CP-
induced AKI

Use of autophagy
inhibitor or
autophagy-

deficient mice

Effect of autophagy
activator on CP’s
chemosensitivity

References

In
vitro

In vivo

induced by CP and
attenuates AKI

cells but it potentiated its
cytotoxicity in resistant

A549 cells

Polydatin (natural
precursor of resveratrol)

HK-2 C57BL/6 mice ↑ LC3-II, and
autophagolysosome/

autophagosome ratio, and ↓ p62

SIRT6 activation Activation of autophagy
reduces oxidative stress,

inflammation, and apoptosis
induced by CP, and protects

against AKI

Abolished protection Polydatin and CP in
combination synergistically
reduced tumor size and
inhibited lymph node

metastasis in in vivo model of
oral cancer

Mele et al. (2018); Li
et al. (2022c)

Berberine (natural
isoquinoline alkaloid)

NRK-
52E
and
HKC

C57BL/6 ↑ LC3-II/I ratio, PINK1, Parkin,
and ↓ p62

PINK1/Parkin
signaling

Activation of mitophagy
attenuates CP-induced ROS

accumulation and AKI

n/a Co-treatment of berberine and
CP markedly enhanced CP’s

cytotoxicity against
osteosarcoma MG-63, breast
cancer MCF-7, and gastric
cancer BGC-823 and SGC-

7901 cell lines

Zhao et al. (2016);
Kou et al. (2020); Qi
et al. (2020); Gao et al.

(2021)

Suberoylanilide
hydroxamic acid and
trichostatin A (histone
deacetylase inhibitors)

RPTCs C57BL/6 mice ↑ LC3B-II, LC3B-II turnover,
autophagosomes and

autolysosomes per cell and per
proximal tubule, LC3B-positive
puncta per proximal tubule, and

autophagic flux rate

AMPK/mTOR
signaling

Activation of autophagy
inhibits CP-mediated caspase
activation, tubular apoptosis

and attenuates AKI

Diminished protection Combining histone
deacetylase inhibitors and CP

produced synergistic
anticancer effects in breast

cancer MCF-7 and
cholangiocarcinoma KKU-100
and KKU-M214 cell lines

Kim et al. (2003);
Asgar et al. (2016); Liu

et al. (2018a)

Scutellarin (natural
flavonoid)

n/a C57BL/6 mice ↑ LC3-II/I ratio, Atg7 and ↓ p62 n/a Activation of autophagy
alleviates AKI

n/a Combined treatment of
scutellarin and CP potentiated
the anticancer property of CP
and ameliorated its resistance
in A549 lung cancer cells

Sun et al. (2018a), Sun
et al. (2019)

Panax notoginsenoside
(Chinese medicinal herb)

n/a Sprague-Dawley rats ↑ LC3-II, LC3-II/I ratio, Atg5 and
Beclin-1

HIF-1α/
BNIP3 signaling

Activation of mitophagy
attenuates renal damage

n/a Combined treatment
significantly enhanced

cytotoxicity of CP in HeLa
cells

Zhang et al. (2013);
Liu et al. (2015)

Necrostatin-1
(RIPK1 inhibitor)

n/a C57BL/6 mice ↑ LC3-II, and Beclin-1 n/a Activation of autophagy
alleviates AKI

n/a In combination, Necrostatin-1
significantly attenuated CP-
induced cancer cell apoptosis

in KYSE510, but not in
KYSE410 esophageal cancer

cell lines

Ning et al. (2018);
Zhang et al. (2021b)

Abbreviations: CP, cisplatin; AKI, acute kidney injury; NRK, rat renal proximal tubular epithelial cells; OK, opossum kidney cells; LC3-II/I ratio, light chain-II (LC-II)/light chain-I (LC-I) ratio; LC3B, light chain 3 beta; p-S6, phosphorylated S6; AMPKα, AMP-activated

protein kinase alpha; HKC-8, human proximal tubular epithelial cells; Beclin-1, Bcl-2-interacting myosin-like coiled-coil protein; Atg5, autophagy-related (Atg) 5; PINK1, PTEN-induced putative kinase protein 1; p-mTOR, phosphorylated mechanistic target of rapamycin;

