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Cytochrome P450 (CYP) is a superfamily of heme-containing oxidizing enzymes
involved in the metabolism of a wide range of medicines, xenobiotics, and
endogenous compounds. Five of the CYPs (1A2, 2C9, 2C19, 2D6, and 3A4) are
responsible for metabolizing the vast majority of approved drugs. Adverse drug-
drug interactions, many of which are mediated by CYPs, are one of the important
causes for the premature termination of drug development and drug withdrawal
from the market. In this work, we reported in silicon classification models to
predict the inhibitory activity of molecules against these five CYP isoforms using
our recently developed FP-GNN deep learning method. The evaluation results
showed that, to the best of our knowledge, the multi-task FP-GNN model
achieved the best predictive performance with the highest average AUC
(0.905), F1 (0.779), BA (0.819), and MCC (0.647) values for the test sets, even
compared to advanced machine learning, deep learning, and existing models.
Y-scrambling testing confirmed that the results of the multi-task FP-GNN model
were not attributed to chance correlation. Furthermore, the interpretability of the
multi-task FP-GNN model enables the discovery of critical structural fragments
associated with CYPs inhibition. Finally, an online webserver called DEEPCYPs and
its local version software were created based on the optimal multi-task FP-GNN
model to detect whether compounds bear potential inhibitory activity against
CYPs, thereby promoting the prediction of drug-drug interactions in clinical
practice and could be used to rule out inappropriate compounds in the early
stages of drug discovery and/or identify new CYPs inhibitors.
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1 Introduction

Cytochrome P450 (CYP) is a superfamily of heme-containing oxidase enzymes
found in the smooth endoplasmic reticulum and mitochondria of liver cells and
intestines (Neve and Ingelman-Sundberg, 2010). In humans, 57 CYP isoforms have
been found to be involved in the oxidative metabolism of various xenobiotics as well as
organic endogenous chemicals (Arimoto, 2006; Redlich et al., 2008). Five CYPs isoforms
(CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) play crucial roles in
approximately 90% of metabolic reactions (Arimoto, 2006). For example, CYP1A2 is
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responsible for metabolizing about 9% of clinically used drugs,
such as antipsychotics and antibiotics (Chen et al., 2017).
CYP2C9 contributes to the metabolism of around 15% of all
medications, and plays an important role in the metabolism of
routinely used pharmaceuticals such as non-steroidal anti-
inflammatory drugs (NSAIDs) and warfarin (Daly et al., 2017;
Goldwaser et al., 2022, 9). Many therapeutic drugs including
clopidogrel, voriconazole, and proton pump inhibitors are
metabolized by CYP2C19 (Botton et al., 2021, 19).
Furthermore, CYP3A4 and CYP2D6 are responsible for
approximately 30% and 20% of clinical drug metabolism,
respectively (Bojić et al., 2019). Avoiding the inhibition of
drug-metabolizing CYPs is a major challenge in drug
development, as inhibiting these CYP isoforms may lead to
drug-drug interactions and significant adverse effects. For
example, Miguel and Albuquerque illustrated that most
antitumor drugs are metabolized by CYP3A4, and their co-
administration with antidepressants that inhibit CYP3A4 (e.g.,
sertraline, fluoxetine, fluvoxamine, and paroxetine) may result in
cause loss of efficacy or increased toxicity (Miguel and
Albuquerque, 2011). In 2016, over two million significant
cases of adverse drug reactions were reported in the
United States, of which approximately 26% were judged to be
preventable drug-drug interactions (Ho et al., 2016; Le and Le,
2016). For example, Tateishi and coworkers reported the risk of
hypoglycemia prompted by the combination of bucolome and
glimepiride. Such hypoglycemia may be caused by CYP2C9-
mediated drug interactions in combination with bucolome
(Tateishi et al., 2021). Therefore, determining the potential for
CYPs inhibition can help weed out underperforming drug
candidates in the early drug discovery process to reduce the
occurrence of termination of drug development programs, drug
withdrawal from the market, or restriction of therapeutic use,
which is crucial for drug discovery and development.

