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Alternariol is a toxicmetabolite of Alternaria fungi and studies have shownmultiple
potential pharmacological effects. To outline the anticancer effects and
mechanisms of alternariol and its derivatives based on database reports, an
updated search of PubMed/MedLine, ScienceDirect, Web of Science, and
Scopus databases was performed with relevant keywords for published articles.
The studies found to suggest that this mycotoxin and/or its derivatives have
potential anticancer effects in many pharmacological preclinical test systems.
Scientific reports indicate that alternariol and/or its derivatives exhibit anticancer
through several pathways, including cytotoxic, reactive oxygen species leading to
oxidative stress and mitochondrial dysfunction-linked cytotoxic effect, anti-
inflammatory, cell cycle arrest, apoptotic cell death, genotoxic and mutagenic,
anti-proliferative, autophagy, and estrogenic and clastogenicmechanisms. In light
of these results, alternariol may be one of the hopeful chemotherapeutic agents.
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1 Introduction

Chemotherapy is a type of anticancer treatment that uses one or more chemical
substances (extracts from natural substances or products of chemical synthesis) that stop
the multiplication of cancer cells, either by destroying them or by stopping their division.
Chemotherapy is an essential component of the pharmacotherapeutic management of
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cancer. (Sharifi-Rad et al., 2021b; GBD, 2019 Colorectal Cancer
Collaborators, 2022). On the other hand, the resistance of cancer
cells towards chemotherapeutic drugs has become prevalent, being
associated with unfavourable clinical evolution in cancer patients
directly and indirectly (Sharifi-Rad et al., 2021e; Sharma et al., 2022).
The progress of new drug research and development may overcome
the occurrence of drug resistance (Ali et al., 2022b). It has been also
reported that natural products and derivatives with diverse chemical
structures and pharmacological effects serve as useful compounds
against cancer and drug-resistant cancer (Ali et al., 2022a; Dhyani
et al., 2022b; Kitic et al., 2022; Sharifi-Rad et al., 2022a). Mycotoxins
are types of toxins produced by a variety of fungal species of crops or
stored commodities. Mycotoxins appear as primary or secondary
contaminants via the carryover effect in the food chain (Degen,
2017). Due to various biological effects, mycotoxins have come to
the attention of scientists in the context of research done to discover
and develop new anticancer drugs (Islam, 2017; Islam et al., 2018).
Generally, mycotoxins are ubiquitous and unavoidable harmful
fungal products and vary significantly in structure and
biochemical effects. These toxins cause disease in both animals
and humans and are found in almost all types of foods, with a
higher prevalence in hot, humid environments (El Khoury et al.,
2019). Unfortunately, most of the published data has concerned the
major mycotoxins aflatoxins, ochratoxin A, zearalenone, fumonisins
and trichothecenes, especially deoxynivalenol (Smith et al., 2016),
although, there are aspects of mycotoxin relations with strain
improvement strategies and genetic modification for improved
detoxifying properties in test systems (Pfliegler et al., 2015).

Alternariol (AOH), a toxic mycotoxins metabolite of Alternaria
fungi, is an essential contaminant in cereals and fruits. Alternaria
fungi are plant and human pathogens, saprophytes, a strong allergen
and exposure has been associated with allergic diseases such as
allergic rhinitis, chronic rhinosinusitis and asthma (Grover and
Lawrence, 2017; Aichinger et al., 2021). Mycotoxins enter the
body through contaminated food, but can also enter the airway
or through direct skin contact. In general, mycotoxins are resistant
to high temperatures, and many mycotoxins are also resistant to
industrial food processing, so to have mycotoxin-free foods, the raw
material (wheat, milk, vegetables, meat, etc.) must be analyzed.
Because they are resistant to processing, they can also be found
in highly processed foods such as bread, breakfast cereals, wine, and
beer. Many pharmacological activities, including antifungal (da
Cruz Cabral et al., 2019), anti-inflammatory (Kollarova et al.,
2018), and anticancer effects have been done (Meena and Samal,
2019). This updated review sketches a current scenario of AOH’s
anticancer effect and possible action mechanisms behind it based on
database information.

2 Review methodology

A literature study was conducted up to December 2021 using the
following databases: PubMed/MedLine, Science Direct, Web of
Science, Scopus, and the American Chemical Society using the
next MeSH terms: “Alternariol,” “Alternariol monomethyl ether,”
“Alternaria/metabolism,” “Mycotoxins,” “Cell Line,” “Tumor,” “Cell
Survival/drug effects,” “Humans,” “Mycotoxins/toxicity,” “Reactive
Oxygen Species.” No language restrictions were imposed. Articles

were evaluated in detail and summarized information on the dose,
concentration, administration route, experimental model, results
discussion, conclusion, and the proposed action mechanism.

