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Hepatocellular carcinoma (HCC) is the most common form of primary liver
cancer, and it usually occurs following chronic liver disease. Although some
progress has been made in the treatment of HCC, the prognosis of patients
with advanced HCC is not optimistic, mainly because of the inevitable
development of drug resistance. Therefore, multi-target kinase inhibitors for
the treatment of HCC, such as sorafenib, lenvatinib, cabozantinib, and
regorafenib, produce small clinical benefits for patients with HCC. It is
necessary to study the mechanism of kinase inhibitor resistance and explore
possible solutions to overcome this resistance to improve clinical benefits. In this
study, we reviewed the mechanisms of resistance to multi-target kinase inhibitors
in HCC and discussed strategies that can be used to improve treatment outcomes.
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Introduction

Liver cancer is the second leading cause of cancer-related death worldwide, with
approximately 850,000 new cases occurring annually, and hepatocellular carcinoma (HCC)
accounts for approximately 90% of primary liver cancers. Hepatitis B and C virus infection,
alcohol intake, ingestion of the fungal metabolite aflatoxin B1, and nonalcoholic steatohepatitis
are potential risk factors for HCC (Llovet et al., 2021). Currently, patients with early HCC can be
cured by radical hepatectomy, liver transplantation, and local ablation. Patients with intermediate
HCC receive local therapy (e.g., chemoembolization), whereas patients with advanced HCC only
benefit from systemic therapy (Llovet et al., 2018).With the in-depth study of targeted therapy for
HCC, there is increasing evidence that multi-target combination therapy has a significant
synergistic anti-tumor effect. Sorafenib, a multi-target kinase inhibitor with anti-angiogenic and
anti-proliferative effects, prolongs the overall survival (OS) of patients with advanced HCC from
8months to 11months, and it was the only systemic therapeutic agent used to treatHCCbetween
2007 and 2016 (Llovet et al., 2008). In 2018, lenvatinib became the second first-line treatment
approved for patients with advanced HCC (Kudo et al., 2018). Meanwhile, regorafenib was
approved by the FDA in 2017 for second-line treatment in patients with unresectable HCC. In
2019, cabozantinib was used for second-line treatment in patients who had previously been
treated with sorafenib (Bruix et al., 2017; Abou-Alfa et al., 2018).
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Although systemic therapy for patients with advanced HCC can
prolong the median survival time, it often leads to treatment failure
because of the development of tumor cell resistance to kinase inhibitors,
which has become a major obstacle to the clinical treatment of patients
with advanced HCC. Development of resistance is the main reason for
the poor prognosis of cancer as an incurable disease, and the emergence
of resistance seems to be an inevitable consequence of tumor exposure
to kinase-targeted therapy (Bagrodia et al., 2012). Resistance to existing
therapies can be divided into two broad categories, including primary
resistance and acquired resistance (Holohan et al., 2013). Primary
resistance occurs at the beginning of drug treatment; that is, genetic
heterogeneity of tumor cells leads to insensitivity to therapeutic drugs.
Conversely, acquired resistance describes resistance in which, after a
period of clinical benefit, kinase inhibitors gradually become ineffective
during treatment. (Bagrodia et al., 2012; Jadidi-Niaragh et al., 2016). The
most common cause of acquired resistance is the activation of signaling
pathways that bypass drug targets to maintain survival and
proliferation. In fact, because kinase inhibitors generally target a
variety of signaling pathways, resistance occurs once the related
compensatory cascade signaling pathways are activated. At the same
time, a large number of new targets have also been found to be
associated with HCC resistance (Tang et al., 2020). Determining the
resistance factors of kinase inhibitors and exploring the regimens that
can be used to overcome or delay drug resistance has certain guiding
significance for clinical treatment. Therefore, in this review, we
summarized the results of recent studies on the potential
mechanisms leading to resistance to kinase inhibitors and
explored some strategies that could be used to improve treatment
outcomes.

