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Background: Renal repair is closely related to the prognosis of acute kidney injury
(AKI) and has attracted increasing attention in the research field. However, there is
a lack of a comprehensive bibliometric analysis in this research area. This study
aims at exploring the current status and hotspots of renal repair research in AKI
from the perspective of bibliometrics.

Methods: Studies published between 2002 and 2022 related to kidney repair after
AKI were collected from Web of Science core collection (WoSCC) database.
Bibliometric measurement and knowledge graph analysis to predict the latest
research trends in the field were performed using bibliometrics software
CiteSpace and VOSviewer.

Results: The number of documents related to kidney repair after AKI has steadily
increased over 20 years. The United States and China contributemore than 60%of
documents and are the main drivers of research in this field. Harvard University is
the most active academic institution that contributes the most documents.
Humphreys BD and Bonventre JV are the most prolific authors and co-cited
authors in the field. The American Journal of Physiology-Renal Physiology and
Journal of the American Society of Nephrology are the most popular journals in
the field with the greatest number of documents. “exosome”, “macrophage
polarization”, “fibroblast”, and” aki-ckd transition” are high-frequency keywords
in this field in recent years. Extracellular vesicles (including exosomes),
macrophage polarization, cell cycle arrest, hippo pathway, and sox9 are
current research hotspots and potential targets in this field.

Conclusion: This is the first comprehensive bibliometric study on the knowledge
structure and development trend of AKI-related renal repair research in recent
years. The results of the study comprehensively summarize and identify research
frontiers in AKI-related renal repair.
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1 Introduction

Acute kidney injury (AKI) is a critical illness characterized by a sudden deterioration of
kidney function, initial mortality, high morbidity, and high burden on the health system
(Bonventre and Yang, 2011; Susantitaphong et al., 2013). Research on the chronic sequelae of
AKI has increased dramatically in the last decade. Recent clinical data suggest that AKI is an
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important risk influence for progression to chronic kidney disease
(CKD) (Coca et al., 2012). Due to the complexity of the structure of
the kidney and the incomplete understanding of the
pathophysiology of AKI, regenerative medicine for kidney disease
is unfeasible. Recovery in surviving patients with AKI depends
primarily on the reversal of hemodynamic damage, removal of
the cause of kidney injury, and successful repair of the renal
parenchyma (Basile et al., 2016). Therefore, developing effective
treatment strategies to promote the repair of damaged renal tissue is
critical for improving the short- and long-term prognosis of AKI. In
the past few decades, much research has revolved around the
endogenous repair and regeneration mechanisms of the kidney,
including stem cell therapy and exosomes (Fais et al., 2016; Squillaro
et al., 2016). In addition, the cellular and molecular mechanisms
behind maladaptive repair and renal fibrosis, including epithelial-
mesenchymal transformation (EMT), cellular senescence, G2/M cell
cycle arrest, fibroblast, and immune cell activation, are constantly
updated (Rayego-Mateos et al., 2022). As a result, kidney repair is
becoming an important area of AKI research.

At present, bibliometric analysis is mainly used to analyze the
development trend, academic exchange and core influence of
literature in specific scientific fields (Chen and Song, 2019).
Moreover, bibliometric analysis can also be used to explore
leading journals in the field, core author teams, and current
research frontiers and trends (Merigó and Núñez, 2016; Wu
et al., 2021). However, to our knowledge, there is no systematic
evaluation exploring kidney repair in AKI. In the present study, we
conducted a bibliometric analysis of research related to kidney repair
in AKI and explored emerging trends in this field.

2 Materials and methods

2.1 Data source and search strategy

Web of Science is one of the most authoritative and
comprehensive database platforms in the world, with
comprehensive content and high quality of academic journals,
and is currently the most usually used database for bibliometric
analysis (Luo et al., 2022; Zhou et al., 2022). Therefore, Web of
Science core collection (WoSCC) was used as the data basis for our
article. At the same time, so as to ensure the comprehensiveness and
accuracy of the retrieved data, the citation index is selected as SCI-
Expanded. The search keyword was “((((TS=(acute kidney injury))
OR TS=(acute kidney failure)) OR TS=(acute renal failure)) OR
TS=(acute renal injury)) AND TS=(kidney repair) AND Document
types = (ARTICLE OR REVIEW) AND Language = (English)”, and
the time span was selected from 1 January 2002 to 31 December
2022. In addition, all valid bibliographic data, including year of
publication, title, author name, nationality, affiliation, abstract,
keywords, journal name, etc., are saved in plain text format file
format in the WoSCC database.