2.1 Inclusion criteria

1. Pharmacological studies carried out in vitro, in vivo with or
without using experimental animals, including humans and their
derived tissue and cells

2. Studies with AOH and its derivatives and joint effects with other
substances (including drugs or chemicals/biochemicals)

3. Studies with or without proposing activity mechanisms.

2.2 Exclusion criteria

1. Studies with extracts without phytochemical analysis
2. Studies with homeopathic drugs
3. Other studies of AOH uncover the current topic.

3 Stability, bioavailability and
pharmacokinetics

A recent study showed a significant reduction in AOH when
exposed to a temperature of 35°C, and very high temperatures above
100°C significantly affect its stability. Compared to this, its
derivative, alternariol monomethyl ether (AME) is much more
stable; at high temperatures of 80°C–110°C (Estiarte et al., 2018).
AOH suffers several reactions of biotransformation, as has been
demonstrated by studies performed in vivo, in rat liver slices, cell
culture or purified enzymes. The identified chemical modifications
of AOH include hydroxylation (phase I biotransformation),
sulfation and glucuronidation (phase II biotransformation),
which are executed mainly by cytochrome P450 isoforms (Tran
et al., 2020). The principal organ of AOHmetabolization is the liver,
although other organs like the kidneys, the bladder and components
of the gastrointestinal tract have also been involved. Of note is the
lack of relevant participation of gut microbiota in the
biotransformation of AOH (Lemke et al., 2016). Some enzymes
responsible for AOH metabolization are uridine 5′-diphosphate-
glucuronosyltransferase, glutathione S-transferase and CYP1A1
(Appel et al., 2021). The last one is responsible for hydroxylation
at C-2, C-4, and C-8. Subsequently, 4-hydroxy-AOH is glycosylated
to 3-glucoside (58%) and 9-glucoside (5%) in the whole-cell system.
The metabolite 9-diglucoside can also be hydrolyzed to 9-glucoside.
Some metabolites of AOH, as catechols formed by its hydroxylation,
can also be methylated and hydroxylated.

In vivo studies performed in rodents reveal that a high
percentage (85%–91%) of AOH given orally is excreted in the
faeces, and a low percentage in the urine (>2.6%), with 0.8%
urine excretion of alternariol-3-sulphate (Schuchardt et al., 2014).
The blood concentration of AOH only reaches 0.06% after 24 h
when 2000 mg/kg are administrated orally. However, when doses
were applied in triplicate at 0, 24 and 45 h, AOH reached a blood
concentration of 0.5 µM after 3 h of administration. The study
performed by Schuchardt et al. (2014), could detect 4, 10, 8, and
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2 hydroxymetabolites of AOH in urine the following three days after
the triple doses. Using polarized human colon adenocarcinoma
Caco-2 cells culture as a model of the intestinal barrier, it has
been established that between 23% and 26% of the apically applied
AOH crosses the cell barrier, founding several metabolites on the
basolateral side (Appel et al., 2021). When CaCo-2 cells were
cultured with AOH or 9-glucoside alternariol, a similar
distribution of derivates were found on the apical and basolateral
side. Particularly, after 3 h of apical exposure, 45% of the initial
compounds of the supernatant corresponded to 9-glucoside, 15% to
3-glucuronide, 14% to 3-sulphate and 11% to 9-glucuronide. Using
AOH unconjugated molecule, there was 8% of the recovered
compounds. Specifically, in the cell, the glucuronides and the
glucoside also could be detected. The 3-glucoside plant
metabolite displays a different distribution in the whole cell
system, showing over 90% of metabolites recovered. Also, in the
cells, only traces of the samemetabolites were detected, including the
unmodified AOH. On the other hand, 9-diglucoside has no
significant absorption. In summary, the glucuronides and sulfates
of AOH showed moderate absorption (20%–70%), meanwhile, the
free mycotoxin and the 9-glycoside have higher absorption
(Burkhardt et al., 2009). These data reveal that AOH and its
metabolites are significatively absorbed by epithelial cells, but the
localization of the glycosylation position affects its absorption and
metabolization.