Drug resistance of sorafenib

In 2007, sorafenib, a small-molecule targeted drug, was approved
for the treatment of advanced liver cancer. In the following decade,
sorafenib remained the only first-line targeted therapy for advanced
HCC (Llovet et al., 2008). As an oral receptor tyrosine kinase inhibitor,
it inhibits intracellular serine/threonine kinases (including the Raf/
MEK/ERK signaling pathway) and receptor tyrosine kinases [RTKs;
including vascular endothelial growth factor receptors (VEGFR-1),
VEGFR-2, VEGFR-3, platelet-derived growth factor receptor
(PDGFR)-β, c-KIT, FMS-like tyrosine kinase 3 (FLT-3), and
rearranged during transfection (RET)], thereby inhibiting tumor
growth and angiogenesis (Tang et al., 2020). Although patients with
HCC who received sorafenib exhibited a significant increase in mean
OS, only a small number of patients obtained a real and long-term
benefit from this therapy (Keating, 2017). Thus, elucidating the
mechanism of sorafenib resistance is important for prolonging the
survival of patients with HCC.

Primary drug resistance

Tumor heterogeneity and EGFR

Genomic instability, from single-base substitutions to doubling
of the whole genome, provides raw materials for generating tumor
heterogeneity and is essential for the development and progression

of many cancers[12,13]. Currently, some researchers believe that
tumour heterogeneity can be broadly divided into intertumoural
and intratumoural heterogeneity (Dagogo-Jack and Shaw, 2018).
During tumor progression, intratumoral heterogeneity is
maintained by selective pressures that include exogenous
exposures, internal environmental dynamics and cancer therapies
themselves (Swanton, 2017). The process of selective therapeutic
pressure to maintain intratumoral heterogeneity can be described as
the disappearance of targeted cell clones, the acquisition of new
resistance mutations, signaling and epigenetic adaptive responses
and finally complete alteration of the tumor phenotype (Vasan et al.,
2019). Maintaining intratumoral heterogeneity drives the ability of
cancer cells to adapt to stressful conditions including chemotherapy
(Swanton, 2017). Under therapeutic pressure, tumor cells become
the basis for the development of chemoresistance by changing the
dose of specific gene products, such as therapeutic targets, drug
efflux pumps, or metabolic enzymes (Ippolito et al., 2021). For
kinase-targeted agents, however, intertumoural heterogeneity
(heterogeneity between patients with tumors of the same
histological type) determines whether tumor patients exhibit
primary resistance (O’Connor et al., 2007). In HCC, this
heterogeneity is reflected in the overexpression and aberrant
activation of EGFR in some patients (Ito et al., 2001). EGFR is a
170-kDa transmembrane glycoprotein composed of an extracellular
domain that recognizes and binds specific ligands as well as an
intracellular domain that acts as a protein kinase. Activated EGFR
stimulates the activation of several signal transduction pathways
(Dagogo-Jack and Shaw, 2018). The expression and activation of
EGFR and its major dimerization partner HER-3 (ErbB-3) are
frequently dysregulated in HCC (Negrini et al., 2010). Blivet-Van
Eggelpoël et al. provided evidence that dysregulation of the EGFR/
HER-3 signaling pathway limits the efficacy of sorafenib in
treatment-naïve or acquired-resistant HCC cells. Therefore, anti-
EGFR therapy might improve the therapeutic benefit of sorafenib by
alleviating primary resistance (Ippolito et al., 2021). Investigators
have used several different methods to block the expression of
EGFR, the kinase activity of EGFR, or its autocrine activation,
thereby increasing the sensitivity of EGFR-positive resistant cells
to sorafenib, further demonstrating that EGFR is a potential
determinant of sorafenib resistance in HCC cells. Therefore,
biological analysis of EGFR, whether directly measuring EGFR
expression or activity or detecting its ligands, will help predict
the efficacy of sorafenib, which will be a promising personalized
treatment option for patients with HCC (O’Connor et al., 2007).

