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Sleep, torpor, and hibernation are three distinct hypometabolic states. However,
they have some similar physiological features, such as decreased core body
temperature and slowing heart rate. In addition, the accumulation of
adenosine seems to be a common feature before entry into these three states,
suggesting that adenosine and its receptors, also known as P1 receptors, may
mediate the initiation and maintenance of these states. This review, therefore,
summarizes the current research on the roles and possible neurobiological
mechanisms of adenosine and P1 receptors in sleep, torpor, and hibernation.
Understanding these aspects will give us better prospects in sleep disorders,
therapeutic hypothermia, and aerospace medicine.
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1 Introduction

Sleep, torpor, and hibernation are three distinct states which can reduce energy expenditure.
Sleep, which takes up nearly one-third lifetime of most mammals and birds, is divided into rapid
eye movement (REM) sleep and non-REM (NREM) sleep. REM sleep is characterized by phasic
changes in various autonomic functions and an elevation in metabolic rate. However, NREM
sleep is characterized by the organism’s active contact with the environment and by a decrease in
metabolism, body temperature (Tb), and energy expenditure (Silvani and Dampney, 2013;
Schmidt, 2014; Silvani et al., 2018). Torpor is an energy-saving strategy in most mammals and
birds, sometimes lasting only for a few hours, that helps organisms cope with the stress of an
adverse environment (Ruf and Geiser, 2015). Just like NREM sleep, torpor state occurs with a
reduction in Tb and metabolic rate (Ruf and Geiser, 2015). Hibernation, also called multi-day
torpor, is a seasonal energy conservation strategy that reduces Tb, energy expenditure, and water
loss (Geiser, 2013; Ruf and Geiser, 2015). Most hibernators generally remain in hibernation for a
winter, which helps them effectively withstand the cold environment.

Adenosine is a ubiquitous endogenous cell signal transducer and regulator, whichmainly
acts by activating 4 G protein-coupled receptors (GPCRs), namely, adenosine A1, A2A, A2B,

and A3 receptors, as known as P1 receptors (Kazemzadeh-Narbat et al., 2015). Activation of
A1 and A3 receptors exert inhibitory effects, however A2A and A2B exert excitatory. The four
P1 receptors can reduce and increase the intracellular cyclic adenosine-3, 5 monophosphate
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(cAMP) concentration via inhibiting or activating adenylate cyclase
(AC), which makes adenosine and P1 receptors essential for the
regulation of energy balance (Chiu and Freund, 2014).

Sleep, torpor, and hibernation are integral to energy balance. At
the same time, adenosine which is a homeostatic bioenergetic
network regulator appears to accumulate before entry into the
three states, suggesting that adenosine and P1 receptors, may
mediate sleep, torpor and hibernation (Drew and Jinka, 2013;
Silvani et al., 2018). Much evidence suggests that activation or
inhibition of the central nervous system (CNS) adenosine
receptors by genetic or pharmacological means can alter the
states of sleep, torpor, and hibernation. In this review, we focus
on the role of adenosine in the CNS and summarize the current
research on the roles and possible biological mechanisms of
adenosine and P1 receptors in sleep, torpor, and hibernation.
This may help us solve many problems in the future, such as
treating sleep disorders and using artificial hibernation for
medical applications and space exploration.

2 Physiological characteristics during
sleep, torpor, and hibernation

Sleep, torpor, and hibernation appear shallow to deep states of
diminished body temperature and metabolic rate. Sleep is a

relatively rapid and reversible state. However, the animals in a
torpor state are more difficult to awaken than sleepers. They may
not respond immediately to stimuli, while hibernators typically take
an hour or more from hibernation to awakening (Siegel, 2009).
Animals control the duration of torpor based on the circadian
system, typically remaining dormant for only part of the day and
returning to a physiological state when Tb rises to a consistently high
level.

In contrast to torpor, hibernation lasts for days or weeks, and
hibernators generally do not forage, relying mainly on early food
storage or fat storage (Ruf and Geiser, 2015). Hibernation is not as
common as daily sleep and torpor; only one-third of mammalian
species are hibernators (Berger, 1984). Sleep, torpor, and
hibernation are both energy-saving strategies for animals that
share similar physiological characteristics and have their own
characteristics (Table 1). An interesting commonality between
sleep, torpor, and hibernation is the involvement of adenosine
receptors. Adenosine is a purine nucleoside involved in many
signaling pathways of energy homeostasis. One of the functions
of sleep is to restore brain energy homeostasis, while the primary
function of hibernation and torpor is to restore or protect body
energy homeostasis (Drew and Jinka, 2013). According to many
previous studies, adenosine A1 receptors and A2A receptors (A1Rs
and A2ARs) play an essential role in inducing NREM, the activation
of A1R and A3 receptors (A3Rs) may induce torpor (Silvani et al.,

GRAPHICAL ABSTRACT
Adenosine mediates sleep, torpor and hibernation through P1 receptors. Recent reasearch has shown that P1 receptors play a vital role in the
regulation of sleep-wake, torpor and hibernation-like states. In this review, we focus on the roles and neurobiological mechanisms of the CNS adenosine
and P1 receptors in these three states. Among them, A1 and A2A receptors are key targets for sleep-wake regulation, A1Rs and A3Rs are very important for
torpor induction, and activation of A1Rs is sufficient for hibernation-like state.
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2018), and the onset of hibernation may be due to the activation of
A1Rs (Jinka et al., 2011; Frare and Drew, 2021). In the following, we
will briefly introduce the physiological characteristics of the three
states and expand our review based on this.