PGC-1α, peroxisome proliferator-activated receptor γ coactivator-1α; TKPT, murine kidney proximal tubular epithelial cells; SGLT2, sodium-glucose co-transporter 2; HK-2, human tubular epithelial cells; NLRP3, NOD-like receptor protein 3, pyrin domain containing;

TFEB, transcription factor EB; ROS, reactive oxygen species; SIRT6, sirtuin 6; RPTCs, renal proximal tubular cells; HIF-1α, hypoxia-inducible factor 1-alpha; BNIP3, Bcl-2/adenovirus E1B 19 kDa-interacting protein 3, ↑; increased, ↓; decreased, n/a; not assessed.
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leads to an increase in tubular injury, p53 activation, and protein
aggregation in the CP-induced AKI model. In addition, CP exposure
also induced PTEN-induced kinase protein 1 (PINK1) and Parkin, the
two mediators of mitochondrial autophagy that were recently involved in
CP nephrotoxicity. Knockout of either Parkin or PINK1 suppressed
mitochondrial autophagy and aggravated kidney injury (Wang Y.
et al., 2018).

The role of autophagy in CP-induced AKI was further proposed in
subsequent studies. Periyasamy-Thandavan et al. (2008) and Zhao et al.
(2017) pointed out that pharmacological inhibition of autophagy by 3-
methyladenine enhancedmitochondrial dysfunction and tubular apoptosis
during CP treatment. Furthermore, another study indicated that the
nephroprotective effect mediated through TLR-2 is in part attributed to
activation of autophagy and knockout of TLR2 reduced expression of
autophagy proteins and exacerbated renal dysfunction in the CP-induced
AKImodel (Andrade-Silva et al., 2018). Likewise, it was also demonstrated
that the nephroprotection rendered by hypoxia-inducible factor 1-alpha
protein on CP-induced AKI was associated with autophagy upregulation
(Liang et al., 2017). Consistently, the study by Tang et al. (2018) showed
that inhibition of histone deacetylase 6 attenuated CP-induced AKI
partially through activation of autophagy. In line with this, Minocha
et al. (2019) found that amniotic fluid stem cells exerted their
protective effects against CP-induced AKI by upregulating autophagy.
Recently, Lynch et al. (2020) demonstrated that the inhibitory effect of
peroxisome proliferator-activated receptor gamma coactivator 1α
(PGC1α) on ROS induced by CP was mediated through TFEB-
dependent autophagy. More recently, Sears et al. (2022) demonstrated
that the loss of neutral ceramidase, an enzyme responsible for the
metabolism of sphingolipid prevents the development of CP-indued
AKI by enhancing basal autophagic activity in the kidney.

5.2.1 The potential mechanisms underlying
autophagy protection

The exact mechanisms behind the cytoprotective role of the
autophagy pathway are not yet completely understood. However,
multiple mechanisms have been suggested, including the following:
i) Through degradation of different cellular components, autophagy
allows for the turnover of resulting substrates for energy production
and protein formation, which is considered essential for the
preservation of cellular bioenergetics during AKI (Jiang et al.,
2012). ii) Autophagy eliminates depolarized mitochondria,
dysfunctional or damaged organelles, misfolded proteins, and
protein aggregates which have toxic effects on kidney tubules. By
doing so, it promotes cellular hemostasis and survival. Concerning this
matter, previous publications have signified the massive accumulation
of impaired mitochondria and protein occlusions in mouse renal cells
after deficiency of autophagy (Kimura et al., 2011; Takahashi A. et al.,
2012) and that activation of autophagy improved mitochondrial
function and protected against CP-induced AKI (Zhu et al., 2020).
Moreover, Kimura et al. (2012) found that enhancing autophagic flux
by IFN-γ alleviated the accumulation of polyubiquitinated peptides,
thereby protecting renal tubular cells from CP-induced AKI. iii)
Autophagy may disrupt other mechanisms involved in CP
nephrotoxicity, particularly apoptosis and oxidative stress. In this
regard, Takahashi A. et al. (2012) showed that knockout of
Atg5 enhanced p53 stimulation and mitochondrial ROS formation
following CP exposure. Similarly, Jiang et al. (2012) found that
knockout of Atg7 augmented activation of the p53 cascade.
Additionally, it has been reported that inhibition of autophagy
accelerated ROS production and apoptosis induced by CP, while its
activation reversed these effects (Zhao et al., 2017). Moreover,