2.2 Bibliometric analysis and visualization

Bibliometrics is an independent discipline and provides
quantitative methods for reviewing and investigating existing

literature in a particular field (Gureyev and Mazov, 2022).
During the analysis, detailed information such as authors,
keywords, journals, countries, institutions, references, etc., Can be
obtained. Visualization helps to uncover the intrinsic connections
between this information, such as different authors having the same
research topic, research priorities from different institutions, new
theories from existing institutions, and so on. For data analysis and
visualization, such as country, region co-occurrence, journal dual-
maps, high-frequency keyword tendency, co-cited references, and
reference bursts, networks between countries, institutional
researchers, and co-occurrence analysis, etc., we used both
VOSviewer and CiteSpace (Synnestvedt et al., 2005; van Eck and
Waltman, 2010). In addition, in the analysis, Taiwan is classified as
the People’s Republic of China; England, Scotland, Northern Ireland
and Wales are classified as the United Kingdom.

3 Results

3.1 Trend of global publications and citations

Between 2002 and 2022, 1,600 articles (Figure 1) were collected
from WoSCC, including 1,160 articles and 440 reviews, and all
publications were published in English. The 1,160 papers used in this
study were written by 7,893 authors from 1,612 institutions in
56 countries, published in 481 journals, and cited
56,264 reference form 4,528 journals. Over the past 20 years,
research on kidney repair in AKI has continuously increased
(Figure 2A). These papers were cited an average of 36.57 times
per paper, for a total of 73,190 citations.

3.2 Countries/regions and institutions
analysis

As stated by the world map (Figure 2B), the publications on this
topic came from researchers in 56 countries. The specific number of
posts and citations of each country is shown in Table 1, among
which the United States (613), China (450), Germany (162), Italy
(108), and Japan (107) contributed the most. In addition, Italy, the
United States, and Germany have higher citation rates than China
and Japan. An interactive collaboration map depicts partnerships
between countries (Figure 2C). According to Figure 2D, citation
relationships between the 30 countries/regions which published no
less than nine publications were revealed. Despite publishing more
documents, China does not cooperate with other countries as
commonly as the United States and Germany.

On the word of CiteSpace, 1,600 papers were provided by
1,612 different institutions. Table 2 lists the top 10 institutions
with the most articles. It can be found that these 10 institutions are
all from the United States and China, which is also in line with the
country’s ranking of the number of documents. In institutional
cooperation map with VOSviewer (Figure 3A), there is closer
cooperation between various U.S. institutions, centered on
Harvard University, than Chinese institutions. In terms of
citation analysis of institutions, the top three institutions with the
most citations are Harvard University (8,885), Brigham and womens
hospital (3,424), and Univ Pittsburgh (2,801) (Figure 3B). In
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addition, the above chart shows that Harvard’s work in this area of
research started earlier, while the impact of the research from
Brigham and womens hospital was stronger.

3.3 Authors and co-cited authors

A total of 7,893 authors participated in the study of kidney repair
at AKI. The top 10 most productive authors and co-cited authors
were provided in Table 3. Humphreys BD, Dong Z and Bonventre
JV were the top three contributing authors with 30, 27 and
25 publications, respectively. As shown in Figure 4B, the
50 authors with the highest total link strength (TLS) were
divided into three main clusters through co-citation analysis. The
TLS of Bonventre JV, Humphreys BD and Togel F were 16,837,
18,201, and 17,045, respectively.

3.4 Journal analysis

A total of 481 journals published papers on this topic, of which
99 published more than five. In Table 4, the top 10 journals covered
27.63% of the publications, with a total of 442 articles. American
Journal of Physiology-Renal Physiology contributed the most
articles (n = 97). According to the 2021 Journal Citation Report
(JCR), 5 of all top 10 journals are in Q1 in the academic rankings.
Two had impact factor (IF) greater than 10, and Kidney
International was the journal with maximum IF (18.998).

As shown in Figure 5, double-graph overlapping journals were
mainly used to visualize the citation path between the cited journal
and the cited journal. The citation path started with the cited journal
in the left half and ended with the cited journal in the right half,
while the topics covered by the journal are marked. It could be found
that publications on the themes of “Health, Nursing and Medicine”
were most often quoted, establishing two main citation paths that

started with “Molecular, Biology and Immunology” and “Medicine,
Medical and Clinical”.

3.5 Analysis of co-cited references

In total, 1,600 articles under this topic cited 56,264 references. In
Table 5, the article entitled “Intrinsic epithelial cells repair the
kidney after injury” by Humphreys BD had the most co-citations
(n = 233) (Humphreys et al., 2008). Tögel F’ paper “Administered
mesenchymal stem cells protect against ischemic acute renal failure
through differentiation-independent mechanisms” ranked the
second with 215 co-citations (Tögel et al., 2005).

In Figure 6A, the co-citation network of references was
visualized via CiteSpace, and a total of 12 clusters containing
keywords were identified. Multiple cell types and cell components
are clustered together, including mesenchymal stem cells, renal
tubule, extracellular vesicle, macrophage phenotype. In addition,
renal fibrosis and age-associated change are also being found in
clustering. The timeline view of co-cited references was publicized in
Figure 6B, which is important for observing how research hotspots
have changed over time. Nine clusters used title words as label
source, then displayed different positions and colors on the timeline
according to differences in publication time. The recent clusters on
the timeline were “#4 renal fibrosis”, “#5 extracellular vesicle”, and
“#2 macrophage phenotype”.