2.1 Sleep

Most mammals and birds spend about one-third of their lives
asleep, a quiet state in which humans or animals are less sensitive
to their environment. Sleep is regulated by biological rhythms
and neural loops and plays a vital role in the human body’s
functional recovery, learning and memory, and growth and
development. It is characterized by loss of consciousness,
decreased Tb, metabolism, and a decrease in heart rate (HR)
and blood pressure (BP). According to the characteristic
electroencephalographic (EEG) patterns, sleep can be divided
into NREM and REM sleep.

NREM and REM sleep occur alternately throughout sleep time,
with NREM accounting for the majority of the sleep time (Silvani
and Dampney, 2013; Schmidt, 2014; Silvani et al., 2018). NREM
sleep shows decreased systemic function, regular breathing, HR,
reduced energy consumption, an EEG that consisted mainly of slow
waves, reduced muscle tension, but still a definite posture, with no
noticeable eye changes. NREM sleep is divided into four stages.
Stages Ⅰ and Ⅱ are light sleep, and stages Ⅲ and Ⅳ are deep
sleep. During deep sleep, cellular metabolism can be promoted
throughout the body, immunity can be strengthened, and energy
depleted during the wake period can be restored (Silvani et al., 2018).
REM sleep is characterized by rapid eye movement, loss of
thermoregulation, EEG activity similar to waking, marked
decrease or disappearance of muscle tension, muscle relaxation,
but active neurons in most brain regions, increased cerebral blood
flow, irregular breathing, and increased HR. During REM sleep,
humans or animals maintain a relatively high level of vigilance,
which is essential for animals to survive in nature (Roth, 2004;
Schmidt, 2014).

2.2 Torpor

Torpor, a behavior that saves energy by reducing metabolic rate
(MR), is often identical to sleep, which occurs daily or lasts for days,
transitions into sleep (also called daily torpor), and is regulated by
circadian rhythms (Berger, 1984). A drastic reduction of MR
associated with a decrease in Tb results in the occurrence of
torpor (Giroud et al., 2020). In addition, the autonomic nervous
system is intimately involved in all stages of torpor. During an
episode of torpor, the respiratory rate decreased, the HR related to
ventilation increased periodically, and the decrease in ventilation
was more significant than the MR, resulting in mild respiratory
acidosis (Silvani et al., 2018).

A decrease in brain temperature usually accompanies the onset
of torpor. If the brain temperature is above 25°C, EEG morphology
and frequency during torpor are closest to the characteristics of
NREM sleep. Then, both EEG amplitude and power decrease with
decreasing Tb. When the brain temperature falls below 25°C, REM
sleep gradually disappears, and when the temperature is between
10°C and 20°C, the animals alternate between long NREM sleep and
short wakefulness. EEG becomes equipotential when the brain
temperature is below 10°C, and it is impossible to determine
alertness by electrophysiological methods (Ruf and Geiser, 2015;
Ambler et al., 2021; Huang et al., 2021). When electromyography
(EMG) was examined, EMG activity was found to decrease
significantly with the inhibition of shivering thermogenesis, and a
decrease of Tb when entering the state of torpor was observed
(Huang et al., 2021). Daily torpor appears independent of
ambient temperature (Ta), season, and nutritional status, as it
can last only a few hours and is frequently interrupted by activity
and foraging. Torpor can occur throughout the year, although it is
more frequent in winter. However, in some species that live in warm
climates, summer torpor is more common than winter torpor.
Compared with waking, the metabolic rate drops to an average
of about 30% of the basal metabolic rate (BMR) during torpor. The
energy consumption is usually reduced by 10% to 80%, depending
on the time and depth of torpor (Geiser, 2013).

TABLE 1 Physiological characteristics of sleep, daily torpor, and hibernation.

Sleep Torpor Hibernation References

Energy saving 5%–15% 60%–70% >90% Swoap et al. (2017), Mohr et al. (2020)

Metabolic rate 70%–90%
of BMR

~35% of BMR 6% of BMR Ruf and Geiser (2015)

BP (relative decrease to normal value) ~10% 25%–30% 40%–80% Silvani and Dampney (2013), Ambler
et al. (2021)

Body temperature (the decrease compared
to 36°C–40°C)

<3°C 5°C–20°C 15°C–35°C Berger (1984)

Respiration rate (% of active state) 100%–80% 5%–20% 2%–3% Mohr et al. (2020)

HR (% of active state) 70%–90% 10%–30% minimum HR (70 to
150 bpm)

1%–4% minimum HR (5 to
10 bpm)

Swoap et al. (2017), Mohr et al. (2020)

EEG (NREM) ↓ ↓↓ ↓↓↓ Huang et al. (2021)

EMG (NREM) ↓ ↓↓ ↓↓↓ Huang et al. (2021)

HP ↑ ↑ ↑ Silvani and Dampney (2013)

Note: ↓: decrease, ↑: increase.
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2.3 Hibernation

Hibernation is a physiological adaptation that allows
endothermic animals to cope with periodic limitations in their
energy supply by lowering Tb and metabolism and improve their
freezing tolerance, which may enable them to survive seasonal
changes in the food supply and temperature reduction (Geiser,
2013; Storey and Storey, 2013; Storey and Storey, 2017). When
the metabolic rate decreases during hibernation, ventilation
decreases, and prolonged apnea occurs (Milsom and Jackson,
2011). During deep hibernation, the Tb of most mammals is near
Ta. However, as Tb approaches the freezing, MR rises sharply,
preventing tissue damage from increased heat production
(Milsom and Jackson, 2011; Geiser, 2013). Hibernating species
include facultative hibernators (hamsters, bats) and obligatory
hibernators (ground squirrels, bears, and lemurs). Facultative

hibernators are animals that go into hibernation only when they
sense cold, lack of food, or photoperiodic changes. Obligatory
hibernators are animals that go into hibernation spontaneously
and punctually at a specific time of year, regardless of food
availability or temperature (Xu et al., 2013; Mohr et al., 2020).