4 Anticancermechanisms and targeting
signaling pathways by alternariol

4.1 Cytotoxicity

Cytotoxic effect test for an anticancer agent is the first option as
it tells whether the agent should be considered an anticancer drug or
not (Zlatian et al., 2015; Docea et al., 2016). In this context, time and
concentration-dependent cytotoxic effect measurements are crucial
(Docea et al., 2012; Sharifi-Rad et al., 2021c). Due to its cytotoxic
properties, AOH could be a good candidate for exploring anticancer
effects (Figure 2). This possibility was evaluated in a recent study by
Palanichamy et al. (2019) where human hepatocarcinoma cells
(HUH-7), and human alveolar epithelial cells (A549) were
exposed to purified AME for 48 h. HUH-7 cells were the most
sensitive to the cytotoxic effect, with an IC50 of 50 μMand showing a
cell cycle arrest at the G1 phase. Within the same study, AME was
able to protect from neoplastic transformation induced by
diethylnitrosamine in rat livers.

AOH and alternariol monomethyl ether (AME) are evident to
show strong cytotoxic effect (IC50 values of 3.12–3.17, and
4.82–4.94 μg/mL), while AOH derivative, alternariol 4-methyl-10-
acetyl ether, and alternariol 3,9-dimethyl ether exhibited weak
activities (IC50 values > 50 μg/mL) against human epidermoid
carcinoma (KB and KBv200) cell lines (Tan et al., 2008). AOH
(3.125–100 μM) was found to exert cytotoxic effects in CaCo-2 cells
(Vila-Donat et al., 2015). In another study, AOH (12.5–100 µM) was
found to augment reactive oxygen species (ROS) generation and
eventually exert a cytotoxic effect in CaCo-2 cells (Chiesi et al.,
2015). Moreover, AOH and AME at 3.125–100 µM exerted cytotoxic

and combined cytotoxic effects in CaCo-2 cells (Fernández-Blanco
et al., 2016).

4.2 Induced oxidative stress in cancer cells

Chemotherapeutic agents act through many pathways (Mitrut
et al., 2016; Hossain et al., 2021). Chronic ROS induction and
mitochondrial dysfunction-linked exerting a cytotoxic effect are
one of them (Sharifi-Rad et al., 2020; Scheau et al., 2021).
Therefore, the regulation of oxidative stress is an essential factor
in anticancer therapies (Sharifi-Rad et al., 2021a; Sharifi-Rad et al.,
2021c). AOH (25–200 µM) caused ROS generation, leading to
mitochondrial dysfunction-dependent cytotoxic effect in human
colon carcinoma (HCT116) cells (Bensassi et al., 2012). AOH-
induced ROS production and an increase in cellular stress were
also evident in RAW264.7 macrophages (Solhaug et al., 2012;
Solhaug et al., 2014), and CaCo-2 cells (Fernández-Blanco et al.,
2014; Fernández-Blanco et al., 2015). In another study, AOH and
AME at 0.1–50 µM modulated the redox balance of HT29 cells
(human colon cancer cell line), but without apparent adverse effect
on DNA integrity (Tiessen et al., 2013).

4.3 Effects on inflammation and immunity

There is a relationship between inflammation and cancer (Jain
et al., 2021). Chronic inflammation can induce tumorigenesis by
initiating and perpetuating local inflammatory processes that
promote the proliferation and dissemination of tumor cells.
Therefore, inflammatory pathways may be targeted by alternariol
in an attempt to control cancer (Ali et al., 2022a; Hossain et al., 2022;
Iqbal et al., 2022).

MAPK mitogen-activated protein kinase (MAPK) pathway is
vital for the adaptation of the cell to stress and its activation is highly
involved in the inflammation process (Motyka et al., 2023; Prasher
et al., 2023). The cell inflammation induction by lipopolysaccharide
(LPS) triggers a series of signaling pathways including MAPK and
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB) (Li et al., 2016; Capó et al., 2021; Pezzani et al., 2023). MAPKs
are involved in the phosphorylation of JNK, ERK and p38 which
regulate the expression of MSK 1/2 and then p65 (Xie et al., 2019;
Garzoli et al., 2022; Li et al., 2023). Inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2) are also key enzymes
involved in inflammation and cell stress, being NO an important
regulator of COX-2 expression and activity (Sharifi-Rad et al., 2022c;
Li et al., 2023). AOH showed to lead to the phosphorylation of
cAMP response element-binding (CREB) and increased the
expression of COX-2 (Bansal et al., 2019).