Cancer stem cells (CSCs)

In many solid tumors, a small proportion of cells with
progenitor-like features called CSCs or tumor-initiating cells are
present (Ito et al., 2001). Accumulating evidence suggests that CSCs
are involved in tumor recurrence, metastasis, and chemoresistance,
leading to tumor progression and patient death. Tovar et al. found
that tumor tissues from patients with sorafenib-resistant HCC have
a higher proportion of CSCs (Tovar et al., 2017). Xin et al. conducted
a study to test the hypothesis that hepatocarcinoma-derived CSCs
are resistant to sorafenib treatment (Xin et al., 2013). The increase in
CSC counts was accompanied by reduced apoptosis compared with
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the findings in the presence of non-CSCs, and the reduction in
apoptosis was associated with excessive activation of AKT and ERK.
In this study, CSCs were linked to a survival advantage over non-
CSCs after sorafenib treatment of tumor cells, resulting in a
significant increase in the relative proportion of CSCs in all HCC
cell lines tested, and this may be related to liver cancer recurrence
after sorafenib treatment (Xin et al., 2013). In addition, Etienne Ho
Kit Mok et al. showed that SREBP2-mediated cholesterol
biosynthesis is crucial for the increase of hepatic CSCs, and
deletion of sterol-regulatory element binding protein 2 (SREBP2)
and its chaperone SCAP conferred sensitivity to tyrosine kinase
inhibitors in tumor-bearing mice (Li et al., 2022; Mok et al., 2022).

Therefore, the study of the mechanism of drug resistance in CSCs
will provide good clinical benefits in sorafenib-resistant patients. The
Wnt/β -catenin pathway regulates stem cell proliferation and
differentiation, and the Wnt signaling pathway is closely related to
drug resistance caused by CSCs and tumor recurrence and metastasis
(Lou and Dean, 2007). Histone demethylation has proven essential for
the self-renewal/differentiation of stem cells, and the activity of lysine-
specific demethylase 1 (LSD1) is required for the appearance of CSCs
after long-term sorafenib treatment in patients with HCC. LSD1 can
demethylate the monomethyl and dimethyl residues of lysine-4
(H3K4me1 or H3K4me2) on histone H3, thereby inhibiting the
expression of several suppressors of β-catenin signaling, especially
Prickle 1 and APC in Lgr5+CSCs, and promoting the activation of

β-catenin, thereby stimulating self-renewal and drug resistance in
Lgr5+CSCs (Lei et al., 2015). Studies illustrated that LSD1 inhibitors
can partially restore the sensitivity of resistant cells to sorafenib by
inhibiting the Wnt/β-catenin signaling pathway and reducing the self-
renewal capacity of CSCs (Huang et al., 2017). In addition, some
researchers found that EPHB2 kinase expression is elevated in
sorafenib-resistant HCC cells, and this kinase regulates cancer
stemness and drug resistance through the TCF1/EPHB2/β-catenin
positive feedback loop. In immunocompetent mouse models,
targeting EPHB2 with rAAV-8-shEPHB2 (EPHB2 inhibitor)
inhibited HCC tumor growth and sensitized HCC cells to sorafenib
(Leung et al., 2021), indicating that targeting tumor cell stemness may
be a feasible therapeutic strategy against sorafenib resistance in HCC
(Figure 1).

Acquired drug resistance

EGFR and HGF/cMet mediated signaling
pathway

Dysregulation of the Ras-Raf-Mek-ERK, PI3K-Akt-mTOR,
PLC- γ 1, signal transducer and activator of transcription, and
Src pathways downstream of EGFR are involved in tumor cell
proliferation and apoptosis, which are tightly associated with

FIGURE 1
The Wnt/β-catenin pathway regulates stem cell proliferation and differentiation. (A) LSD1 is able to demethylate the monomethyl and dimethyl
residues of lysine-4 on histoneH3, thereby inhibiting the expression of several suppressors of β-catenin signaling promoting β-catenin activation, thereby
promoting self-renewal and drug resistance in CSCs. (B) TCF1/EPHB2/β-catenin positive feedback loop regulates cancer stemness and drug resistance.