Hibernation is not an uninterrupted process over several
months. With the rise of Ta and the accumulation of
metabolites, spontaneous periodic awakening may occur and
interrupt dormancy. After a brief awakening, the animal returns
to dormancy and repeats the cycle of dormancy-awakening until the
end of hibernation. This periodic awakening consumes most of the
energy during hibernation. The onset of hibernation is highly
dependent on temperature. When Ta is between 20°C and 30°C,
some species still hibernate, but the duration is usually only a few
hours, similar to daily torpor (Geiser, 2013; Ruf and Geiser, 2015;
Mohr et al., 2020; Ambler et al., 2021). Gene transcription and

FIGURE 1
Adenosine metabolism and P1 receptors in the central nervous system. Adenosine metabolism occurs mainly in neuronal synapses and astrocytes.
In cells, adenosine is formed from ATP, cAMP, or SAH. Extracellular adenosine is produced by ATP and cAMP metabolism but mainly by the balance of
nucleoside transporters to regulate the concentration level inside and outside the membrane. SAM, S-adenosylmethionine; SAH, S-adenosyl
homocysteine; LH, L-homocysteine; SAHH, S-adenosyl homocysteine hydrolase; ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP,
adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ADO, adenosine; ADD, adenosine deaminase; ADK, adenosine kinase; 5′-NT, 5′-
nucleotidase; etco-5′-NT, etco-5′-nucleotidase; AC, adenylate cyclase; GPCR, G protein-coupled receptors; ENT, equilibrating nucleoside transporter;
A1Rs, adenosine A1 receptors; A2ARs, adenosine A2A receptors; A2BRs, adenosine A2B receptors; A3Rs, adenosine A3 receptors; Pre-, presynaptic
membrane; Post-, postsynaptic membrane.
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translation are significantly inhibited during hibernation, and many
other physiological parameters are significantly reduced and recover
after awakening, such as HR, respiration, metabolic rate, and so on
(Xu et al., 2013).

3 Sources and metabolic pathways of
adenosine in the central nervous
system

3.1 Source of adenosine

Intracellular adenosine is mainly produced through five
pathways (Figure 1): 1) Adenosine triphosphate (ATP) loses two
phosphate groups under the action of ATPase to become adenosine
monophosphate (AMP), and AMP continues to lose the phosphate
group under the action of an internal 5′-nucleotidase (5′-NT) to
produce adenosine (Lopes et al., 2011). 2) Adenine reacts with 1-
phosphate ribose to form adenosine (Hall and Frenguelli, 2018). 3)
S-adenosylmethionine (SAM) and L-homocysteine produce
S-adenosylhomocysteine (SAH) and further produce adenosine
under the action of S-adenosylhomocysteine hydrolase (SAHH),
but this pathway is not common in the CNS (Deussen et al., 1989;
Latini and Pedata, 2001). 4) Extracellular adenosine is transported
into the cell by the balanced nucleoside transporter in the cell
membrane (Liu Y. J. et al., 2019). 5) cAMP is generated from
ATP under the action of AC, which is regulated by GPCRs, and
then converted through phosphodiesterases (PDEs) to AMP, which
is eventually used to generate adenosine (Dos Santos-Rodrigues
et al., 2015).

Production of extracellular adenosine occurs mainly by two
pathways (Figure 1): 1) intracellular adenosine is transported to the
extracellular space by the balanced nucleoside transporter located in
the cell membrane (Sala-Newby et al., 1999). 2) Extracellular ATP
and adenosine diphosphate (ADP) are converted to AMP by the
enzyme ecto-nucleoside triphosphate diphosphohydrolase
(E-NTPDase), also known as CD39. Subsequently, adenosine is
generated by ecto-5′-nucleotidase (ecto-5′-NT), also known as
CD73, which is mainly expressed on astrocytes, oligodendrocytes
and microglia (Lazarus et al., 2019a).

In the equilibrium state, the intracellular adenosine level is
100 nM, and the extracellular adenosine level is 140–200 nM
(Dunwiddie and Diao, 1994), but in the pathological state, such
as ischemia and hypoxia, extracellular adenosine level increases
three- to 10-fold (Andiné et al., 1990; Dux et al., 1990). It is
worth noting that although adenosine can be produced from the
synaptic terminals of neurons and enter the synaptic space, it is not
secreted through vesicles but transported through nucleoside
transporters, which has nothing to do with neural activities.
Thus, adenosine is not a neurotransmitter but a regulatory factor
(Huang et al., 2011; Lopes et al., 2011; Huang et al., 2014).

3.2 Adenosine metabolism

Adenosine has three main metabolic pathways (Figure 1): 1) It
becomes inosine under the action of adenosine deaminase [8], and
then generates hypoxanthine and hypoxanthine nucleotides by

nucleoside phosphorylase, and finally becomes uric acid
(Fredholm et al., 2005). 2) Adenosine is transported intracellular
and extracellular domain through two-way balanced nucleoside
transporter to regulate intracellular and extracellular adenosine
levels (Liu Y. J. et al., 2019). 3) Adenosine kinase (ADK), which
is mainly found in astrocytes, generates AMP and ADP by
phosphorylating adenosine in the presence of ATP. This
metabolic pathway can only occur in cells, so extracellular
adenosine must enter cells to complete the cycle (Huang et al.,
2011; Huang et al., 2014; Garcia-Gil et al., 2021).