AOH (12.5–50 µg/animal (single topical) in mice showed
dermal toxicity by activating the EP2/cAMP/p-CREB signaling
cascade (Bansal et al., 2019). In this study, an increase in bi-fold
thickness, as well as hyperplasia and higher production of
prostaglandin E2 (PGE2) along with cyclic adenosine
monophosphate (cAMP), COX-2, cyclin D1 as well as
prostanoid EP2 receptor in the skin, was also seen. Moreover,
AOH (1–20 µM) showed to suppress the LPS-induced NF-κB
pathway activation, decreased the secretion of the
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proinflammatory cytokines interleukin (IL)-8, IL-6, tumor
necrosis factor-alpha (TNF-α) and induced IL-10 secretion
(Kollarova et al., 2018). In the latter case, a dose-dependent
downregulation of miR-146a while upregulation of miR-155 was
also seen in THP-1-derived macrophage cells. AOH and AME
have been reported to counteract pro-inflammatory stimuli in
different cell models (Grover and Lawrence, 2017; Kollarova
et al., 2018; Schmutz et al., 2019; Aichinger, 2021). The
hematology and serum biochemistry results obtained in a
study performed in male Sprague-Dawley rats showed that
the administration of AME (1.84, 3.67, or 7.35 μg/kg body
weight/day) for 28 days compromises the immune system
(Tang et al., 2022). The suggested mechanisms involved are
the cholesterol-like intercalation into the cell membranes of
macrophages (Del Favero et al., 2020) and the interaction
with NF-κB signaling mediated via Nrf2 activation (Khandia
et al., 2019).

4.4 Cell cycle arrest

All cells that multiply do so through what is known as the cell
cycle (Asgharian et al., 2022; Sharma et al., 2022). The cell cycle is a
succession of carefully controlled phases so that if things do not go
well in a certain phase (for example, genetic alterations occur), the
cell cannot progress to the next phases of the cycle (Javed et al., 2022;
Chaudhary et al., 2023). In cancer, these checkpoints are disrupted
(Ianoși et al., 2019; Limas and Cook, 2019; Dhyani et al., 2022a).
Some of the drugs and bioactive natural compounds used in cancer
treatment, can restore normal signaling and control pathways or
disrupt the activity of signaling and control pathways that no longer
function normally (Salehi et al., 2019; Sharifi-Rad et al., 2022b;
Taheri et al., 2022). In porcine endometrial cancer cells, AOH (0.39-
15.5 µM) decreased cell number and reduced cells in the S phase
together with the arrest of the cells in the G0/G1 phase
(Wollenhaupt et al., 2008). It is also found to cause abnormal
nuclear morphology and cell cycle arrest at the G2/M phase in
RAW 264.7 macrophage cells (Solhaug et al., 2013; Solhaug et al.,
2014).

4.5 Apoptosis of cancer cells

Apoptosis is a form of programmed cell death that occurs in
our body in which many intrinsic and extrinsic events lead to
characteristic cell changes (morphology) and death (Amin et al.,
2022; Irfan et al., 2022; Javed et al., 2022). Many anticancer
drugs are evident to enhance this process of cell death (Sharifi-
Rad et al., 2021b; Sharifi-Rad et al., 2021e; Dhyani et al., 2022b).
AME (25–200 µM) induced cell death in human colon
carcinoma (HCT116) cells by activating the mitochondrial
pathway of apoptosis (Bensassi et al., 2011). In the same cell
line, AOH induced apoptosis via the mitochondria-dependent
pathway, characterized by a p53 activation, an opening of the
mitochondrial permeability transition pore (PTP), triggering a
loss of mitochondrial transmembrane potential (DWm), and a
downstream generation of anion superoxide and
caspase −9 and −3 activation (Bensassi et al., 2012). In

addition, the deficiency of the pro-apoptotic protein Bax was
also observed in this study. AOH (20 µM) and AME (40 µM)
were found to induce CYP1A1 and cause apoptotic cell death in
murine hepatoma (Hepa-1c1c7, Hepa-1c1c4) cells (Schreck
et al., 2012).