CiteSpace’s citation burst analysis can uncover studies that have
received widespread attention (Synnestvedt, Chen et al., 2005). The
25 references had strongest citation bursts and their most cited time
periods were shown in Figure 7. The references that maintain the
citation peak until 2020 to 2022 were: “Ferenbach DA, 2015, NAT
REV NEPHROL, V11, P264, DOI 10.1038/nrneph.2015.3”
(Ferenbach and Bonventre, 2015), “Venkatachalam MA, 2015, J
AM SOC NEPHROL, V26, P1765, DOI 10.1681/ASN.2015010006”
(Venkatachalam et al., 2015) and “Zuk A, 2016, ANNU REV MED,

FIGURE 1
Schematic diagram of the search process.
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V67, P293, DOI 10.1146/annurev-med-050214-013407” (Zuk and
Bonventre, 2016). Importantly, six of the top 10 co-cited
publications are from Prof. Bonventre’s research team,
demonstrating the impact of the lab’s research in this field.

3.6 Analysis of keywords

The co-occurrence network map and overlay map of the author
keywords can explore the cluster distribution characteristics and
time variation rules of the keywords. According to Figure 8A,
VOSviewer shown the 10 main author keyword clusters. The
purple cluster mainly contains several pathological processes
related to tubular epithelial cell injury and repair, such as

“apoptosis”, “stem cell”, and “mesenchymal stromal cell”. The
blue cluster focuses on “Inflammation”, “cytokine”, “oxidative
stress and “autophagy”. In the green cluster, cellular senescence is
the focus of research attention. In Figure 8B, author keywords
appeared in different colors depending on the average year of
occurrence. In recent years, “exosome”, “macrophage
polarization”, “fibroblast”, “metabolism”, “sox9”, and “aki-ckd
transition” appeared frequently, denoting the conversion of AKI
to CKD is a current research focus to intervene through multiple
pathways.

In Figure 9A, we also identified research hotspots by keywords
with strong citation outbursts. The citation bursts for keywords like
“extracellular vesicles”, “fibrosis”, “aki-ckd transition”, and
“inflammation” are still occurring, demonstrating that these

FIGURE 2
(A) The annual number and cumulative publications related to this topic. (B) An overview of the number of articles published by country in the world.
(C) Academic cooperation between countries/regions on this topic. The thickness of segment indicated the frequency of cooperation. (D) The citation
network of countries/regions mapped through VOSviewer.
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words may convert to new hot spots. Alluvial flow diagram can also
observe how concepts change over time. In Figure 9B, each of
these “blocks” is named after the most critical keyword in the
cluster, while the lines connect the same keywords in different
years. In addition to showing the flow dynamics of some
concepts such as stem cells over time, it can also explore some
new research hotspots.

4 Discussion

From 2002 to 2022, there has been a rapid increase in the
number of annual publications on kidney repair in AKI, indicating
that kidney repair will remain a research hotspot in the future. In
this study, we provide a comprehensive overview of the development
of AKI-related renal repair research through bibliometric analysis,
with a focus on possible research hotspots. Globally, the leading
countries in kidney repair research are the United States, China, and
Germany. This is also supported by an analysis of institutional

publications, with 7 of the top 10 productive institutions in the
United States and the rest in China (Table 2).

Upon author analysis, Humphreys BD and Bonventre JV were
among the top 10 most productive authors and the top 10 most co-
cited authors (Table 3), and there is a close collaboration between
these two authors (Figure 4A). The most cited study, “Intrinsic
epithelial cells repair the kidney after injury,” written by Humphreys
BD, Valerius MT, et al., focuses on the main mechanisms of post-
ischemic tubular injury in adult mammalian kidneys (Humphreys,
Valerius et al., 2008). The work of Humphreys BD’s team also
includes interventions in renal fibrosis, cell cycle arrest, and stem cell
therapy to facilitate the repair of damaged kidneys after AKI (Liu
et al., 2014; Humphreys et al., 2016; Kefaloyianni et al., 2016). The
second most cited study, “Administered mesenchymal stem cells
protect against ischemic acute renal failure through differentiation-
independent mechanism,” written by Tögel F, Hu Z, et al., is on the
prevention of ischemic AKI by administering mesenchymal stem
cells (Tögel, et al., 2005). The third most cited study, “Cellular
pathophysiology of ischemic acute kidney injury,” is a review written

TABLE 1 Top 10 productive countries/regions related to AKI in kidney repair.