FIGURE 6
Flowchart representing the role of autophagy and necroptosis pathways during cisplatin (CP)-induced acute kidney injury (AKI).
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activation of AMPK attenuated CP-induced AKI by improving
mitochondrial function and suppressing the formation of ROS and
apoptosis responses caused by CP, all of which effects were abolished
upon AMPK inhibition (Zhang J. et al., 2021). Furthermore,
restoration of autophagy flux by polydatin ameliorated CP-induced
oxidative stress, inflammation, and cell apoptosis, thereby alleviating
CP-induced AKI (Li et al., 2022c). iv) Interestingly, several reports
have recently documented the pivotal role of the autophagy process in
modulating inflammation and ER stress. In response to elevated ER
stress during nephrotoxicity, autophagy is strongly activated to
mitigate ER stress and counteract tubular cell apoptosis (Pallet
et al., 2008). By activating autophagy, Astragaloside IV prevents
activation and assembly of NLRP3 inflammasome and reduces the
release of pro-inflammatory cytokines in the liver and kidneys injured
by CP (Qu et al., 2019). v) Notably, additional reports have also
documented the important role of autophagy in preventing renal
fibrosis, the main contributor for CKD progression post-AKI.
Activation of autophagy participates in elimination of accumulated
collagen, thereby attenuating kidney fibrosis and retard the
progression of AKI to CKD (Shi et al., 2016). Similarly in the
experimental model of CP-induced CKD, the natural flavonoid,
farrerol upregulated mitochondrial autophagy, thereby inhibiting
inflammation and renal fibrosis induced by CP and closely
contributing to CKD (Ma et al., 2021). Along the same line, Shi
et al. (2022) recently demonstrated that deficiency of beclin-1, the key
molecule of autophagy, promoted renal fibrosis and consequently
delayed recovery following renal injury.

5.2.2 Targeting autophagy in CP-induced AKI
The above observations strongly suggest the cytoprotective role of

autophagy against CP-induced AKI, and because activation of
autophagy by CP is not stable and is relatively retarded over the
course of CP injury (Herzog et al., 2012; Li H. et al., 2017; Zhu et al.,
2020). Thus, using autophagy inducers could further augment this
activation and provide kidney protection during CP chemotherapy.
Table 3 summarizes several natural substances and synthetic agents
that have been confirmed to exhibit their renoprotective effects
through autophagy/mitophagy upregulation in CP-induced AKI.

6 The potential crosstalk between
autophagy and necroptosis in CP-
induced AKI

Emerging evidence suggests that autophagy and necroptosis can affect
each other. To date, only a few studies have provided novel insights into
the possible relationship between these two pathways in the kidney. It has
been demonstrated that necroptosis molecules may negatively regulate
basal autophagy. For example, using the rat CKD model, Shibata et al.
(2021) recently suggested that induction of necroptotic signaling in
proximal tubular cells may impair the activation of cytoprotective
autophagy leading to exacerbation of kidney dysfunction. Moreover, Li
R. et al. (2021) showed that RIPK3 inhibits nuclear translocation of TFEB
leading to lysosome dysfunction and impairment of autophagic
degradation during AKI. Suppression of RIPK3 restored the nuclear
translocation of TFEB and attenuated tubular injury in vitro and in vivo. It
has been reported that the deficiency of TFEB increased themitochondrial
ROS production and exacerbate tubular injury during CP renal injury
(Lynch et al., 2020). Hence, an interesting question that remains

unaddressed is whether inhibitors of necroptosis molecules attenuate
CP-induced AKI by controlling lysosomal biogenesis and autophagic flux
through TFEB? More interestingly, previous studies also reported that
Necrostatin-1, the classical inhibitor of necroptosis alleviated renal injury
by increasing the activity of renal autophagy and improving disruption in
autophagosome elimination in sepsis- and CP-induced AKI (Dong et al.,
2018; Ning et al., 2018). However, whether this renal proautophagic
activity is mediated through necroptosis inhibition has not been clarified
yet. Therefore, further investigations are required to elucidate autophagy-
necroptosis crosstalk in the CP-induced AKI model.