Frontiers in Pharmacology frontiersin.org03

Jiang et al. 10.3389/fphar.2023.1097277

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1097277


sorafenib resistance (Swanton, 2017). Since 2007, preclinical studies
have elucidated that many growth factors, including hepatocyte
growth factor, insulin-like growth factor, and fibroblast growth
factor, play vital roles in sorafenib resistance by activating the
PI3K/AKT and Ras/Raf/MEK/ERK pathways (Arao et al., 2013;
Nishida et al., 2015; Han et al., 2017; Vakil and Trappe, 2021). The
PI3K/AKT/mTOR signaling pathway is one of the most common
dysregulated pathways in human cancer, and it controls key cellular
processes, such as metabolism, motility, growth, and proliferation
(Janku et al., 2018). Previous studies illustrated that acquired
resistance to sorafenib in HCC may be caused by compensatory
activation of the PI3K/AKT pathway. AKT activation promotes
tumor cell proliferation and apoptosis resistance; thus, inhibition of
AKT activity reverses acquired resistance to sorafenib in HCC (Chen
et al., 2011). Similarly, such compensatory signaling activation
included the Ras/Raf/MEK/ERK pathway, and MAPK levels
influence HCC sensitivity to sorafenib. If only the ERK cascade
or AKT pathway is activated after sorafenib treatment, cancer cells
could evade apoptosis (Aksamitiene et al., 2012). Recently, it has
been reported that c-Jun N-terminal kinase (JNK), a member of the
MAPK family, can be used as a biomarker to predict sorafenib
sensitivity (Vasan et al., 2019).

Han et al. found using sorafenib-resistant HCC cells generated
from sorafenib-sensitive human HCC cells that continuous
exposure to sorafenib increased hepatocyte growth factor
production and c-Met phosphorylation, leading to the activation
of AKT and ERK pathways (Han et al., 2017). Dual inhibition of Akt
and cMET by the inhibitors MK2206 and capmatinib, respectively,
could inhibit the proliferation of sorafenib-resistant HCC cells
in vitro and sorafenib-resistant HCC xenografts in mice (Han
et al., 2017). Tivantinib, a highly selective inhibitor of cMET, has
demonstrated its value in different tumors (Santoro et al., 2013;
Calles et al., 2015; Moosavi et al., 2021). It has been shown that by
inhibiting the expression of EMT and MDR (multidrug resistance)
related genes, the combination of tivatinib slowed the clearance of
sorafenib in HCC cells and enhanced the anti-tumor effect of
sorafenib (Aoyama et al., 2014; Gao et al., 2019).

Glycolysis

This reprogrammed cancer metabolism is characterized by
enhanced glycolysis and inhibition of oxidative phosphorylation
(Chow et al., 2013; Du and Shim, 2016; Nieto et al., 2016; Gluck et al.,
2019; Tan et al., 2019; Galle et al., 2020; Zhang et al., 2021a; Zhao
et al., 2021a; Vishnoi et al., 2022), known as the Warburg effect
(Stine et al., 2022). It has been reported that the bioenergetic
propensity to utilize glycolysis is closely related to sorafenib
resistance; thus, inhibiting glycolysis and activating oxidative
phosphorylation can overcome intrinsic and acquired sorafenib
resistance in HCC cells (Shen et al., 2013). Rate-limiting enzymes
in glycolysis, such as 6-phosphofructose-1-kinase, pyruvate kinase,
and hexokinase, are activated in sorafenib-resistant HCC cells.
Consequently, inhibiting these enzymes to overcome sorafenib
resistance is considered an effective treatment strategy (Li et al.,
2017; Feng et al., 2019). Further exploration of the relationship
between glycolysis and sorafenib resistance revealed that HIF-1a
plays an important role in regulating glycolysis and apoptosis. HIFs