4.6 Genotoxicity and mutagenic effects

Anticancer drugs can also act by exerting genotoxic and
mutagenic effects on cancer cells. These are also reported as
cytotoxic mechanisms (Buga et al., 2019; Islam et al., 2021;
Asgharian et al., 2022). An earlier report suggests that AOH
inhibited DNA strand breakage in an in vitro model (Xu et al.,
1996). AOH (15–30 µM), in RAW 264.7 cells, caused DNA
damage via phosphorylation of histone H2AX and checkpoint
kinase (Chk-1/2). Activated p53 and increased the expression of
p21, Cyclin B, MDM2, and Sestrin 2 likewise, the level of several
miRNAs was also affected (Solhaug et al., 2012). AOH, AME, and
altertoxin II (0–20 µM) caused DNA strand breaking and showed
a mutagenic effect in cultured Chinese hamster V79 cells (Fleck
et al., 2012). In this study, altertoxin II was more potent than
AOH and AME. AOH, in RAW264.7 macrophage cells, caused
DNA damage (double-strand breakage) (Solhaug et al., 2014). In
a recent study, AOH and altertoxin II have been also evident to
cause DNA damage and exert genotoxic effects in nucleotide
excision repair-deficient cells (Fleck et al., 2016). AOH (10 µM)
was found to exert mutagenic effects in V79 and mouse
lymphoma L5178Y tk ± cells (Brugger et al., 2006). Moreover,
in a molecular docking study, AOH and AME were found to
disrupt topoisomerases and lead to genotoxic outcomes
(Dellafiora et al., 2015).

4.7 Anti-proliferative effect

Cancer is characterized by the uncontrolled proliferation of
abnormal cells (Salehi et al., 2021; Sharifi-Rad et al., 2021d).
AOH exerted an anti-proliferative effect in CaCo-2 cells (Vila-
Donat et al., 2015). AOH is also evident to exert an anti-
proliferative influence on RAW 264.7 (Solhaug et al., 2012)
and CaCo-2 cells (Fernández-Blanco et al., 2014). AOH also
inhibited cell proliferation by interfering with the cell cycle in
Ishikawa and V79 cells (Lehmann et al., 2006).

4.8 Autophagy

Anticancer drugs can induce autophagy in cancer cells (Sani
et al., 2017). In a study, of RAW264.7 macrophage cells when
treated with AOH (15–60 µM) the autophagy marker LC3 was
markedly increased (Solhaug et al., 2014). In this study,
activation of p53 and the Sestrin2-AMPK-mTOR-S6K
signaling pathway was also seen.

Anticancer effects of AOH and/or its derivatives from in vitro
studies have been shown in Table 1. The chemical structures of
AOH and its most representative derivatives are represented in
Figure 1.
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TABLE 1 Anticancer effects of alternariol and/or its derivatives in different in vitro experimental studies.

AOH/Derivatives in vitro cell Lines/IC50 Potential anticancer mechanisms Ref.

AOH colon cancer cells AOH 65 μM Bensassi et al. (2012)

HCT116 ↑apoptosis

HCT116 Bax-KO - ↑ROS, ↓O2 radicals

(HCT116 deficient for Bax cells) - ↑mitochondrial PTP

IC50 = 25–200 µM - ↓DWm

control: H2O21 mM AOH 50 μM

↑apoptosis, ↑caspase-3, ↑caspase-9, ↑ p53, ↑DNA damage,
↑Bax, ↑mitochondrial permeabilization ↓ionic homeostasis
↑membrane rupture

↑death-promoting factors cytC, EndoG

colon carcinoma cells AOH 3,125 μM Vila-Donat et al.
(2015)

CaCo-2 ↑LPO, ↑ROS, ↑oxidative stress, ↑cytotoxicity

IC50 = 3.125–100 μM AOH 50–100 µM

control: 1% DMSO ↓cell proliferation

colon carcinoma cells ↓ROS Chiesi et al. (2015)

CaCo-2 ↑cytotoxicity

IC50 = 12.5–100 µM ↓cells viability

control: 1% DMSO

murine macrophage cell lines AOH 30 μM Solhaug et al. (2014)

RAW 264.7 ↑ROS, ↑cellular stress, ↑cell cycle arrest, ↑ autophagy, ↑
senescence, ↑DNA damage, ↑p53 ↑topoisomerase, ↑ Sestrin2-
AMPK-mTOR-S6Ks

IC50 = 15–60 µM ↑abnormal nuclear morphology,

positive control: salt solution (EBSS) ↑vacuolization of the cytoplasm

colon carcinoma cells ↑ROS Fernández-Blanco et al.
(2014)

CaCo-2 ↑oxidative stress

IC50 = 3.125–100 µM ↓ cancer cells proliferation

control: 1% DMSO

porcine endometrial cells ↓cells number Wollenhaupt et al.
(2008)

IC50 = 0.39–15.5 µM ↓cells in the S phase

control: 1% DMSO ↑arrest of the cells in the G0/G1 phase

neoplastic Chinese hamster cell lines DNA strand breakage Fleck et al. (2012)

V79 ↑cell cycle arrest in the G2/M phase

IC50 = 0.1–5 µM ↑HPRT gene mutations

control: 1% DMSO

recombinant yeast ↑androgenic response Stypuła-Trębas et al.
(2017)