4 Excitatory and inhibitory effects of
various adenosine receptors

The physiological functions of adenosine is mediated by four
purinergic type 1 receptors, known as A1, A2A, A2B, and A3

receptors, which belong to GPCR family. A1Rs and A3Rs belong
to the inhibitory adenylate cyclase G protein (Gi) family, whereas
A2ARs and A2BRs belong to the stimulatory adenylate cyclase G
protein (Gs) family (Wall and Dale, 2008; Lopes et al., 2011).

4.1 A1 receptors

A1Rs have the highest affinity for adenosine and can be activated
when the concentration of adenosine is in the pM range. They are
the most prominent adenosine receptor in the CNS, distributed
mainly in the cerebral cortex, hippocampus, and thalamus. A1Rs are
located primarily in the excitatory nerve terminals (Kashfi et al.,
2017). Activation of A1Rs can inhibit the activity of adenylate cyclase
(AC), decrease the cAMP content, and regulate the activity of
cAMP-dependent protein kinase. A1R activation can increase the
release of intracellular Ca2+, inhibit N-, Q- and P-type calcium
channels, decrease the influx of extracellular Ca2+, block the release
of neurotransmitters, and reduce neuronal discharge to regulate
neuronal activity (Wall and Dale, 2008). In the postsynaptic
membrane, A1Rs are activated to open K+ channels and increase
K+ outflow, resulting in membrane hyperpolarization, which
reduces excitability and protects neurons. When activated, A1Rs
can also open the ATP-sensitive potassium channel (KATP) of
substantia nigra neurons, increasing outward currents and
decreasing membrane excitability (Stockwell et al., 2017).

4.2 A2A receptors

The affinity of A2ARs for adenosine is lower than that of A1Rs, and
the activation concentration of adenosine is in the nM range. A2ARs are
mainly distributed in dopaminergic areas, such as striatum, nucleus
accumbens (NAc), olfactory nodules and so on (Fang et al., 2017; Dong
et al., 2022). When A2ARs are activated, they are coupled with Gs
protein in the brain to increase the activity of AC and cAMP in striatal
cells. In the hippocampus, A2ARs appear to be coupled with Gi/Go
protein (Diógenes et al., 2004). A2ARs are mainly expressed in D2

dopamine receptor cells and are particularly abundant in the plasma
membrane of dendrites and dendritic spines, but less so in axons, axon
terminals, and glial cells, and has an antagonistic effect with dopamine
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D2 receptors (D2Rs) (Ferre et al., 1991; Strömberg et al., 2000).
Presynaptic A2ARs can regulate the inhibition of A1Rs. In contrast
to A1Rs, adenosine promotes the release of excitatory transmitters by
activating A2ARs. In astrocytes, A2ARs are involved in the regulation of
glutamate release and γ-aminobutyric acid (GABA) uptake (Cristóvão-
Ferreira et al., 2009). The balance betweenA1 andA2ARs is crucial to the
adenosine response, and this close interaction between them can
produce a response that is different from the sum of the two (Chiu
and Freund, 2014).

4.3 A2B receptors

A2BRs have a low affinity for adenosine, and the activation
concentration of adenosine should reach μM, suggesting that A2BRs
mainly play a role under pathological conditions with increased
extracellular adenosine concentration. A2BRs are primarily
distributed in hippocampal neurons and glial cells, and a small
amount is also found in the thalamus, lateral ventricle, and striatum.
A2BRs can activate AC via Gs or phospholipase C (PLC) via Gq.
Activation of A2BRs can increase intracellular cAMP, promote glycogen
decomposition, and increase the energy supply of neurons to resist the
pathological state of ischemia and hypoxia (vanCalker et al., 1979; Hösli
and Hösli, 1988; Dos Santos-Rodrigues et al., 2015).

4.4 A3 receptors

A3Rs have the lowest sensitivity compared to other adenosine
receptors, but activation of A3Rs has neuroprotective and
neurotrophic effects. Although A3Rs are distributed throughout
the brain, their content varies greatly in different brain regions,
especially in the hippocampus and cerebellum. A3Rs act through Gi-
mediated AC inhibition and Gq-mediated PLC activation. A3Rs can
regulate hippocampal synaptic plasticity and decrease adenylate
cyclase activity. In short, A3Rs activation is closely related to
inflammation inhibition and cell protection (Lopes et al., 2003;
Vlajkovic et al., 2007; Lopes et al., 2011).

5 The roles and neurobiological
mechanisms of adenosine and
P1 receptors in sleep, torpor, and
hibernation

5.1 Increased levels of extracellular
adenosine lead to drowsiness

Thanks to neurobiology and molecular biology advances, we are
beginning to understand how sleep is initiated and maintained.
Sustained wakefulness causes the body to produce and accumulate
one or more endogenous somnogenic factors that induce sleep after
reaching a certain threshold. The hypnotic effect of adenosine, an
endogenous somnogenic factor, was discovered in 1954 (Feldberg
and Sherwood, 1954). Typically, extracellular adenosine
concentrations in the cerebral cortex and basal forebrain (BF)
gradually increase during prolonged arousal, reaching a certain
threshold that leads to drowsiness, while slowly decreasing

during recovery sleep (Porkka-Heiskanen et al., 1997; Clasadonte
et al., 2014; Huang et al., 2014; Tartar et al., 2021; Omond et al.,
2022). Extracellular adenosine levels may be partially regulated by
glutamatergic neurons (Peng et al., 2020; Sun and Tang, 2020). This
is because activation of the glutamatergic BF neurons causes a large
increase in extracellular adenosine, and specific ablation of
glutamatergic BF neurons reduces the level of extracellular
adenosine and significantly impairs sleep homeostasis regulation
(Peng et al., 2020). Although adenosine is known to act on four
evolutionarily conserved receptors, it is currently thought to regulate
sleep-wake states by acting on the A1Rs and A2ARs (Huang et al.,
2014; Lazarus et al., 2019b).