mediate the primary transcriptional response under hypoxic stress
and enhance the expression of several genes involved in glycolysis
(Semenza, 2013). Therefore, HIF-1a inhibition might represent a
strategy to overcome sorafenib resistance. Meanwhile, the PI3K/Akt
pathway is closely related to glucose metabolism in tumor cells, and
it is also involved in the regulation of HIF-1 α expression, indicating
that the PI3K/Akt/HIF-1 α pathway plays a key role in the
synergistic effect of hypoxia and the Warburg effect. Zhang et al.
found that microbial-derived staphylococcal superantigen-like
protein 6 could inhibited glycolysis by blocking the activation of
PI3K/Akt/HIF-1 by CD47 to enhance the sensitivity of HCC cells to
sorafenib (Zhang et al., 2020) (Figure 2A). In addition, glycolysis is
closely related to CSCs. In HCC, compared with the effects of non-
CSCs, CSCs exhibited a higher rate of glycolysis and higher
expression of glycolytic genes; thus, inhibiting glycolysis could
reduce the number of CSCs to overcome sorafenib resistance
(Schieber and Chandel, 2013; Shen et al., 2015). Bi et al. found
that loss of the histone deacetylase HDAC11 increased the
transcription of LKB1, a serine/threonine kinase, by promoting
histone acetylation in the LKB1 promoter region, which activated
the AMPK signaling pathway and inhibited the glycolytic pathway,
resulting in the inhibition of tumor cell stemness and the
improvement of sorafenib resistance (Bi et al., 2021) (Figure 2B).
Therefore, the resistance profile of HCC cells to sorafenib can be
effectively improved by regulating the glycolytic level of tumor cells.

Autophagy

Autophagy is the main intracellular degradation system that
eliminates damaged intracellular organelles and misfolded
proteins (Zhao et al., 2021b). It has been documented that
autophagy has a paradoxical relationship in the development
of resistance to sorafenib treatment in HCC (Zhong et al., 2016;
Yazdani et al., 2019). On the one hand, researchers found that
sorafenib protected tumor cells by activating autophagy in
parental HCC cells. Some researchers found that sorafenib
resistance associated with CD24 (CSC marker) is accompanied
by the activation of autophagy, and resistance can be blocked by
inhibiting autophagy using pharmacological inhibitors or
knocking out autophagy-related genes. In further studies,
investigated revealed that CD24 overexpression leads to
increased PP2A protein production and induces inactivation
of the mTOR/AKT pathway, thereby increasing autophagy
levels. These experimental results indicate that CD24 can lead
to sorafenib resistance progression by activating autophagy
in hepatoma cells (Lu et al., 2018). Another experiment
also confirmed that in HCC, ANXA3-mediated autophagy
activation and attenuation of the PKCδ/p38-dependent
apoptotic signaling pathway are involved in the development
of sorafenib resistance, and HCC cells can be resensitized to
sorafenib by inhibiting the expression of ANXA3 protein (Tong
et al., 2018).

On the other hand, in resistant cell lines, the protective effect of
autophagy could be switched to a role in promoting cell death.
Because continuous drug exposure can induce unbalanced apoptotic
pathways, it leads to cell resistance to apoptosis (Neophytou et al.,
2021). Autophagy, as an adaptive response, switches from

Frontiers in Pharmacology frontiersin.org04

Jiang et al. 10.3389/fphar.2023.1097277

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1097277


cytoprotective activity to pro-death functioning when apoptotic
signals decay (Su et al., 2013; Zhai et al., 2014; Booth et al., 2020;
Chen et al., 2021). Therefore, researchers found that inhibition of
autophagy further reduced sorafenib sensitivity in sorafenib-
resistant HCC cells, and conversely, inhibition of Akt induced a
switch of autophagy from cytoprotective to pro-death mechanisms,
thereby reversing acquired resistance to sorafenib (Neophytou et al.,
2021). Because of the dual role of autophagy in the process of
sorafenib resistance, additional caution is needed for clinical drugs
that induce autophagy.