On the other hand, this relationship has been much more
investigated in several non-renal cells or tissues. A recent study by
Wu X. et al. (2020) reported that increased expression of MLKL
enhances western diet-induced liver injury by blocking autophagy
through impairment of autophagic flux. Similarly, upon necroptotic
stimulation, RIPK3 reduced the activity of autophagy by attenuating
autophagic flux in intestinal cells (Otsubo et al., 2020). On the opposite
hand, previous studies have also suggested that autophagy may protect
against cell necroptosis, while its inhibition may activate and potentiate
necroptosis (Matsuzawa-Ishimoto et al., 2017; Zhou et al., 2017; Liu S.
et al., 2018; Li et al., 2020; Huang et al., 2021). Recently, Abe et al. (2019)
further highlighted this reciprocal regulation by showing that the
inhibition of mTORC1 by rapamycin treatment significantly
inactivates RIPK1 through inhibitory phosphorylation at Ser320.
Inactivation of RIPK1, in turn, stimulates autophagy and represses
necroptosis through a TFEB-dependent mechanism. The molecular
mechanisms through which autophagy regulates necroptosis are not
entirely clear. However, this could be attributed to lysosomal
dysfunction, since both necroptotic proteins (RIPK1 & RIPK3) may
degrade through the lysosome-dependent pathway and therefore
inhibition of lysosomal or autophagy function contributes to their
accumulation, thereby triggering necroptosis (Liu S. et al., 2018; Lim
et al., 2019). Thus, alongwith inhibiting apoptosis, these data suggest the
ability of autophagy to suppress cell necroptosis which may consider an
important mechanism for its pro-survival role.

7 Impact of autophagy activation and
necroptosis inhibition on anticancer
effect of CP

The biggest challenge that remains is to prevent renal injury
associated with CP while maintaining or even enhancing its anti-
cancer activity (Sun et al., 2019). Therefore, the main question is
could autophagy activation or necroptosis inhibition potentially affect
the anticancer activity of CP? Current data indicated that this question still
cannot be conclusively answered as both autophagy and necroptosis are
considered to have a Janus-faced role in tumorigenesis and cancer
treatment. Regarding necroptosis, on one hand, RIPK1 plays a
prosurvival role that results in chemoresistance of lung cancer cells.
Interestingly, RIPK1 reduction sensitized cancer cells to CP and
substantially potentiated its cytotoxicity (Wang et al., 2014a; Wang
et al., 2014b; Wang et al., 2017). On the other hand, tumor-
suppressing effects of necroptosis have been also reported among
other cancer types, especially those resistant to apoptosis. Necroptosis
was shown to mediate CP’s cytotoxicity, and its downregulation
counteracted the anticancer activities of CP in fibrosarcoma and
ovarian cancers (Xu et al., 2017; Zheng et al., 2020). In addition,
restoring RIPK3 expression was associated with a better prognosis in
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patients with hepatocellular and esophageal carcinoma treated with CP
chemotherapy (Sun Y. et al., 2018; Zhang B. et al., 2019). Similar to
necroptosis, autophagy’s role in CP-induced cytotoxicity is extremely
complex and remains a matter of debate, as dual effects of pro-metastatic
and anti-metastatic have been reported. Activation of autophagy by CP
contributes to its chemoresistance in esophageal cancer (O’Donovan et al.,
2011), ovarian cancer (Bao et al., 2015), bladder cancer (Lin et al., 2017),
and osteosarcoma (Jiang et al., 2017). In contrast, autophagy induction is
also shown to mediate CP chemosensitivity in several other reports. In
lung cancer, Sirichanchuen et al. (2012) demonstrated that long-term
exposure to CP impaired autophagy leading to CP resistance, and
interestingly, upregulation of autophagic response under such
condition re-sensitized resistant cells to CP-induced cell death. In
addition, autophagic degradation of Exo70 reduced CP efflux, thereby
increasing its intracellular storage and cytotoxic activity (Zhao et al.,
2021). Moreover, it has been reported that induction of autophagy helps
to overcome CP resistance and potentiates its cytotoxic activity against
lung cancer (Cheng et al., 2019; López-Plana et al., 2020), and oral cancer
(Gao et al., 2022). More importantly, under the context of CP-induced
AKI, previous studies have shown inconclusive results. Through
upregulation of autophagy, scutellarin ameliorated CP-induced AKI
and enhanced its antitumor efficiency against lung cancer (Sun C.-Y.
et al., 2018; 2019). Conversely, the proautophagic activity of trehalose
conferred protection against CP-induced AKI but also antagonized the
antitumor effects of CP (del Bello et al., 2013; Zhu et al., 2020). On the
other hand, some other novel autophagy activators like retinoic acid and
astragaloside IV, which induce autophagic response in the kidney,
and therefore protect against CP-induced AKI (Qu et al., 2019; Wu
X. et al., 2020), demonstrated a different response in cancer cells, as
they suppressed autophagy to enhance CP’s chemosensitivity (Lai
et al., 2020; Abbasi et al., 2022). Altogether, while modulation of
autophagy and necroptosis signaling pathways protects kidneys
from CP injury (Figure 6), it is still difficult to estimate the effect of
this modulation on the clinical response of CP, which is expected to
vary depending on tumor type, stage, and cell context as well as the
specific individual effect of each modulator. Tables 1, 3 showed the
effects of different necroptotic inhibitors and autophagic activators
on the anticancer activity of CP chemotherapy.