Rank Countries/regions Documents (N) Percentage (N/1,600) Citations Citations per paper

1 United States 613 38.43 37,333 60.90

2 China 450 28.12 14,058 31.24

3 Germany 162 10.12 11,187 69.06

4 Italy 108 6.75 9,291 86.02

5 Japan 107 6.68 3,391 31.69

6 United Kingdom 68 4.25 3,829 56.31

7 Netherlands 59 3.68 3,165 53.64

8 Canada 52 3.25 1716 33.00

9 South Korea 48 3.00 1979 41.23

10 Australia 45 2.81 2,166 48.13

TABLE 2 Top 10 institutions ranked by the numbers of publications.

Rank Institutions Documents (N) Citations TLS Countries/regions

1 Harvard Univ 51 8,885 42 United States

2 Univ Pittsburgh 50 2,801 37 United States

3 Vanderbilt Univ 33 1,692 24 United States

4 Yale Univ 30 2,207 10 United States

5 Southern Med Univ 28 850 18 China

6 Johns Hopkins Univ 27 1716 15 United States

7 Shanghai jiao tong Univ 27 780 13 China

8 Brigham and womens hosp 26 3,424 44 United States

9 Harvard med sch 26 1,167 30 United States

10 Chinese peoples liberat army gen hosp 26 616 17 China

Frontiers in Pharmacology frontiersin.org05

Li and Gong 10.3389/fphar.2023.1101036

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1101036


by Bonventre JV, Yang L, et al., which elaborates on the
cytopathophysiological processes of ischemic AKI and repair
(Bonventre and Yang, 2011). Moreover, Bonventre JV’s team

studied the molecular markers related to AKI (Han et al., 2002).
Additionally, Humphreys BD and Bonventre JV are in the Renal
Division, Department of Medicine, Brigham andWomen’s Hospital,

FIGURE 3
(A) Institutional cooperation diagram based on VOSviewer. (B) Institutional citation network generated by CiteSpace.
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Harvard Institutes of Medicine. This also shows the dominance of
Brigham and Women’s Hospital in this field.

On the basis of the top journals, the American Journal of
Physiology-Renal Physiology, Journal of the American Society of
Nephrology, and Kidney International had the greatest number of
publications on kidney repair in AKI, and these had guidelines for
manuscript proposal (Table 4). This study also illustrated that the
top 10 journals on the topic included professional journals in the
field of nephrology and journals in other fields like stem cell
research, and molecular science, indicating that there is a
multidisciplinary development trend in this field.

Citation burst, a phenomenon whereby terms such as references
and keywords receive a lot of attention and reflect dynamic changes
over a certain period of time, was seen. In Figure 7, the 25 references
with the strongest citation bursts had a relatively short active period
of up to 5 years. The following 3 articles were the most recent of the
25 citation bursts: “Zuk and Bonventre, 2016, ANNU REV MED,
V67, P293, DOI 10.1146/annurev-med-050214–013407” describes
the complex pathophysiological mechanisms of AKI, biomarkers
and therapeutic strategies to prevent the progression of AKI to CKD
(Zuk and Bonventre, 2016); “Venkatachalam MA, 2015, J AM SOC
NEPHROL, V26, P1765, DOI 10.1681/ASN.2015010006” reviews
the progression mechanism of further deterioration of renal
structure following AKI transformation to CKD (Venkatachalam,
et al., 2015); “Ferenbach and Boventre, 2015, NAT REV NEPHROL,
V11, P264, DOI 10.1038/nrneph. 2015.3” explores the archetypal
mechanisms by which severely damaged kidneys regenerate and
how adaptive repair processes can become maladaptive (Ferenbach
and Bonventre, 2015).

Typically, keywords are used in bibliometrics to get an overview
of the development of a field. Figure 8B (which colors keywords
according to the average year they appear) and Figure 9 show how
kidney repair research has evolved over time. The above data shows
that the study on kidney repair after AKI can be mainly divided into
two important development directions. The first research direction
focused on the restoration and regeneration of epithelial cell
function. The acute phase of AKI is characterized by cell death,
followed by a recovery phase, in which there is an activation of
protective and regenerative mechanisms in the surviving cells to