Various computational approaches have been used to predict
or explore CYP-mediated metabolism and inhibition. It is
difficult to accurately predict CYP450 inhibitors using
structure-based techniques like molecular docking and
pharmacophore mapping due to the flexible conformation of
CYP450 (Li et al., 2018). In contrast, machine learning (ML)- and
deep learning (DL)-based quantitative structure-activity
relationship (QSAR) approaches, as the most popular ligand-
based methods, are widely utilized to predict CYP450 inhibitors
(Tyzack et al., 2016; Xiong et al., 2019). For example, previous
studies often used conventional ML (CML) and DL methods to
predict different CYP isoform inhibitors with different
prediction accuracies (Cheng et al., 2011; Sun et al., 2011).
Considering the high sequence homology and structural
similarity of binding active sites in the CYP family (Graham
and Peterson, 1999; Sun et al., 2011), multi-task models can
simultaneously predict inhibitors of different CYP isoforms to
provide better predictive power. In 2018, Li et al. (2018)
constructed a multi-task DNN model for the five CYP
isoenzymes with an average prediction accuracy of 88.7% for
the external test datasets. In 2021, Nguyen-Vo et al. (2021).
developed iCYP-MFE to further improve the prediction
accuracy of CYPs inhibitors using multitask learning and
molecular fingerprint-embedded encoding .

Recently, we have developed a new DL architecture called FP-
GNN (fingerprints and graph neural networks), which combined
molecular graph with three molecular fingerprints to improve the
ability of deep learning models to predict molecular properties
(Cai et al., 2022). Herein, we used a multi-task FP-GNN DL
architecture (Figure 1) to construct classification model for
predicting the inhibitory activity of molecules against five
CYPs (1A2, 2C9, 2C19, 2D6, and 3A4), which achieved state-
of-the-art performance compared to baseline predictive models
based on four conventional machine learning methods, three
deep learning algorithms, as well as two existing models.
Moreover, Y-scrambling testing verified that the model results
were not by chance. The interpretability analysis provided critical
structural fragments associated with CYPs inhibition. An online
webserver called DEEPCYPs (https://deepcyps.idruglab.cn/) and
its local version python software (https://github.com/idrugLab/
FP-GNN_CYP) were established to prioritize compounds in drug
discovery to avoid adverse reactions and/or identify new CYP
inhibitors.

2 Materials and methods

2.1 Dataset collection and preparation

We selected the modelling CYP inhibitors datasets reported
by (Nguyen-Vo et al., 2021). The modelling datasets contain
inhibitors toward five major CYP isoforms (CYP1A2, CYP2C9,
CYP2C19, CYP2D6, and CYP3A4). Briefly, chemical data were
gathered from six datasets (AID 1851, AID 410, AID 883, AID
889, AID 891, and AID 884) from PubChem BioAssay Database
(Wang et al., 2017), which contains 71,456 samples. The dataset
AID 1851 contains compounds targeting five isoforms of
CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4.
Samples from datasets AID 410, AID 883, AID 899, AID 891,
and AID 884 target compounds of the CYP1A2, CYP2C9,
CYP2C19, CYP2D6, and CYP3A4 isoforms, respectively. Such
bioassay data come from the same institution (National Center
for Advancing Translational Sciences), which ensures consistent
experimental protocols for gathering data and minimizing
impact of noise. The datasets collected and processed by
(Nguyen-Vo et al., 2021) were briefly described as follows: 1)
Elimination of inorganics and mixtures; 2) Changing SMILES to
canonical SMILES and discarding salts based on XlogP values; 3)
Elimination of compounds with multiple structural patterns
based on canonical SMILES to avoid incomplete duplication;
and 4) Deduplication. Finally, the datasets containing
65,467 samples were obtained. The number of shared
compounds was 4,352, which were present in the five data
sets. To limit data leakage and make multitask benefits more
interpretable, they adopted stringent structure-based data
splitting method to generate training, validation, and test sets.
(Nguyen-Vo et al., 2021) employed k-mean clustering with k =
6 to divide the samples into six groups. They calculated the
within-cluster sum of squared (WSS) errors with different k
values by using the Elbow method and chose the k value with the
smallest WSS. The validation and test sets for each isoform were
created with 2,000 and 1,000 samples, respectively. The
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50,467 remaining samples served as training data. The numbers
of samples of training data for CYP1A2, CYP2C9, CYP2C19,
CYP2D6, and CYP3A4 isoforms were 9,357, 9,244, 9,871,