8 Does modulation of autophagy and
necroptosis pathways prevent CP-
induced toxicities in other organs?

Besides CP-induced nephrotoxicity, administration of CP may
induce serious injury in other normal tissues such as the ear, liver,
heart, and others (Qi et al., 2019) (Figure 2). Interestingly, several
recent publications have indicated the implicated role of necroptosis in
CP-mediated ototoxicity (Choi et al., 2019; Ruhl et al., 2019). In Choi
et al.’s (2019) study, pretreatment with necroptotic inhibitor,
Necrostatin-1 markedly suppressed CP-induced auditory cell death,
while the treatment of apoptosis inhibitor, ZVAD did not. Likewise,
the protective effect of the autophagy pathway was also reported in
CP-induced damage to the liver cells (Qu et al., 2019; Nashar et al.,
2021), and cochlear cells (Fang and Xiao, 2014; Yang Q. et al., 2018;
Liu et al., 2019; Pang et al., 2019). More Interestingly, trehalose which
alleviated CP-induced AKI by activating autophagy (Zhu et al., 2020),
recently, its pro-autophagic activity has made it also a potential
treatment for CP-induced ototoxicity (Li et al., 2022b). Similarly,

finding from other studies demonstrated the ability of the autophagy
activator, metformin to attenuate CP-induced ototoxicity,
cardiotoxicity, and neurotoxicity primarily through AMPKα
activation (Guo et al., 2021; Liang et al., 2021; Nageeb et al., 2022).
These data indicate that modulation of autophagy and necroptosis
pathways during CP treatment may not only ameliorates CP injury in
the kidney but also in other tissues and organs.

9 Conclusion and future directions

Nephrotoxicity, especially AKI, is the main serious problem
that affects cancer patients treated with CP chemotherapy and
often requires cessation of therapy. Therefore, understanding the
principal mechanisms underlying this injury would be extremely
helpful for the development of effective therapeutic strategies that
could substantially help cancer patients to take full efficacy of CP,
meanwhile reducing the potential of AKI episodes. In recent years,
both autophagy and necroptosis are extensively investigated and
their importance in the pathogenesis of CP-induced AKI is
increasing at a remarkable pace. Recent in vitro and in vivo
studies have given compelling evidence that modulation of these
pathways could provide significant protection against CP-induced
AKI. The pharmaceutical industry so far has made significant
investments in the development of autophagy and necroptosis
modulators, however, none of these agents successfully paved
the way for clinical investigation. In the coming years,
additional investigations in this area will help the future
development of promising modulators with greater efficacy,
plasma stability, and specificity. Moreover, given the
contribution of various cellular processes in the pathogenesis of
CP-induced AKI, using a combination of several modulators or
identifying agents that can simultaneously modulate multiple
targets may serve as an important strategy for developing future
treatments. Importantly, before the clinical translation of any of
these modulators, their effects should be adequately examined in
tumor-bearing animals to make sure that their renoprotective
effects are not compromising the anticancer activity of CP.
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