5.2 Regulation of sleep homeostasis by A1Rs
is brain region-dependent

A1Rs are required for normal sleep homeostasis because the
conditional knockout of A1Rs in the CNS during sleep restriction
results in a reduced rebound slow-wave activity response (Bjorness
et al., 2009). Mainstream research suggests that activation of A1Rs
promotes sleep, as A1Rs agonists increase sleep (Radulovacki et al.,
1984; Benington et al., 1995), whereas A1Rs antagonists decrease sleep
(Methippara et al., 2005; Thakkar et al., 2008). For example, when Oishi
et al. (2008) injected the A1Rs-selective agonist N6-cyclopentyladenosine
(CPA) into the rat tuberomammillary nucleus (TMN), this significantly
increased NREM sleep. A1Rsmaymediate sleep through three pathways
(Lazarus et al., 2019b): 1) A1Rs promote sleep by inhibiting wake-
promoting neurons. A1Rs are expressed in hypocretin/orexin neurons of
the lateral hypothalamus (LH) and histaminergic neurons of the TMN,
which are typical arousal centers. Activation of A1Rs inhibits excitatory
neurotransmission, including cholinergic arousal systems in the
brainstem (Rainnie et al., 1994) and BF (Alam et al., 1999; Thakkar
et al., 2003), the hypocretin/orexin neurons in the LH (Thakkar et al.,
2002; Liu and Gao, 2007), and histaminergic systems in the TMN (Oishi
et al., 2008). 2) A1Rs promote sleep by disinhibiting sleep-active neurons
in the ventrolateral preoptic nucleus (VLPO) and anterior hypothalamic
area (Chamberlin et al., 2003; Morairty et al., 2004). 3) A1Rs mediate
homeostatic sleep pressure based on astrocytic gliotransmission (Halassa
et al., 2009).

Moreover, A1Rs do not appear to fully promote sleep because
A1R knockout mice did not differ from wide-type mice in basal sleep
amount and sleep-wake behavior after sleep deprivation (Stenberg
et al., 2003). Infusion of CPA into the lateral ventricle of mice did not
significantly alter NREM and REM sleep (Urade et al., 2003).
However, microdialysis of the adenosine transporter inhibitor
nitrobenzyl-thio-inosine (NBTIs) or A1R agonists into the lateral
preoptic area (LPO) increased the amount of wakefulness in rats
(Methippara et al., 2005). Thus, A1Rs may exert different sleep-wake
effects by acting on different brain regions.

5.3 A2ARs are important receptors that
mediate the sleep-promoting effect of
adenosine

A2ARs are important targets in the regulation of sleep. A2ARs
mediate the effects of many sleep-promoting substances, such as
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ethanol and sake yeast (El Yacoubi et al., 2003; Nakamura et al.,
2016; Fang et al., 2017; Nishimon et al., 2021). The selective A2AR
agonist CGS21680 injected into the subarachnoid space adjacent to
the BF and LPO of rats or the lateral ventricle of mice significantly
increased NREM and REM sleep (Satoh et al., 1998; Scammell et al.,
2001; Urade et al., 2003; Methippara et al., 2005). Immediately after
the cessation of CGS21680 perfusion, there is a strong rebound in
wakefulness (Gerashchenko et al., 2000). However, the sleep-
promoting effect induced by CGS21680 was abolished entirely in
A2AR knockout mice.

In addition, intraperitoneal administration of a positive A2AR
allosteric modulator {3, 4-difluoro-2-[(2-fluoro-4-iodophenyl)
amino] benzoic acid} in WT mice but not A2AR knockout mice
enhanced A2AR signaling and promoted NREM sleep in a dose-
dependent manner (Korkutata et al., 2019). Several studies suggested
that A2ARsmediated the sleep-regulating effects of prostaglandin D2
(PGD2). After administration of PGD2 or CGS21680 into the rostral
BF, c-fos-positive cells were significantly increased in the VLPO, a
sleep center, resulting in enhanced induction of NREM sleep, and in
contrast, c-fos-positive neurons significantly decreased in the TMN
of the posterior hypothalamus, a wake center (Satoh et al., 1999;
Scammell et al., 2001). In in-vivo microdialysis experiments,
infusion of CGS21680 into the BF dose-dependently decreased
histamine release in the frontal cortex and medial preoptic area
and increased GABA release in the TMN, but not in the frontal
cortex (Hong et al., 2005). Furthermore, VLPO neurons have been
divided into two types according to their different responses to
serotonin and adenosine: Type-1 neurons were inhibited by
serotonin, and type-2 neurons were excited. A2AR agonists
excited postsynaptic type-2 neurons in the VLPO but not type-1