10,284, and 11,711, respectively. (Nguyen-Vo et al., 2021).
The final modelling datasets are freely available at (https://
github.com/idrugLab/FP-GNN_CYP).

FIGURE 1
Model construction pipeline.
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2.2 Multi-task FP-GNN framework and
model training protocol

In this study, we used a multi-task FP-GNN framework for
predicting inhibition of molecules against the five major CYP
isoforms (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4).
The technological process of our work is described in Figure 1.
Recently, to better forecast molecular properties such as
physicochemical properties, biological activities, and ADMET
properties, we developed the FP-GNN DL algorithm to
concurrently learn molecular graph information and mixed
molecular fingerprints information (Cai et al., 2022). For one
thing, the fingerprint-based network (FPN) module of the FP-
GNN architecture uses an artificial neural network (ANN) to
learn information from two substructure-based molecular
fingerprints (PubChem FP and MACCS FP) as well as a
pharmacophore-based fingerprint (Pharmacophore ErG FP). For
another, the graph-based module of the FP-GNN architecture
utilizes a spatial graph neural network (GNN) with an attention
mechanism to acquire structural information in molecular graphs.
The GNN module encodes pre-defined atomic and chemical bond
information into molecular graph structure data, and the model
communicates the information between surrounding atoms based
on the molecular graph structure. It gradually expands over the
entire molecular graph. Meanwhile, we use the attention mechanism
to update the nodes, focusing on the interactions between
surrounding atoms and atoms necessary for the relevant
attributes in training. We combine knowledge of all atoms in a
molecule to accurately predict its attributes. Finally, FP-GNN
architecture employs full connect layers (FCL) to fuse the
features from both GNN and FPN paths, and then outputs
molecular property prediction results.

The FP-GNN deep learning algorithm (https://github.com/
idrugLab/FP-GNN) we developed is a general QSAR modeling
method that can be used to build predictive models to predict
the properties of molecules, including physicochemical properties,
biological activity and ADMET properties. Our lab reported the FP-
GNN model achieved the best predictive performance on 13 public
datasets (covering biological activities, physicochemical properties,
physiology, and toxicity properties), an unbiased LIT-PCBA dataset,
and 14 phenotypic screening datasets for breast cell lines (Cai et al.,
2022). We successfully selected five compounds using the FP-GNN
model to target cycle-dependent family kinase 9 (CDK9) inhibition
and demonstrated good anti-cancer activity on eight tumor cells by
in vitro cell assay. (Zhang et al., 2022). However, most datasets in
drug discovery feature significant linkages between subtasks. If only
a single-task model is used for modelling, data association
information between subtasks would be lost. Therefore, we
developed the multi-task FP-GNN framework to prevent data
loss from subtasks, which was then successfully used to
accurately predict inhibitors of four poly ADP-ribose polymerase
(PARP) isoforms (Ai et al., 2022). In this study, we continue to
extend the application of the multi-task FP-GNN method in
predicting the inhibitory activity of molecules against five CYPs
(1A2, 2C9, 2C19, 2D6, and 3A4, Figure 1). Specifically, the multi-
task FP-GNN uses a parameter-sharing multi-task learning
approach, inherits the molecular graph and molecular
fingerprints modules of the single-task FP-GNN model, and

finally expands the fusion module into a multi-task output
module (Figure 1, middle). All subtasks share the weights of
molecular graph and molecular fingerprint modules and extract
common features of samples in subtasks. The multi-task output
module of FP-GNN accepts the feature information from both GNN
(molecular graph path) and ANN (fingerprints path), and then uses
the data of different subtasks to optimize the weight of the network,
and finally outputs the specific prediction results of different
subtasks.