Non-coding RNAs

MicroRNAs (miRNAs) are sequences with an average length of
22 nucleotides that regulate target mRNA expression by binding to a
short complementary sequence in the 3 ʹ -UTR region of mRNAs
(Sun and Lai, 2013). In mammalian cells, miRNAs complex with
Argonaute and Dicer to form RNA-induced silencing complex
and guide them to cleave complementary mRNAs to achieve gene
silencing, thereby inhibiting protein synthesis (Meister and
Tuschl, 2004). Recent studies illustrated that the differential
expression of miRNAs is closely related to sorafenib resistance
in HCC, and most miRNAs exhibit lower expression in resistant
tumor tissues than in normal tissues (Wei et al., 2019). For

instance, miR-622 inhibits the expression of KRAS, leading to
inhibition of the RAF/MAPK and PI3K/AKT pathways,
suppression of HCC growth, and enhancement of sorafenib
sensitivity (Dietrich et al., 2018). Therefore, miR-622
expression can be used as an auxiliary diagnostic tool to
predict the response to sorafenib treatment in patients with
HCC. Kabir et al. found that miR-7 is a potent tumor
suppressor in human HCC, and TYRO3 is a novel functional
target of miR-7 (Kabir et al., 2018). TYRO3 is a member of the
TAM family of RTKs, and aberrant expression of the TYRO3/
PI3K/AKT signaling pathway is a novel mechanism of
acquired resistance to sorafenib in HCC. Experimental data
illustrated that miR-7 overexpression could effectively silence
TYRO3 expression in sorafenib-sensitive and sorafenib-resistant
Huh-7 cells, thereby overcoming sorafenib Table 1 resistance in
HCC caused by abnormal TYRO3 expression (Kabir et al.,
2018). Ji et al. found that miR-486-3p was significantly
downregulated in sorafenib-resistant HCC cell lines, further
validating FGFR4 and EGFR as targets of miR-486-3p, and
overexpression of miR-486-3p in combination with sorafenib
could significantly inhibit tumor growth in a sorafenib
resistance model (Ji et al., 2020). Li et al. detected significant
downregulation of miR-138-1-3p and upregulation of
PAK5 in sorafenib-resistant HCC cell lines. They found that
PAK5 elevated the phosphorylation and nuclear translocation of

FIGURE 2
Bioenergetic propensity of HCC cells to utilize glycolysis is associated with sorafenib resistance. (A) HIFs mediate the primary transcriptional
response to hypoxic stress and promote the expression of glycolysis-regulating enzymes. (B) HDAC11 inhibits the transcription of LKB1 by regulating
histone acetylation in the promoter region of LKB1, thereby blocking AMPK signaling and inhibiting the glycolytic pathway, which in turn maintains tumor
cell stemness.

Frontiers in Pharmacology frontiersin.org05

Jiang et al. 10.3389/fphar.2023.1097277

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1097277


β-catenin, thereby increasing the transcriptional activity of the
multidrug resistance protein ABCB1, indicating that miR-138-1-
3p mediates sorafenib resistance by negatively regulating PAK5 (Li
et al., 2021). IGF-1 receptor (IGF-1R) is a major member of the
tyrosine protein kinase receptor family that plays an important
role in maintaining the malignant phenotype and anti-apoptosis
of tumors. Overexpression of IGF-1R and its ligand IGF-1 is

associated with tumor progression. Studies illustrated that IGF
signaling is enriched in tumors with acquired resistance to
sorafenib (Kouyos et al., 2014). Recently, two groups of
researchers demonstrated that miR-122 and miR-378a-3p
negatively regulated IGF-1R expression. Xu et al. found that
IGF-1R could be activated by the ectopic downregulation of
miR-122 to counteract sorafenib-induced apoptosis, thereby

TABLE 1 Summary of previous studies with the mechanisms of receptor tyrosine kinase drug resistance in HCC.