neurons. Type-2 neurons were involved in sleep initiation, whereas
type-1 neurons may contribute to sleep consolidation because type-1
neurons were activated only when the inhibitory effects of the
arousal system were absent (Gallopin et al., 2005). In addition to
the VLPO, injection of CGS21680 into the rostral BF also increased
c-fos expression in the shell of the NAc and the medial portion of the
olfactory tubercle (OT) (Satoh et al., 1999; Scammell et al., 2001).
Microinjection of CGS21680 into the NAc shell also induced sleep-
promoting effects (Satoh et al., 1999). A2ARs are highly expressed in
the caudate putamen, NAc, and OT. Our recent series of studies
have shown that activation of A2AR neurons in these nuclei can
strongly promote sleep (Oishi et al., 2017; Yuan et al., 2017; Li et al.,
2020). Activation of the A2AR neurons of the NAc core projecting to
the ventral pallidum (VP) strongly induced NREM
sleep. Conversely, inhibiting these neurons reduced sleep but did
not affect the sleep homeostasis rebound (Oishi et al., 2017). Yuan
et al. demonstrated the important role of the striatal A2AR neurons
projecting to the external globus pallidus (GPe) parvalbumin (PV)
neurons in sleep control. Chemogenetic inhibition of striatal A2AR
neurons significantly decreased NREM sleep in the active period,
which was mediated by the formation of inhibitory circuits between
striatal A2AR neurons and GPe PV neurons (Yuan et al., 2017). The
OT A2AR neurons project to the VP and LH via inhibitory
innervations, and pharmacological or chemogenetic activation of
OT A2AR neurons resulted in increased NREM sleep in mice (Li
et al., 2020). Moreover, A2ARs are co-localized with dopamine D2Rs
in these nuclei (Missale et al., 1998). Our studies demonstrated that
D2R-expressing neurons are essential for the induction and
maintenance of wakefulness (Qu et al., 2008; Qiu et al., 2009; Qu
et al., 2010; Liu Y. Y. et al., 2019; Yang et al., 2021). Thus, A2ARs and

FIGURE 2
Neurobiological mechanisms of the A2ARs regulate sleep-wake states. A2ARs are important targets in sleep regulation, promoting sleep by inhibiting
major arousal systems. Activation of A2AR neurons in the NAc core, striatum, andOT promotes sleep, with A2ARs neurons in the NAc core projecting to the
VP, striatal A2AR neurons, and GPe PV neurons forming inhibitory circuits, and OT A2AR neurons projecting to the VP and LH. Furthermore, BF
glutamatergic neurons may regulate extracellular adenosine levels, and A2ARs rather than A1Rs mediate the wake-promoting effects of caffeine.
A2ARs, adenosine A2A receptors; A1Rs, adenosine A1 receptors; NAc, nucleus accumbens; VP, ventral pallidum; GPe, external globus pallidus; OT, olfactory
tubercle; LH, lateral hypothalamus; Glu, glutamic acid; GABA, γ-aminobutyric acid.
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D2Rs may jointly influence the sleep-wake cycle by balancing their
activity.

Caffeine, unlike adenosine, is a wake-promoting substance
abundant in refreshing beverages such as coffee and tea. Caffeine
is an antagonist of A1Rs and A2ARs, with similar affinity for both at
low doses (Fredholm et al., 2001). Using A1R knockout and A2AR
knockout mice, Huang et al. demonstrated that caffeine-induced
wakefulness is dependent on A2ARs, as caffeine dose-dependently
increased wakefulness in both wild-type and A1R knockout but not
A2AR knockout mice (Huang et al., 2005). Similarly, selective
silencing of A2ARs in the NAc shell inhibited caffeine-induced
wakefulness (Lazarus et al., 2011).

In conclusion, the regulatory effect of A1Rs on sleep-wake
regulation is brain region-dependent. The excitation of A1Rs in
wake-promoting nuclei induces sleep and, conversely, causes arousal
on sleep-promoting neurons. The A2ARs are the major sleep-
regulating receptors that mediate the wake-promoting effects of
caffeine, and activation of A2ARs promotes sleep by inhibiting major
arousal systems (Figure 2).

5.4 Adenosine A1Rs and A3Rs play important
roles in torpor

Adenosine may play a key role in torpor, as pyruvate induces
torpor in obese mice based on adenosine signaling (Soto et al., 2018).
In mice lacking all four adenosine receptors, adenosine does not
cause hypothermia, bradycardia, or hypotension typical of the
torpor state (Xiao et al., 2019). Peripheral or central infusion of
adenosine or AMP results in a decrease in metabolic rate and body
temperature similar to that observed in natural torpor, even in rats
that do not naturally enter torpor (Swoap et al., 2007; Jinka et al.,
2011; Iliff and Swoap, 2012; Olson et al., 2013; Tupone et al., 2013;

Carlin et al., 2017; Vicent et al., 2017). Furthermore, the
administration of A1R or A3R agonists to mice induces several
features of daily torpor, including hypothermia (Anderson et al.,
1994; Iliff and Swoap, 2012; Carlin et al., 2017; Swoap, 2017; Vicent
et al., 2017), whereas A2ARs and A2BRs agonists do not (Anderson
et al., 1994).