The Binary Cross Entropy loss function (BCELoss) is
commonly used in binary classification tasks, where the goal is
to predict a binary outcome (e.g., positive or negative). In the case
of multitask learning, where there are multiple subtasks to be
predicted, the BCELoss function can be used to calculate the loss
for each subtask separately and then averaged to obtain the overall
loss for the multitask model. The detailed Loss is expressed as
follows:

Loss � −1
n
∑n

i�1 Labeli( × logPredi + 1 − Labeli( )
× log 1 − Predi( )) (1)

Where, n is the number of training molecules in each batch;
Label is the real Label of the molecule. Pred is the molecular
prediction result. For multi-task prediction, the loss function
calculates the loss of each subtask and takes the average value as
the total loss function of multitask.

2.3 The baseline machine learning and deep
learning algorithms

We constructed fingerprint- and graph-based models
(Supplementary Table S1) to fairly compare the multi-task FP-
GNN model in the CYPs inhibitors prediction tasks. Fingerprint-
based prediction models were constructed based on the Morgan
fingerprint (similar to ECFP, 1,024 bits) using four CML algorithms,
i.e., Naive Bayes (NB) (Duda and Hart, 1973), random forest (RF)
(Svetnik et al., 2003), support vector machine (SVM) (Zernov et al.,
2003), and extreme gradient boosting (XGBoost) (Chen and
Guestrin, 2016) and one DL method, deep neural networks
(DNN) (McCulloch and Pitts, 1943). Two DL algorithms were
used to create graph-based prediction models, i.e., graph
attention network (GAT) (Veličković et al., 2018) and graph
convolutional networks (GCN) (Kipf and Welling, 2017). A basic
overview of these CML and DL techniques can be obtained
elsewhere (Wu et al., 2017; He et al., 2021). All these CML and
DL models, as well as FP-GNN models presented here were trained
on the CPU (Intel(R) Xeon(R) Silver 4216 CPU @ 2.10 GHz) and
GPU (NVIDIA Corporation GV100GL [Tesla V100 PCIe 32 GB]).
Meanwhile, we compared themulti-task FP-GNNmodel to reported
models, such as SuperCYPsPred (Banerjee et al., 2020) and iCYP-
MFE (Nguyen-Vo et al., 2021).

2.4 Performance evaluation of models

The performance of the multi-task FP-GNN model, the
baseline CML and DL models were evaluated using the
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following four metrics: the area under the receiver operating
characteristic (AUC), F1-measure (F1 score), Matthews
correlation coefficient (MCC), and balanced accuracy
(BA). To evaluate the effectiveness of classification models
(Niijima et al., 2012; Li et al., 2020; Jiang et al., 2021;
Nguyen-Vo et al., 2021), we also used the AUC value to
optimize and choose the best models. Such metrics are
defined as follows:

F1 � 2 × Precision × Recall

Precision + Recall
� 2 × TP

2 × TP + FN + FP
(2)

MCC � TP × TN − FN × FP��������������������������������������������
TP + FN( ) × TP + FP( ) × TN + FN( ) × TN + FP( )√

(3)
BA � TPR + TNR

2
� SE + SP

2
(4)

SP � TNR � TN

TN + FP
(5)

SE � TPR � Recall � TP

TP + FN
(6)

where TP, TN, FP, FN, SP, SE, TNR, and TPR represent the number
of true positives, true negatives, false positives, false negatives,
specificity, sensitivity, true negative rate, and true positive rate
respectively.