restore the properties and functions of epithelial cells (Ruiz-Ortega
et al., 2020). A range of cells, such as resident renal progenitor cells
and stem cells, are thought to contribute to kidney repair and
regeneration (Rayego-Mateos, et al., 2022). Renal injury leads to
local microenvironment recruitment and activation of progenitor
cells and cell-dependent tissue repair (Huang et al., 2021).
Progenitor cells of the proximal tubule are more resistant to
death and replace injured cells by differentiating into tubular
epithelial cells (Gupta et al., 2006; Lazzeri et al., 2018). In
addition to renal progenitor cells, subsequent studies have found
that circulating bone marrow stem cells and kidney-resident stem
cells also contribute to kidney repair and regeneration (Li et al.,
2010). Therefore, the regenerative potential of pluripotent
embryonic stem cells (ESCs), induced pluripotent stem cells
(iPSCs), and mesenchymal stem cells (MSCs) have been
gradually emphasized in AKI research. Recent studies have found
that the nephroprotective effects of stem cell transplantation may
depend on its paracrine effects, including the release of growth
factors, chemokines, cytokines, and extracellular vesicles to induce
proximal tubular cell proliferation, dedifferentiation, and
angiogenesis (Ranghino et al., 2017; Liu et al., 2020). At present,
extracellular vesicles and exosomes are still potential research
hotspots. The second research direction focuses on the
exploration of renal repair mechanisms dominated by renal
fibrosis. After kidney injury, various intrinsic repair processes are
rapidly activated, and some pathophysiological processes constitute
maladaptive repair, which may promote fibrosis and lead to a
progressive decline in renal function (Rayego-Mateos et al.,
2021). The major role of oxidative stress in the progression of
AKI to CKD initially attracted attention in research. Defense
mechanisms against hypoxia and oxidative stress in cells, such as
hypoxia-inducible factor (HIF) and nuclear factor E2-related
factor 2, are considered likely to be suitable therapeutic targets
(Kim et al., 2009; Kapitsinou et al., 2012). Subsequently, other
signaling pathways activated due to maladaptive repair like
mitochondrial dysfunction and epigenetic changes have been
found as potential therapeutic targets for intervention in renal
fibrosis after AKI (Cianciolo Cosentino et al., 2013; Stallons et al.,
2014). In recent studies, a variety of pathological mechanisms are

TABLE 3 Top 10 authors and co-cited authors in the field of AKI in kidney repair.

Rank Author Documents Citations TLS Co-cited author Citations TLS

1 Humphreys BD 30 2,843 37 Bonventre JV 604 16,837

2 Dong Z 27 1,572 51 Humphreys BD 596 18,201

3 Bonventre JV 25 5,489 20 Tögel F 567 17,045

4 Camussi G 22 3,386 60 Morigi M 418 11,512

5 Kellum JA 17 1,157 19 Baslle DP 416 15,475

6 Anders HJ 17 772 13 Duffield JS 340 10,682

7 Cantley LG 16 1,303 9 Chawla LS 253 7,214

8 Qian H 14 940 55 Yang L 248 7,338

9 Chen XM 14 337 23 Lin FM 234 6,516

10 Bussolati B 14 1,496 21 Herrera MB 209 6,383
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closely related to maladaptive kidney repair, including
macrophage polarization, cell cycle arrest, and cell senescence.
In addition, new molecules and pathways, such as the Hippo
signaling pathway, Sox9, and p53, have also begun to receive
attention in this field. In addition, activation of the senescence

mechanism in renal tubular cells and the accumulation of
senescent cells will lead to the failure of regeneration after
AKI to CKD conversion (Gire and Dulic, 2015; Kim et al.,
2019). Overall, CiteSpace’s keyword exploration also helps
reveal future trends in space. We concluded that extracellular

FIGURE 4
The author cooperation map (A) and author co-citation map (B) generated by VOSviewer.
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vesicles (including exosomes), macrophage polarization, and
Hippo pathway may be current research hotspots, which will
be described in detail below. Additionally, cell cycle arrest,
cellular senescence, and Sox9 are also potential research
directions and targets.

4.1 Extracellular vesicles (EVs)

Besides soluble cytokines, EVs such as exosomes (30–100 nm in
diameter) and microvesicles (100–1,000 nm in diameter) have been
described as a different form of cell-to-cell communication through

the horizontal transfer of microRNAs (miRNAs), mRNAs, and
proteins-to-target cells (Lu et al., 2022). Apart from the stem
cells mentioned above, all regions of the nephron can release
EVs. Since the study by Camussi et al. found that microvesicles
from mesenchymal stem cells (MSCs) may activate proliferation in
renal tubular cells surviving injury through horizontal transfer of
mRNA, there is increasing evidence supporting the involvement of
EVs in pathophysiology and repair process of AKI (Bruno et al.,
2009; Camussi et al., 2010). Research have found that renal proximal
tubular epithelial cells (RPTECs) of injured kidneys can release EVs
carrying miR-216a and stimulate nearby RPTECs for epithelial-
mesenchymal conversion via the PTEN/Akt pathway, followed by

TABLE 4 Top 10 journals associated to the research on kidney repair in AKI.