Saccharomycescerevisiae strains

EC50 = 269.4 μM.

control: 1% DMSO

(Continued on following page)
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4.9 Other effects

AOH (0–10 µM) showed estrogenic and clastogenic potential,
where replacement of E2 from human estrogen receptors α and β
and increased the transcription of alkaline phosphatase (ALP) and

its enzymatic activity in Ishikawa and V79 cells (human endometrial
adenocarcinoma cell lines) (Lehmann et al., 2006). In this study,
AOH also induced kinetochore-negative micronucleus in both cell
lines. AOH and AOH derivatives, such as AME, alternariol-9-
methyl ether-3-O-sulphate, and maculosin in leukemia, colon,

TABLE 1 (Continued) Anticancer effects of alternariol and/or its derivatives in different in vitro experimental studies.

AOH/Derivatives in vitro cell Lines/IC50 Potential anticancer mechanisms Ref.

AOH murine hepatoma cells ↑ CYP1A1 Schreck et al. (2012)

AME Hepa-1c1c7 ↑apoptosis

Hepa-1c1c4 ↓ cell numbers

Hepa c1c12

IC50 = 20–40 µM

control: 0.4% DMSO

human colorectal cancer cell line ↑cytotoxicity Tiessen et al. (2013)

HT29 ↑intracellular redox status, ↑Nrf2, ↑GSH, ↑GST, ↑oxidative
DNA-damage

IC50 = 0.1–50 µM ↑Nrf2/ARE-dependent gene transcription

control: 1% DMSO

CaCo-2 cells ↑ cytotoxicity, ↓ cell viability Fernández-Blanco et al.
(2016)

IC50 = 3.125–100 µM ↓CaCo-2 cells growth

control:1% DMSO AOH + AME→ ↑cytotoxicity effect

AOH, AME, alternariol 4-methyl-10-
acethyl ether alternariol 3,9-dimethyl
ether

human oral squamous carcinoma cell
line KB

↑cytotoxicity Tan et al. (2008)

multiple-drug resistant human oral
squamous cells KBv200

IC50 = 3.12–3.17 μg/mL

IC50 = 82–4.94 μg/mL

control: 0.1% DMSO

AOH neoplastic Chinese hamster cell lines ↑DNA damage Fleck et al. (2016)

Altertoxin II V79 ↑genotoxicity

hepatocellular carcinoma cell lines

HepG2

Nucleotide excision repair-deficient
cells

AOH, AME neoplastic Chinese hamster cell lines AOH 0.75 μM: Fleck et al. (2012)

Altertoxin II V79 ↑mutagenic effect

IC50 = 0–20 µM ↑HPRT mutation, ↑DNA damage

positive control: salt solution (EBSS) altertoxin II was more potent than AOH and AME

AME human colon carcinoma cells ↑cell death Bensassi et al. (2011)

HCT116 ↑apoptosis

IC50 = 25–200 µM

Abbreviations and symbols: ↑ increased, ↓ decreased, AIF, apoptosis-inducing factor; AME, alternariol monomethyl ether; AOH, alternariol; CYP, cytochrome c, DMSO, dimethylsulfoxide;

DWm, mitochondrial transmembrane potential; EBSS, Earle’s balanced salt solution, EndoG endonuclease G, GSH, glutathione; GST, glutathione transferase; HPRT, hypoxanthine guanine

phosphoribosyl transferase; LPO, lipid peroxidation; NQO, 4-nitroquinoline-N-oxide, Nrf2 nuclear factor erythroid 2-related factor 2, PTP, mitochondrial permeability transition pore, and

ROS, reactive oxygen species.
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FIGURE 1
The chemical structures of Alternariol and its derivatives and their anticancer potential mechanisms. Symbols: ↑ (increased), ↓(decreased).

FIGURE 2
Possible mechanisms of anti-cancer activity of alternariol: (A) Alternariol induces apoptosis through targeting multiple deregulated signaling
pathways in cancer cells, (B) Possible autophagy mechanism of alternariol through the activation of Sestrin2-AMPK-mTOR-S6K signaling pathway, (C)
alternariol moderates the activity of cyclins and cyclin-dependent kinases to induce cell cycle arrest at G2/M phase. Abbreviations and symbols: ↑
increased, ↓ decreased, CDK cyclin-dependent kinase, COX-2 cyclooxygenase-2, CREB cAMP response element-binding, IFN interferon, IL
interleukin, iNOS inducible nitric oxide synthase, LPS lipopolysaccharide, MAPK mitogen-activated protein kinase, mTOR mammalian target of
rapamycin, PGE2 prostaglandin E2, PKA protein kinase A, ROS reactive oxygen species.
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lung and liver cancer cell lines, showed an efficient anticancer
activity against leukemia, colon, lung and liver cancer cells
(Hawas et al., 2015).