2.5 Model applicability domain

The applicability domain (AD) analysis helps us to figure out
whether the built QSAR model can be applied to any set of
compounds (Peter et al., 2019). For AD analysis, we used the
Euclidean distance-based method (DM), which is based on
structural similarity. Here is the detailed formula:

DT � dave + Z × θ (7)
where dave is the average Euclidean distance between each compound
in the training set and its nearest k compounds. θ is the corresponding
standard deviation. Z is an optional parameter representing the
significance level. First, RDKit software is used to calculate the
Pharmacophore ErG, PubChem, and MACCS fingerprints of the
test and training sets, and then the average of the Euclidean distance is
calculated. For each molecule in the training set, dave and θ are
calculated from the Euclidean distances of the k nearest neighbors.
Finally, the Euclidean distance between each molecule in the test set
and the nearest neighbor molecule in the training set is determined.
The compound is regarded to be outside the domain (OD) if the
distance exceeds the threshold of DT. Otherwise, it has entered the
inside domain (ID). We utilize the test set to discover acceptable
parameters k and Z, and then compute the threshold of the AD of the
model.

FIGURE 2
The data occupation distribution for the five isoforms in the CYPs modelling datasets.
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3 Results and discussion

3.1 Datasets analysis and model
construction

Figure 2 confirms strong correlations between the datasets of the
five isoforms used for modelling, as they share a large number of
common molecular entities. As shown in Figure 3, the compounds
in the CYPs modelling datasets were dispersed over a wide range of
molecular weight (32.042–1701.206) and LogP (−15.231–20.751),
indicating that the compounds in the modelling datasets have a vast
chemical space. Meanwhile, each isoform had a comparable
distribution compared to the total dataset, indicating that the five
CYP isoforms are closely linked and suitable for multitasking
modelling processing. Furthermore, as shown in Figure 4, Bemis
Murcko scaffold (Bemis and Murcko, 1996) analysis revealed that
the fraction of scaffolds in the modeling datasets ranged from
22.33% to 25.47%, showing a significant structural diversity of
compounds among the five CYP subtypes.

3.2 Performance of the multi-task FP-GNN
model on CYPs datasets

The comparison results of the multi-task FP-GNN model
with other advanced CML, DL, and reported models are shown
in Table 1; Supplementary Tables S2–S4. Table 1;
Supplementary Tables S2–S4 illustrate that the multi-task FP-
GNN model achieves the best overall performance on these five
CYP isoforms, with the highest average AUC (0.905), F1
(0.779), BA (0.819), and MCC (0.647) values for the test sets.
Specifically, taking the AUC value as the main evaluation
metric, in four of the five subtypes (CYP1A2, CYP2C9,
CYP2C19, and CYP3A4), the multi-task FP-GNN model
ranked first in terms of predictive performance. Meanwhile,
the multi-task FP-GNN model achieved second-ranked
predictive performance on CYP2D6 (AUC = 0.883). The
single-task and multitask models of iCYP-MFE have the best
performance on CYP2D6, while SuperCYPsPred based on the
Morgan fingerprints performed as well on CYP2C19 as the

FIGURE 3
The distribution of molecular chemical space of CYP1A2 (A), CYP2C9 (B), CYP2C19 (C), CYP2D6 (D), and CYP3A4 (E). LogP (X-axis) and molecular
weight (MW, Y-axis) were used to define chemical space. RDKit software was used to calculate MW and LogP.
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multi-task FP-GNN model. In addition, Supplementary Tables
S2–S4 indicate that the multi-task FP-GNN model achieves the
best-performance on other metrics. For example, in three of the
five subtypes (CYP2C9, CYP2C19, and CYP3A4), the multi-task
FP-GNN model ranked first in terms of F1, BA, and MCC
values. Such results show that, compared with the current
advanced CML, DL, as well as the existing multi-task models,
the multi-task FP-GNN model presented here exhibits the state-
of-the-art (SOTA) performance in predicting the inhibitory
activity of compounds against the five CYPs isoforms.
Furthermore, the compounds from the test set were not

mispredicted for all targets (Supplementary Figure S1). The
optimal set of hyperparameters for each CYP isoform is
provided in Supplementary Table S5.