Drug Type of drug
resistance

Mechanism of drug
resistance

Reasons responsible References

Sorafenib Primary drug resistance Mutation of EGFR Dysregulation of EGFR and HER-3 Hsieh et al. (2011)

Enrichment of CSC LSD1 and activation of β-catenin Lei et al. (2015)

EPHB2/TCF1/EPHB2/β
-catenin

Leung et al. (2021)

Acquired drug resistance Compensatory activation of the PI3K/Akt
pathway

Activation of Akt Chen et al. (2011)

Compensatory activation of the MAPK/ER
K pathway

Production of HGF and
phosphorylation of c-Met

Han et al. (2017)

EMT Ets- 1-GPX2 Gluck et al. (2019)

TNF-α/NF-κB/EM Tan et al. (2019)

Metabolic reprogramming Activation of Rate Li et al. (2017)

limiting enzyme PI3K/Akt/HIF- 1α Zhang et al. (2020)

HDAC11/LKB1 Bi et al. (2021)

Autophagy The protective effect of autophagy Lu et al. (2018), Lin et al. (2020), Tong
et al. (2018)

The pro-death mechanism of autophagy Neophytou et al. (2021)

Non-coding
RNAs

MicroRNAs and LncRNAs Table 2

Evasion of apoptosis Deficiency of PUMA Dudgeon et al. (2012)

Highly expression of FGFR4 Repana and Ross (2015)

Dysregulation of cell cycle control E2F1-Rb-cyclin E1 Hsu et al. (2016)

Lenvatinib Primary Drug resistance Activation of FGFR1/FGFR/VEGFR High levels of FGFR1 Yamauchi et al. (2020)

Enrichment of CSC CD73-SOX9 Ma et al. (2020)

Acquired drug resistance High levels of EGFR EGFR/PAK2/ERK5 Jin et al. (2021)

Loss of NF1 and DUSP9 PI3K/AKT and MAPK/ERK Lu et al. (2021)

Non-coding RNAs LncRNA MT1JP Yu et al. (2021)

LncRNA XIST Duan et al. (2022)

circMED27 Zhang P et al. (2021)

Regorafenib Acquired drug resistance EMT Pin1/Gli1/Snail/E-cadhe
rin

Wang et al. (2019)

Sphk2 NF-κB and activation of STAT3 Shi et al. (2020)

Activation of TGF-β signaling Wnt/β-catenin Karabicici et al. (2021)

TOP2A Wnt/β-catenin Wang et al. (2022)

Cabozantinib Primary drug resistance Low levels of c-Met C-Met Gao et al. (2021)
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inducing sorafenib resistance (Xu et al., 2016). Similarly, Lin et al.
confirmed that decreased XPO5 expression prevented the
maturation of miR-378a-3p, which resulted in overexpression
of IGF-1R and counteracted the effect of sorafenib-induced
apoptosis (Lin et al., 2020). Mechanistically, downregulation
of IGF-1R by miR-122 and miR-378a-3p contributes to
activation of the RAS/RAF/ERK signaling pathway, which is
associated with drug resistance (Xu et al., 2016; Lin et al.,
2020) (Figure 3).

By contrast, certain miRNAs are overexpressed in HCC. Fu et al.
revealed that miR-32-5p was significantly upregulated in multidrug-
resistant cell lines and positively correlated with low PTEN
expression as well as poor prognosis (Fu et al., 2018).
Overexpression of miR-32-5p activates the PI3K/Akt pathway by
inhibiting PTEN and further induces multidrug resistance by
regulating angiogenesis and EMT (Fu et al., 2018). Li et al. found
that sorafenib induced the translocation of miR-21 to the nucleus
and promoted the expression of the lncRNA small nucleolar RNA
host gene 1, resulting in upregulation of SLC3A2 and activation of
the Akt pathway, which is involved in the progression of sorafenib
resistance (Li et al., 2019). MiRNAs can also interact with lncRNAs
to participate in the progression of sorafenib resistance. Fan et al.

verified that the lncRNA MALAT1 regulates Aurora-A expression
through the sponge miR-140-5p, which promotes sorafenib
resistance in HCC cells (Fan et al., 2020) (Figure 3).
MALAT1 therefore has the potential to serve as a novel target
for prognostic prediction and therapeutic strategies in patients with
HCC treated with sorafenib.