Currently, there are three ways to mimic the induction of
torpor: 1) inhibition of the raphe pallidus (rPA) neurons in the
brainstem (Cerri et al., 2021); 2) activation of A1Rs or A3Rs in the
brain; 3) activation of glutamatergic Adcyap1+ neurons in the
hypothalamus (Hrvatin et al., 2020). Here, we will discuss the
induction of synthetic torpor by controlling A1Rs and A3Rs
through pharmacological experiments. Although neither A1Rs
nor A3ARs are required for fasting-induced torpor (Carlin et al.,
2017), administration of A1R or A3R agonists such as N6-
cyclohexyladenosine (CHA) induces torpor-like states in some
animals (Jinka et al., 2011; Olson et al., 2013; Tupone et al., 2013;
Vicent et al., 2017; Frare et al., 2018), while antagonist
administration prevents torpor or causes arousal from torpor
during torpor phases (Jinka et al., 2011; Iliff and Swoap, 2012;
Tamura et al., 2012). It is not yet certain whether adenosine action
triggers the occurrence of natural torpor, but adenosine mediates
at least some of the physiological features during torpor. For
example, A3R stimulation leads to hypothermia via peripheral
mast cell degranulation, histamine release, and activation of
central histamine H1 receptors. However, A1R agonist-induced
hypothermia occurs via central sites, and the rPA, nucleus of the
solitary tract (NTS) and the hypothalamic-pituitary-thyroid axis
gate appear to play a pivotal role (Tupone et al., 2013; Carlin et al.,
2017; Frare et al., 2018).

In the future, further efforts should be made to confirm the role
of adenosine in torpor and its possible neurobiological and
molecular mechanisms. First, microdialysis experiments,

FIGURE 3
The relevant brain regions about adenosine and P1 receptors mediate sleep, torpor, and hibernation. The CNS adenosine and P1 receptors are
important for the regulation of sleep-wake, torpor and hibernation. The roles and mechanisms of several brain regions and nuclei have been gradually
revealed, such as the A2ARs-expressing neurons in the NAc, striatum, OT and other structures have a significant effect on sleep-wake regulation. The NTS
and rPA may be the key brain regions of adenosine and P1 receptors mediating torpor and hibernation. NAc, nucleus accumbens; OT, olfactory
tubercle; LH, lateral hypothalamus; BF, basal forebrainvlpo; VLPO, ventrolateral preoptic nucleus; LPO, lateral preoptic area; MnPO, median preoptic
area; SON, supraoptic nucleus; TMN, tuberomammillary nucleus; rPA, raphe pallidus; NTS, nucleus tractus solitarius.
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adenosine probes, and chemogenetic and optogenetic techniques
should be used to confirm whether there is an accumulation and
dynamic change of adenosine concentration during the initiation
and maintenance of torpor and to reveal the possible mechanisms.

5.5 Central activation of A1Rs is sufficient to
induce and maintain a hibernation-like state

Seasonal changes in brain adenosine levels may contribute to
an increase in A1R sensitivity leading to the onset of hibernation
(Frare and Drew, 2021). Although the mechanisms controlling
hibernation are currently unclear, activation of A1Rs signaling in
the CNS appears to be required for the onset of this
phenomenon, as activation of the A1Rs in the CNS can
induce hibernation or some hibernation-like states in
obligate, facultative, or non-hibernating animals (Drew et al.,
2017; Shimaoka et al., 2018; Frare and Drew, 2021). In addition,
Shimaoka et al. (2018) activated central A1Rs in rats, a non-
hibernating animal, which induced a hypothermia response
similar to hibernation.

It is worth noting that activation of A1Rs maintains core body
temperature at a low level. In hibernators, core body temperature
and metabolic rate reduction occur before hibernation, which may
be the key to the A1R-mediated hibernation (Barros et al., 2006).
A1Rs are highly expressed throughout the CNS, including the NTS.
The NTS is the center that controls cardiovascular, respiratory, and
metabolic functions, and the NTS neurons are responsible for the
integration of central and peripheral signals related to energy
expenditure-related (Barros et al., 2006). A1Rs act as inhibitory
receptors whose activation prevents the release of GABA to the NTS
neurons that inhibit thermogenesis (Cao et al., 2010). Furthermore,
the administration of CHA to the arctic ground squirrel increased
c-fos expression in the NTS in both summer and winter (Frare et al.,
2019). After the microinjection of CHA into the NTS, it inhibited
brown adipose tissue (BAT) thermogenesis and shivering responses.
In contrast, inhibition of A1Rs counteracted BAT thermogenesis
induced by intracerebroventricular injection of CHA (Tupone et al.,
2013). In addition to inhibiting BAT thermogenesis, activation of
A1Rs in the NTS increases vasopressin secretion, which constricts
blood vessels, including skin vessels, thereby increasing arterial
blood pressure (McClure et al., 2005; McClure et al., 2011) and
causing bradycardia, one of the initial physiological features of

natural hibernation (Jinka, 2012). The rPA, the median preoptic
area (MnPO) and the supraoptic nucleus (SON) also appear to
mediate the effect of A1Rs in BAT thermogenic, as the rPA and
MnPO c-fos expression is lower in winter than in summer after
CHA administration, and inhibition of rPA neurons produces
hypothermia, however the SON is related to the seasonal increase
in vasoconstriction (Cerri et al., 2013; Frare et al., 2019). Therefore,
A1Rs could mediate hypothermia similar to hibernation by
inhibiting BAT thermogenesis via the NTS and rPA or by
inhibiting cardiovascular function. In addition, as previously
mentioned, in contrast to sleep, EEG amplitudes are significantly
reduced during hibernation (Golanov and Reis, 2001; Magdaleno-
Madrigal et al., 2010). Central activation of A1Rs synchronized the
EEG, whereas activation in the thalamus significantly reduced EEG
amplitude (Saper et al., 2005). After central administration of CHA
in rats, the EEG amplitude was greatly reduced, the delta wave
amplitude was significantly reduced, and the theta wave almost
disappeared (Tupone et al., 2013). Thus, the change in EEG
amplitude may be another way A1Rs mediate hibernation.

As with torpor, it is currently unclear whether adenosine
accumulation is necessary for the initiation of hibernation, so
further efforts are needed to address these scientific questions.