In addition to the multi-task FP-GNN model, the single-task
FP-GNN model also exhibits good and/or comparable
performance results, achieving the second-ranked overall
predictive performance on the CYPs modelling datasets with
higher average AUC (0.897), F1 (0.773), BA (0.812), and MCC
(0.631) values. Specifically, the single-task FP-GNN model
performed best on three CYP isoforms (CYP1A2, CYP2C9, and
CYP3A4) compared to other CML, DL, as well as the existing
multi-task models. Clearly, the FP-GNN model without the multi-
task module still showed superior prediction performance on these
five CYPs isoforms, indicating the superiority of the FP-GNN DL
algorithm.

Although the FP-GNN model showed remarkable predictive
performance in both single-task and multi-task models, the
multi-task FP-GNN model outperformed the single-task FP-
GNN model in CYPs inhibitors prediction task. The five CYPs
isoforms datasets are highly correlated (Figure 1), and the multi-
task FP-GNN model can capture relevant information among
subtasks, thereby significantly improving the performance of the
model.

Y-scrambling testing was used to demonstrate that the results
were not attributed to chance correlation. As illustrated in
Supplementary Figure S2, the AUC values of the multi-task FP-
GNN model were significantly higher than those of any of the
Y-scrambled models, confirming that the results were not chance
correlations.

3.3 Model applicability domain

The amounts of compounds outside the AD in the test sets at
different Z and k values are shown in Supplementary Table S6. It

FIGURE 4
The Bemis Murcko scaffold analysis of CYP1A2 (orange),
CYP2C19 (green), CYP2C9 (purple), CYP2D6 (yellow), and CYP3A4
(blue) inhibitors. The five CYPs isoforms (X-axis) and the fraction of
scaffolds in the modeling datasets (scaffolds/compounds (%),
Y-axis) were used to determine structural diversity.

TABLE 1 The AUC value of FP-GNN on CYPs dataset compared to other baseline models.

Model CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 AVE

SuperCYP-MACCS31 0.820 0.790 0.880 0.880 0.870 0.848

SuperCYP-Morgan31 0.830 0.870 0.900 0.880 0.880 0.872

iCYP-MFE (single)19 0.900 0.850 0.860 0.930 0.880 0.884

iCYP-MFE (multi)19 0.910 0.890 0.860 0.930 0.890 0.896

DNN::Morgan 0.904 0.878 0.887 0.848 0.883 0.880

RF::Morgan 0.910 0.891 0.881 0.867 0.891 0.888

SVM::Morgan 0.909 0.856 0.898 0.838 0.884 0.877

NB::Morgan 0.848 0.826 0.822 0.816 0.829 0.828

GCN 0.921 0.860 0.886 0.875 0.900 0.889

XGB::Morgan 0.888 0.857 0.868 0.842 0.864 0.864

GAT 0.928 0.888 0.885 0.861 0.896 0.891

FP-GNN (single) 0.928 0.893 0.879 0.881 0.907 0.897

FP-GNN (multi) 0.930 0.902 0.900 0.883 0.911 0.905

Bold font illustrates the models that outperformed all other models.
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can be shown that when Z values increased and k remained
constant, the number of compounds outside the AD decreased.
Afterward, the multi-task FP-GNN model was used to predict the
ID and OD chemicals in the test sets at various k and Z values, and
the detailed performance of each data set is presented in
Supplementary Table S7. We found that when k = 3, Z = 0.2,
the overall evaluation metrics of the model were improved, and it
was able to discriminate between ID and OD compounds of the
CYP datasets to the maximum extent. The predictive performance
of ID compounds (AUC = 0.920, F1 = 0.804, BA = 0.842, and
MCC = 0.689) was significantly better than that of OD compounds
(AUC = 0.852, F1 = 0.692, BA = 0.748, and MCC = 0.510). The
results showed that our defined AD is appropriate for the suggested
multi-task FP-GNNmodel and it might help the model serve more
properly in real-world situations.