Rank Journal title Documents Citations IF JCR Country

1 American Journal of Physiology-Renal Physiology 97 5,958 4.097 Q2 United States

2 Journal of the American Society of Nephrology 82 9,323 14.978 Q1 United States

3 Kidney International 50 5,009 18.998 Q1 United States

4 International Journal of Molecular Sciences 39 668 6.208 Q1 Switzerland

5 Scientific Reports 34 462 4.996 Q2 United Kingdom

6 PLoS One 32 1,609 3.752 Q2 United States

7 Stem Cell Research and Therapy 30 1,325 8.079 Q1 United Kingdom

8 Nephrology Dialysis Transplantation 28 1824 7.186 Q2 United Kingdom

9 Frontiers in immunology 25 640 8.786 Q1 Switzerland

10 Nephron 25 311 3.457 Q2 Switzerland

FIGURE 5
Dual-map overlap of journals on kidney repair in AKI research.
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renal interstitial fibrosis (Qu et al., 2019). Tubular cells can also
communicate bidirectionally with other cell types involved in kidney
injury through EVs. For example, damaged PTECs release EVs,
which stimulate macrophage activation and infiltration and amplify
the inflammatory response (Lv et al., 2018). Specifically, EVs can
influence processes such as inflammation, apoptosis, autophagy,
oxidative stress, and cell proliferation, thereby contributing to the
development of AKI (Han and Lee, 2019).

Over the past few years, EVs have received a lot of attention as a
promising pro-regenerative entity and possible alternative to cell
therapy due to their involvement in cell differentiation,
proliferation, and angiogenesis, as well as the regulation of
extracellular matrix turnover during regeneration. There is
considerable evidence that EVs have a nephroprotective effect on
improving kidney injury in different experimental AKI models.
Various AKI models have shown the protective effects of EVs
derived from bone marrow MSCs (BM-MSCs). MiR-199a-3p
derived from BM-MSC-EVs prevents renal I/R injury and
apoptosis by modulating the Akt and Erk1/2 signaling pathways
(Zhu et al., 2019). The important role of miRNAs transferred by
BM-MSC-EVs in post-AKI recovery and regeneration was also
revealed, while miRNA depletion significantly reduced its
intrinsic regeneration potential in AKI (Collino et al., 2015). In
different AKI models, umbilical cord MSC (UC-MSC)-derived EVs
have also been shown to be beneficial. UC-MSC-derived EVs can
enhance proliferation and angiogenesis in a HIF-1α-independent
manner to improve renal function after unilateral I/R (Zou et al.,
2016). Furthermore, UC-MSC-EV can also promote recovery from
kidney injury by increasing HGF expression, and its mechanism
may be related to the transfer of RNA to injured renal tubular cells

and activation of Erk1/2 signaling to accelerate the dedifferentiation
and growth of renal tubular cells (Ju et al., 2015). In addition to the
above sources, the effect of EVs derived from human placental
MSCs, adipose MSCs, liver MSCs, and macrophages and endothelial
progenitor cells have also been studied in post-AKI regeneration and
recovery, and some new evidence has been obtained (Gao et al.,
2020; Grange et al., 2020; Zhang et al., 2020). Several promising
approaches are also being explored, including modifying the EVs of
MSCs to enhance their targeting of the kidneys, or artificially
altering the active molecules delivered in the EVs. Although the
mechanisms of current EVs-based studies remain murky in most
cases, many examples of beneficial effects dominated by MSC-
derived EVs suggest that they have great potential to be used as
a basis for the development of novel post-AKI renal repair and
regenerative therapies.

4.2 Macrophage polarization

Macrophages are the main immune cells in the normal kidneys
and are thought to be core members in the pathogenesis of AKI.
Macrophages can change their phenotype according to the
surrounding microenvironment. Macrophages that infiltrate the
kidneys have a profound effect on kidney damage, repair, and
fibrosis due to different polarization states (Lee et al., 2011).
Typically, macrophages accumulate in the kidneys after injury
and undergo a transition from a pro-inflammatory
M1 phenotype to an alternatively activated M2 phenotype (Engel
and Chade, 2019). Therefore, M2 macrophage polarization is
essential for inflammation inhibition, remodeling, and AKI

TABLE 5 The top 10 co-cited references involved in kidney repair in AKI.

Title First author Journal Year Citations

Intrinsic epithelial cells repair the kidney after injury Humphreys BD Cell Stem Cell 2008 233

Administered mesenchymal stem cells protect against ischemic
acute renal failure through differentiation-independent

mechanisms

Tögel F Am J Physiol Renal Physiol 2005 215

Cellular pathophysiology of ischemic acute kidney injury Bonventre JV J Clin Invest 2011 197

Mesenchymal stem cells are renotropic, helping to repair the
kidney and improve function in acute renal failure

Morigi M J Am Soc Nephrol 2004 195

Restoration of tubular epithelial cells during repair of the
postischemic kidney occurs independently of bone marrow-

derived stem cells

Duffield JS J Clin Invest 2005 181

Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after
injury

Yang L Nat Med 2010 169

Dedifferentiation and proliferation of surviving epithelial cells in
acute renal failure