AOH (0.1–1000 ng/mL) in steroid hormone receptors,
oestrogens androgens, progestagens, glucocorticoids and the
H295R steroidogenesis assay, exhibited a weak oestrogenic
response and binding of progesterone to the progestagen receptor
was shown to be synergistically increased in the presence of AOH
(Frizzell et al., 2013). In this study, was not observed a significant
change in testosterone and cortisol hormones, but a significant
increase in estradiol and progesterone production. Only one gene
NR0B1 was downregulated, whereas expression of mRNA of
CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and
CYP19 was upregulated. On the other hand, in yeast estrogen
and androgen reporter bioassays, AOH induced a full androgenic
response in this eukaryotic test system (EC50 of 269.4 μM) (Stypuła-
Trębas et al., 2017).

5 Toxicology and safety data

The toxicity of AOH has been studied since the 70s, mainly
through in vitro models (Pero et al., 1973). However, insufficient in
vivo data has prevented the assessment of AOH health risks for
different species, including humans (EFSA Panel on Contaminants
in the Food Chain et al., 2019). Among the first in vivo data, it is
reported that toxins from Alternaria cultures are lethal when
injected intraperitoneally at a dose of 100 mg/kg per day in
DBA/2 mice (Pero et al., 1973). AOH is one of the
70 mycotoxins present in the Alternaria culture and produces
itself, a median lethal dose of 400 mg/kg of body weight when
administered in isolation in DBA/2 mice (Woody and Chu, 1992).

Another in vivo study aimed to study the genotoxic potential of
AOH administered by oral gavage in NMRI mice (Schuchardt et al.,
2014). The oral AOH did not cause an effect on the general health status
during 7 days of observation, at doses up to 2000mg/kg.Of note, the lack
of toxicity could be related to the low systemic absorption of AOH,
which reached blood levels of 0.5 µM representing less than 0.06% of the
administered dose. At this low systemic concentration, AOH was
negative for bone marrow micronuclei test and alkaline comet assay
in the liver but the assays to investigate local genotoxicity in
gastrointestinal tissues failed due to adverse effects of the AOH
vehicle (corn oil) (Schuchardt et al., 2014).

A recent study investigated the effect of AOH in early-stage
embryonic development through the injection of pregnant mice with
AOH for 4 days. The highest dose of 5 mg/kg body weight/day caused
injurious effects on embryonic development from the zygote to the
blastocyst stage and also embryo degradation. Additionally, AOH also
provoked a redox to unbalance in the offspring of mice during early
gestation, suggesting that the toxin could act through an epigenetic
mechanism (Huang et al., 2021). The reproductive and developmental
toxicity of AOH could be related to its ability to act as an estrogen
agonist. In this regard, AOH is a diphenolic compound that has some
structural similarities to estrogen molecules and acts as a weak estrogen
agonist as revealed by reporter assays in H295R cells (Frizzell et al.,
2013). However, in other estrogen-responsive cells, like porcine
granuloma cells, AOH failed to activate estrogen receptor a
(Tiemann et al., 2009). In contrast to the effect on embryonic

development in mammals, the injection of AOH into the yolk sac
did not cause mortality or teratogenic effect in chicken embryos at doses
up to 1 mg per egg (Griffin and Chu, 1983).

There is broader evidence regarding AOH toxicity in vitro
models, including studies performed in bacterial strains and
mammalian cell lines that show genotoxic activity (Solhaug
et al., 2016). In Salmonella strains, AOH induces direct-acting
AT base pair mutagenicity (Schrader et al., 2006). Also, its
capacity to induce frameshift mutations was probed in
Bacillus subtilis and Escherichia coli ND160 (EFSA Panel on
Contaminants in the Food Chain et al., 2019). In mammalian cell
lines, it has been reported that 1-h exposure to AOH in the range
of 5–10 µM causes DNA strand breaks in V79 fibroblasts from
Chinese hamsters, HepG2 hepatoma cells and HT-29 colon cells
(Pfeiffer et al., 2007). Along with the mutagenic effect, AOH is
also responsible for chromosome aberrations that are evident
after 48 h of 10 µM exposure to the mycotoxin. Particularly,
AOH induces kinetochore-negative micronuclei in Ishikawa and
V79 cells, unscheduled DNA synthesis in the primary culture of
human amniotic cells and increased mutations at the
hypoxanthine phosphoribosyltransferase 1 (HPRT) gene in
V79 fibroblasts (Lehmann et al., 2006). Another line of
evidence suggests that DNA damage at molecular and
chromosome levels is mediated by ROS production induced
by AOH (Solhaug et al., 2016). This proposed mechanism is
based on cytotoxicity assays of AOH, performed in cell lines
including HT29, V79, RAW264.7 and Caco2 (Solhaug et al.,
2012; Tiessen et al., 2013; Fernández-Blanco et al., 2014). For
example, when Caco2 cells are exposed to AOH in a range of
15–60 µM for 24 h, there is a significant increase in ROS species,
lipid peroxidation and a decrease in catalase and superoxide
dismutase activities. Despite its oxidative effect, AOH produced
a minor reduction in cell viability on Caco2, even at doses of
100 µM for 72 h (Fernández-Blanco et al., 2014).