3.4 Interpretation of the multi-task FP-GNN
model

To understand the multi-task FP-GNNmodel for the prediction
of CYP inhibitors, we accomplished an interpretation of its GNN
and FPN modules. Taking an active molecule (Miconazole,
CHEMBL91, Figure 5A) and an inactive molecule (Figure 5B) as
examples, the multi-task FP-GNN architecture can calculate the
attention coefficients of neighboring atoms and map them to the
bonds that connect them. Chemical fragments contribute more to
the prediction of CYPs inhibitory activity when the attention
coefficient for the molecule is higher. In other words, the
portions of the molecule colored more darkly were more
essential in predicting whether the molecule can inhibit CYPs,
and vice versa.

FIGURE 5
The importance of molecular structures during the prediction process of the GNN module of the multi-task FP-GNN model on the CYPs dataset.
The darker the color, the more important are for the structures. (A) Represents an active molecule on the five isoforms. (B) Represents an inactive
molecule on the five isoforms.

TABLE 2 The top ten significant bits from the FPN module of the multi-task FP-GNN model on the CYPs datasets.

Rank Importance Mixed FP Bit FP Class Meaning

1 0.00210 35 MACCS CH2 = A

2 0.00184 31 MACCS CQ(C) (C)A

3 0.00180 489 Pharmacophore ErG (‘Negative’, ‘Negative’, 7)

4 0.00177 493 Pharmacophore ErG (‘Negative’, ‘Negative’, 11)

5 0.00173 640 PubChem >= 2 P

6 0.00164 369 Pharmacophore ErG (‘Acceptor’, ‘Hydrophobic’, 13)

7 0.00153 956 PubChem C (~C) (~H) (~O) (~O)

8 0.00139 371 Pharmacophore ErG (‘Acceptor’, ‘Hydrophobic’, 15)

9 0.00122 612 PubChem >= 32 H

10 0.00119 32 MACCS QX

Q: atom of non-C, or non-H.

X: atom of other than H, C, N, O, Si, P, S, F, Cl, Br, I.

A: any valid periodic table element symbol.
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In addition to the GNN module, we also investigated the
interpretation of the FPN module on the CYP modelling
datasets. Table 2 summarizes the top ten most significant bits,
which represent important structural fragments or
pharmacophore feature information that contribute greatly to
the inhibitory activity of CYPs. Collectively, these fragments
may facilitate in the design and optimization of novel CYPs
inhibitors.

3.5 Webserver construction and use

DEEPCYPs, an online platform for the prediction of cytochrome
activity, was constructed based on the established multitask FP-
GNN model. Users can draw a structure online, input or upload
structures in SMILES format to conveniently predict the inhibitory
activity and selectivity of molecules against five major CYP isoforms
(e.g., CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4)

FIGURE 6
(A) Represents the bioactivity prediction diagram of the DEEPCYPs. (B) Represents a case result display of the model applicability domain module of
the DEEPCYPs. The chemical structure of thiabendazole is used as an example.
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(Figure 6A, left). Existing machine learning-based predictive
models, including our multi-task FP-GNN model, are
classification models that can only assess the likelihood of
inhibiting CYPs (i.e., probability score, 0–1) for compounds of
interest. The 0.5 threshold is used to determine whether or not a
molecule inhibits CYP. Based on the predicted score, DEEPCYPs
can be used to assess the relative inhibitory potential of compounds
against specific CYP subtypes. The higher the score, the more likely
it is that the subtype will be suppressed.

(Banerjee et al., 2020) constructed SuperCYP using the RF
model with two types of molecular fingerprints (Morgan and
MACCS). iCYP-MFE (Nguyen-Vo et al., 2021) was developed by
multi-task convolutional neural networks combined with molecular
fingerprint embedding features. Compared to SuperCYP,
developing the DEEPCYPs dataset is larger than SuperCYP,
which is important for the improvement of the model
performance. Compared with SuperCYP and iCYP-MFE,
DEEPCYP can not only learn effective and complementary
information from molecular graph and molecular fingerprints but
also learn the information dependent on each other in relevant data
sets, which is beneficial to improve the prediction accuracy of the
model. Furthermore, unlike SuperCYP and iCYP-MFE, users can
obtain the distance between the input molecule and the k-nearest
training instances on theModel Applicability Domain module of the
DEEPCYPs (Figure 6B). Detailed comparison of DEEPCYPs with
the advanced existing models such as SuperCYP and iCYP-MFE is
shown in Table 3. Clearly, DEEPCYPs shows advantages in terms of
accuracy, functionality and ease of use.