6 Conclusion and future perspective

In this review, we summarize the roles and neurobiological
mechanisms of adenosine and its receptors in sleep-wake regulation,
torpor, and hibernation (Table 2, Figure 3). The first step toward
translating adenosine and P1 receptors into targets for medical
applications is to understand their roles and mechanisms
underlying these states of diminished metabolism and body
temperature. We now know that A1Rs and A2ARs jointly mediate
sleep-wake regulation (Huang et al., 2014; Lazarus et al., 2019b), that
activation of A1Rs and A3Rs is important for torpor (Carlin et al.,
2017) and that hibernation requires A1Rs rather than other
adenosine receptors (Shimaoka et al., 2018; Frare and Drew, 2021).

It is worth noting that the adenosine system is also altered in various
sleep disorders, for example, sleeping sickness and chronic insomnia
disorder (Rijo-Ferreira et al., 2020; Ren et al., 2021). Some agonists,
antagonists, or allosteric modulators targeting adenosine receptors have
the potential to be used for treating sleep disorders (Jenner et al., 2020;
Korkutata et al., 2022) or inducing synthetic torpor or hibernation for

TABLE 2 Roles of adenosine receptors in sleep, torpor, and hibernation.

Sleep Torpor Hibernation References

Adenosine
accumulation

Yes Unknow Unknow Porkka-Heiskanen et al. (1997), Clasadonte
et al. (2014), Huang et al. (2014), Tartar et al.
(2021), Omond et al. (2022)

Key receptors A1Rs, A2ARs A1Rs, A3Rs A1Rs

Related brain
regions

TMN, LH, Brain stem, BF, VLPO, LPO,
NAc, OT, Striatum

NTS, rPA, hypothalamus NTS, rPA, MnPO, SON,
thalamus

Huang et al. (2014), Yuan et al. (2017), Oishi
et al. (2017), Shimaoka et al. (2018), Silvani
et al., 2018, Li et al., 2020

Roles of
adenosine
receptors

A1R-mediated sleep-wake effects are
brain region-dependent; A2ARs promote
sleep by inhibiting arousal systems

Activation of A1Rs or
A3Rs mimic the induction
of torpor

A1Rs may mediate hibernation
via regulating core body
temperature

Huang et al. (2014), Drew et al. (2017), Silvani
et al. (2018), Lazarus et al. (2019a)
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therapeutic hypothermia, organ preservation, space exploration or
longevity promotion (Jinka et al., 2015; Cerri, 2017; Sisa et al., 2017;
Hadj-Moussa and Storey, 2019; Al-Attar and Storey, 2020; Cerri et al.,
2021), showing that the pharmacological importance of targeting
adenosine receptors in the future. However, much work remains to
be done because small-molecule drugs targeting adenosine receptors
have side effects (Korkutata et al., 2022) and can only mimic some
physiological properties of torpor or hibernation by activating
adenosine receptors, which is different from natural torpor or
hibernation (Swoap, 2017; Vicent et al., 2017). Therefore, it is
necessary to explore further the roles and mechanisms of adenosine
and its receptors in sleep, torpor, and hibernation and gain more
adenosine receptor modulators by structure- and function-based drug
discovery. It is important to investigate the neural networks and
molecular mechanisms that sleep torpor and hibernation have in
common. The first step in conducting these studies is to confirm
adenosine accumulation before torpor or hibernation and the dynamic
changes in adenosine concentrations during torpor or hibernation using
available technologies such as microdialysis, adenosine probes, and
chemogenetic and optogenetic methods. Subsequently, several key
technologies, from conditional knockout mice based on Cre/lox
technology and RNA interference to modulation of neuronal activity
with genetic or pharmacological techniques, can be used to confirm
neuronal networks of sleep, torpor, and hibernation.
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Glossary

A1Rs adenosine A1 receptors

A2ARs adenosine A2A receptors

A2BRs adenosine A2B receptors

A3Rs adenosine A3 receptors

AC adenylate cyclase

ADK adenosine kinase

ADP adenosine diphosphate

AMP adenosine monophosphate

ATP adenosine triphosphate

BAT brown adipose tissue

BF basal forebrain

BMR basal metabolic rate

BP blood pressure

cAMP cyclic adenosine-3,5 monophosphate

CHA N6-cyclohexyladenosine

CNS central nervous system

CPA N6-cyclopentyladenosine

EEG electroencephalographic

EMG electromyography

E-NTPDase ecto-nucleoside triphosphate diphosphohydrolase

Gi inhibitory adenylate cyclase G protein

GPCR G protein coupled receptor

GPe external globus pallidus

Gs stimulating adenylate cyclase G protein

HP heart period

HR heart rate

KATP ATP sensitive potassium channel

LH lateral hypothalamus

MR metabolic rates

NAc nucleus accumbens

NBTIs nitrobenzyl-thio-inosine

NREM non-rapid eye movement

NTS nucleus tractus solitarius

OT olfactory tubercle

PAM positive allosteric modulator

PLC phospholipase C

PV parvalbumin

REM rapid eye movement

rPA raphe pallidus

MnPO median preoptic

SON supraoptic

SAH S-adenosylhomocysteine

SAHH S-adenosylhomocysteine hydrolase

SAM S-adenosylmethionine

SWS slow-wave sleep

Ta ambient temperature

Tb body temperature

TMN tuberomammillary nucleus

VLPO ventrolateral preoptic nucleus lateral preoptic
area

LPO lateral preoptic

VP ventral pallidum γ-aminobutyric acid

GABA γ-aminobutyric acid

59-NT 5′-nucleotidase
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