Bonventre JV J Am Soc Nephrol 2003 131

Stromal cells protect against acute tubular injury via an endocrine
effect

Bi B J Am Soc Nephrol 2007 129

Bone marrow contributes to renal parenchymal turnover and
regeneration

Poulsom R J Pathol 2001 124

Localization of proliferating cell nuclear antigen, vimentin, c-Fos,
and clusterin in the postischemic kidney. Evidence for a

heterogenous genetic response among nephron segments, and a
large pool of mitotically active and dedifferentiated cells

Witzgall R J Clin Invest 1994 123
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recovery. Macrophage depletion in the later stages of the Ischemia-
reperfusion injury (IRI) model reduces PTECs proliferation and
delays renal repair, while IL-4 polarizes metastasis-induced repair of
M2 macrophages (Vinuesa et al., 2008; Meng et al., 2022).
Interestingly, PTECs can also modulate the phenotype of
macrophages. In sepsis-induced AKI, CSF2 secreted by injured

TECs can facilitate the transition from M1 to M2 macrophages
in a dose- and time-dependent mode (Li et al., 2020). The
mechanism by which macrophages promote tubular repair is
complex. Macrophage-derived Wnt7b, BRP-39, and IL-22 have
been identified as factors that directly promote tubular repair
after ischemic injury (Lin et al., 2010; Kulkarni et al., 2014).

FIGURE 6
Cluster diagram of co-cited references using keywords as label source (A), and timeline view of co-cited references via title words (B) were
visualized through CiteSpace.
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Vascular-resident CD169+ macrophages limit neutrophil
infiltration after ischemic damage by down-regulating the
expression of intercellular adhesion molecule-1 on vascular
endothelial cells, and they indirectly promote tubular repair
(Karasawa et al., 2015). Therefore, macrophage phenotype
plays a pivotal role in kidney repair. However, it is difficult to
maintain a macrophage phenotype for a successful switch in vivo.
Lipoclysin-2 (Lcn-2) is an effective regulator of macrophage
polarization that stabilizes the M2 macrophage phenotype
(Mertens et al., 2020). Additionally, when kidney injury is
unresolved and progressive, M2 macrophages can become
profibrotic through mesothelial-to-mesenchymal transition
(Huen and Cantley, 2015). Overall, targeting the regulation of
macrophage phenotypes is a promising treatment to promote
renal repair after AKI. Although some details remain to be
clarified, such as the precise molecular characteristics and cell
fate plasticity of macrophage subsets in vivo after AKI, the direct
extrapolation of relative M1/M2 expression profiles defined
in vitro and its biological effects on in vivo repair responses
remain to be confirmed.

4.3 Cell cycle arrest and cellular senescence

The mitotic cell cycle consists of four stages, including G0-
G1, S, G2 and M, and is controlled by four checkpoints,

including G1/S, S, G2/M and M (Hartwell and Weinert,
1989). However, failure to pass one of these checkpoints can
induce cell cycle arrest or cell death at a specific stage. Under
physiological conditions, the rate of renal cell turnover is very
low, and RPTECs are mostly maintained in the G0-G1 phase
(Canaud and Bonventre, 2015). After kidney injury, surviving
RPTECs enter the cell cycle and divide to replace the damaged
cells. Early research suggests that cell cycle arrest may be a
protective mechanism for post-AKI RPTECs, promoting DNA
damage repair or preventing cell division when DNA damage
cannot be repaired (De Chiara et al., 2021). Studies have found
that p21 is induced in the kidneys after several types of AKI,
including cisplatin administration, ischemia-reperfusion, and
ureteral obstruction, and causes cell cycle arrest. However, the
deletion of the p21 gene leads to more severe kidney injury
(Megyesi et al., 1998; Megyesi et al., 2001). The Bonventre
laboratory study confirms that G2/M cycle arrest of epithelial
cells exacerbates the renal fibrotic process in ischemic, toxic and
obstructive AKI models; however, JNK or p53 inhibitors can
rescue the subprocess (Yang et al., 2010). Additionally,
prolonged blockade of the G1 or G2/M stages after AKI leads
to senescence-associated secretory phenotype (SASP), which
includes the secretion of profibrotic and pro-inflammatory
factors, exacerbating kidney damage and forming a vicious
cycle (Yu and Bonventre, 2020). Targeting cell cycle arrest is
a potential innovative strategy to improve kidney repair and

FIGURE 7
The top 25 references with the strongest citation bursts during 2002–2022.
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prevent CKD, as studies targeting p21, p53, Cyclin G1 (CG1)
and HDAC inhibitors have progressed in animal experiments
(Skrypnyk et al., 2016; Fu et al., 2017; Canaud et al., 2019). With

the further recognition of the importance of cell cycle
abnormalities in renal repair after AKI, therapeutic strategies
that target this process deserve the attention of researchers.