To validate website prediction performance, we chose molecules
within the dataset (thiabendazole and fenofibrate) and molecules
outside the dataset (quinidine and telithromycin) that have been
reported to be CYP-related inhibitors. Taking thiabendazole as an
example (Figure 6A, right), it has a predicted score of 0.998 in the
CYP1A2 model, indicating that it has a strong inhibitory effect on
the CYP1A2 isoform. Indeed, thiabendazole is an effective and
specific inhibitor of CYP1A2 (IC50 = 0.830 μM) (Thelingwani

et al., 2009), proving the accuracy and usability of the
DEEPCYPs webserver. In addition, the bioactivity prediction
results of quinidine (a potent CYP2D6 inhibitor, IC50 =
0.156 μM) (McLaughlin et al., 2005; Kang et al., 2019),
telithromycin (a potent CYP3A4 inhibitor, IC50 = 11.800 μM) (Li
et al., 2019), and fenofibrate (an effective CYP2C19/2C9 inhibitor;
CYP2C19, IC50 = 0.200 μM; CYP2C9, IC50 = 9.700 μM) (Schelleman
et al., 2014) by the DEEPCYPs are shown in Supplementary Figure
S3. The predicted results are generally consistent with real-world
drug inhibitory effects, indicating that the DEEPCYPs webserver can
not only predict whether the compound has an inhibitory effect on
individual CYP450 isoform but also predict whether the compound
is selective for dual CYP450 isoforms. However, we must declare
that DEEPCYPs can only give prediction results, but it does not
mean that the predictions are correct. The predictions can be
combined with experiments for further verification. The presence
of predictive models is that large-scale compound libraries can be
quickly evaluated, andmodels can outline which chemical fragments
are more likely to produce CYP inhibitors, which can help optimize
subsequent lead compounds.

4 Conclusion

The multi-task FP-GNN was used for the prediction of CYPs
inhibitors, which outperformed the baseline models, such asMorgan
fingerprint-based ML models (i.e., NB, RF, SVM, XGBoost, and
DNN), graph-based DL models (i.e., GAT and GCN), and current
reported models (i.e., SuperCYP and iCYP-MFE). Therefore, we
constructed DEEPCYPs, a user-friendly webserver for predicting the
inhibitory activity of molecules against the five CYP isoforms
(CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) based on
the multi-task FP-GNN model. We anticipate that DEEPCYPs and
its python software can support scientific communities in
prioritizing molecules in drug discovery practice and/or
identifying CYP inhibitors.

TABLE 3 The detailed comparison of DEEPCYPs and the most advanced existing models (SuperCYP and iCYP-MFE).

Model Average values Interpretation Model applicability
domain

Webserver

AUCa F1b BAc

DEEPCYPs
(Our)

0.905 0.779 0.819 Yes Yes ■ Input format: draw a structure online, input or upload structures in
SMILES.

■ Prediction: realize both single-molecule prediction and batch-molecules
prediction simultaneously

■ Model Applicability Domain: users can get the distance between the
input molecule and the k-nearest training instances

iCYP-MFE
(multi)

0.896 0.754 0.796 No No Yes, but not work

SuperCYP-
MACCS

0.848 0.572 0.710 No No ■ Input format: input structures in SMILES.

SuperCYP-
Morgan

0.872 0.538 0.704 ■ Prediction: single-molecule prediction

aAUC: The area under receiver operating characteristic.
bF1: F1-measure.
cBA: balanced accuracy.
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