Tiessen et al. (2013) also reported that AOH and AME
induce an oxidative response in HT29 cells, including a
transient decrease in glutathione levels, with a short exposure
of 1 h. However, this effect did not produce DNA damage
probably due to the activation of the redox-sensitive
transcriptional response elicited by the transcription of Nrf2
(Tiessen et al., 2013). Another proposed mechanism for AOH
genotoxicity is related to the inhibition of DNA topoisomerase I
and IIa (Fehr et al., 2009). This enzyme is important to resolve
topological constraints during DNA replication and therefore, it
is likely that AOH-induced inhibition of topoisomerases could
be responsible for the clastogenic effects observed in cell lines.

6 Limitations

Therapeutic limitations derive from insufficient knowledge
of the pharmacokinetics, solubility, bioavailability, metabolism
of alternariol, insufficient understanding of the molecular
targets of action at the tumour cellular level, and their
regulatory pathways. Although only experimental in vitro
pharmacological studies have demonstrated and justified the
anticancer effects of alternariol, translational pharmacological
studies establishing the effective anticancer dose in humans, as
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well as clinical studies in humans, are lacking. Also, the
development of new nanoformulations of alternariol in which
it can be incorporated into different nanocarriers at the target
should be the focus of future research. As a result, alternariol
cannot be used in anticancer therapy as a first-line treatment,
but only as an adjuvant in combination with standard
chemotherapeutic treatment.

7 Concluding remarks

AOH and its derivatives, such as AME, alternariol-9-methyl ether-3-
O-sulphate, alternariol 3,9-dimethyl ether and altertoxin II, exhibit an
anticarcinogenic effect through several pathways, with ROS generation
leading to the induction of oxidative stress and a cytotoxic effect linked to
mitochondrial dysfunction, inflammatory pathway, cell cycle arrest in
G0/G1, G2/M and S phases, apoptotic cell death, genotoxic and
mutagenic mechanisms, antiproliferative, autophagy, as well as
estrogenic and clastogenic mechanisms. To our knowledge, no other
studies have explored the anticarcinogenic effect of AOH or its
metabolites in animal models or clinical trials. This was corroborated
by a search of the literature and also of US and European databases for
completed or ongoing clinical trials (www.clinicaltrail.gov, www.
clinicaltrailregister.eu). Given these promising results of experimental
pharmacological studies, AOH and its derivatives can be considered
potential adjunctive chemotherapeutic agents.
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Glossary

AIF apoptosis-inducing factor

ALP alkaline phosphatase

AME alternariol monomethyl ether

AOH alternariol

cAMP cyclic adenosine monophosphate

CDK cyclin-dependent kinase

Chk-1/2 checkpoint kinase

COX-2 cyclooxygenase-2

CREB cAMP response element-binding

CYP Cytochrome c

DMSO dimethylsulfoxide

DWm mitochondrial transmembrane potential

EBSS Earle’s balanced salt solution

EndoG endonuclease G

GSH glutathione

GST glutathione transferase

HPRT hypoxanthine guanine phosphoribosyl transferase

IFN interferon

IL interleukin

iNOS inducible nitric oxide synthase

LPO lipid peroxidation

LPS lipopolysaccharide

MAPK mitogen-activated protein kinase

mTOR mammalian target of rapamycin

NF-κB nuclear factor kappa-light-chain-enhancer of activated B
cells

NQO 4-nitroquinoline-N-oxide

Nrf2 nuclear factor erythroid 2-related factor 2

PGE2 prostaglandin E2

PKA protein kinase A

PTP mitochondrial permeability transition pore

ROS reactive oxygen species

TNF-α tumor necrosis factor-alpha
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