FIGURE 8
The author keywords co-occurrence networkmap, which showed the distribution of clusters of major keywords (A). The overlay map displayed that
author keywords are colored based on average occurrence time (B). The overlay visualization map showed the color change of the author keywords
based on average occurrence time.
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4.4 Hippo signaling pathway

The Hippo pathway is highly evolutionarily conserved in mammals
and consists of a three-step kinase cascade of MST1/2 (also known as
STK4/3), LATS1/2, and YAP/TAZ (also known as WWTR1) (Callus
et al., 2006). This pathway regulates cell growth and fate decisions, organ
size, and regeneration through phosphorylation and inactivation of its
downstream effector YAP/TAZ (Ma et al., 2019). In recent years, the
association between the Hippo pathway and renal repair and fibrosis
after AKI has attracted attention. Studies have found that YAP
expression and nuclear distribution are enhanced in renal RPTC in

AKI patients and I/Rmice, while histological recovery is delayed in YAP/
TAZ double-knockout mice (Chen et al., 2018). The EGFR-PI3K-Akt
pathway and RacGAP1 can help RTECs recover from acute injury by
activating YAP (Zhou et al., 2020). There is considerable evidence that
YAP may promote proliferation and redifferentiation of reconstituted
epithelium after acute I/R-induced AKI (Xu et al., 2016). However, the
function of the Hippo pathway in kidney repair after AKI may be
bidirectional. Sustained activation of YAP/TAZ in severe AKI impedes
redifferentiation of dedifferentiated tubular cells and promotes renal
fibrosis, leading to maladaptive repair and CKD (Xu et al., 2021).
Epithelial-mesenchymal transformation (EMT), G2/M cell cycle

FIGURE 9
Top 20 keywords with the strong citation bursts (A). Alluvial flow diagrams reflect the flow of concepts to see how concepts change over time (B).
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arrest, and macrophage M2 polarization have been associated to Hippo
signaling-mediated renalfibrosis (Seo et al., 2016; Feng et al., 2018; Zheng
et al., 2021). In summary, proper regulation of the Hippo signaling
pathway, especially YAP intervention in repair, may be an effective
prevention target for AKI-CKD conversion after AKI. Although the
above evidence is convincing, the correlation between the hippo pathway
and AKI needs to be further studied, and the underlying mechanisms
and pathways need to be further elucidated.

4.5 Sox9

The kidneys can regenerate after injury; however, the intrinsic
molecular mechanisms remain unknown. The transcription factor
Sox9 is important in organogenesis during mammalian embryonic
development. Simultaneously, Sox9 is a transcription factor essential
for normal kidney development, and recent studies have highlighted the
importance of its expression in the repair process of renal tubular
epithelial cells (Kumar et al., 2015; Kang et al., 2016). In the early
stages of kidney injury, Sox9 expression is significantly upregulated
within damaged tubular epithelial cells, and approximately 40% of Sox9-
positive cells proliferate and expand after kidney injury. Despite the
recovery of kidney function, Sox9 activation was found to persist on day
28. Furthermore, multiple upstream and downstream molecules or
mechanisms are involved in the renal repair process via Sox9 in AKI.
Sox9 drives the upregulation ofVGFnerve growth factor inmultiple AKI
models and acts as a stress-responsive protective gene in TECs (Kim
et al., 2020). In IRI and folic acid (FA)-inducedAKImodels, early growth
response 1 (EGR1) can increase Sox9 expression in kidney TECs by
directly binding to the promoter of the Sox9 gene, consequently
promoting Sox9 cell proliferation by activating the Wnt/β-catenin
pathway (Chen et al., 2022). A recent study found that kidney-
resident Sox9+ TECs can be activated and secrete various factors to
promote tissue repair, of which S100A9 may be a key factor associated
with the renal repair pathway (Nie et al., 2023). Although the
upregulation of Sox9 was identified as an early event after AKI in
these studies, the primary player in kidney repair as tubular epithelial
cells or resident tubular progenitor cells remains controversial. In
addition to being involved in the intrinsic repair of the kidney,
Sox9 plays a role in maladaptive repair and chronic fibrosis in the
AKI-CKD transition. SOX9 has been associated with human renal
fibrosis and is required for experimentally-induced renal fibrosis in
mice (Raza et al., 2021). Both embryonic stem cell-derived extracellular
vesicles (ESC-EVs) and human amnion-derivedmesenchymal stem cells
(hAD-MSCs)-derived exosomes activate Sox9 in TECs to promote
physiological repair after AKI and inhibit the progression of fibrotic
processes (Zhu et al., 2017; Yu et al., 2021). In conclusion, although
Sox9 has been associated with kidney repair after AKI, a further in-depth
research is still necessary.

5 Limitation

First, not all studies from the databases were included and
data were taken from the WoSCC database only. Second, we only
selected studies and review articles written in English, articles
published in non-English or non-research/review articles were
not included in this study, leading to some omissions. Third, data
were obtained through bibliometric software based on machine
learning, which may lead to bias in bibliometric research and
discussion.
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