Several miRNAs are widely involved in the development of
sorafenib resistance in patients with HCC by regulating the
differential expression of sorafenib-targeted kinases. Recent
studies demonstrated that miRNAs can be used as tissue-
specific biomarkers to predict sorafenib resistance in patients
with HCC, and the sensitivity of resistant cells to sorafenib can be
effectively improved by artificially altering the content of
miRNAs within HCC cells. Simultaneously, the involvement of
miRNAs in regulating sorafenib resistance in HCC is a multi-
level and multi-target process, and thus, the synergistic
regulation of multiple miRNAs can be considered when
studying the expression of miRNAs within HCC cells. In
studying strategy to reverse sorafenib resistance, miRNAs
represent an important link that must be considered, and
studies targeting miRNAs will yield great benefits for the
prognosis of patients with sorafenib-resistant HCC.

FIGURE 3
Differential expression of miRNAs is associated with the development of sorafenib resistance in hepatocellular carcinoma.
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Apoptosis resistance and deregulated
cell cycle control

Evasion of apoptosis is a common feature of cancer cells that is
tightly associated with drug resistance (Shahar and Larisch, 2020).
Cancer cells overexpress many proteins that play important roles
in resisting activation of the apoptotic cascade, such as Bcl-2, Bcl-
xL, and Mcl-1 (Mohammad et al., 2015). Dudgeon et al. found that
sorafenib was able to kill cancer cells by activating PUMA (an
apoptotic modulator upregulated by p53) (Dudgeon et al., 2012).
As a large subclass of the Bcl-2 protein family, PUMA, a BH3-
domain only protein, is a key initiator of apoptosis in cancer cells
(Edwards et al., 2013). PUMA deficiency abolished apoptosis and
caspase activation induced by sorafenib, whereas BH3 analogs
enhanced the anti-cancer effect of sorafenib and restored the
sensitivity of resistant cells to sorafenib (Dudgeon et al., 2012).
As an oncogenic driver in HCC, FGF19, with its main receptor
FGFR4, is highly expressed in primary HCC, and its new role in
sorafenib resistance was reported (Repana and Ross, 2015). By
overexpressing FGF19, tumor cells inhibit ROS generation and
apoptosis induced by sorafenib. Importantly, targeting the FGF19/
FGFR4 axis by administering ponatinib, a third-generation Table 2
inhibitor for chronic myelogenous leukemia treatment, can
overcome resistance to sorafenib in HCC by enhancing ROS-
related apoptosis (Gao et al., 2017). These findings suggest that
exploring apoptotic mechanisms provides a theoretical basis for
improving cell sensitivity to targeted therapy.

Furthermore, dysregulation of cell cycle control is a hallmark
of cancer, and overexpression of cyclins is usually closely related
to tumorigenesis progression (Suski et al., 2021). Many studies
demonstrated that synergistic use of cell cycle inhibitors
enhanced sorafenib anticancer activity as well as partially
antagonize multidrug resistance (Reiter et al., 2019; Lee et al.,
2020; Yu et al., 2020). Hsu et al. found that the regulation of
the E2F1–Rb–cyclin E1 complex might play a crucial role in
mediating sorafenib resistance in HCC cells, and depletion of cyclin
E1 expression reversed sorafenib resistance inHCC cells in terms of cell
growth and apoptosis induction (Hsu et al., 2016). In addition, the
combination of sorafenib and CDK inhibitors might improve the
efficacy of sorafenib in the treatment of HCC (Hsu et al., 2016).

Lenvatinib resistance

Lenvatinib is an oral inhibitor of multiple RTKs including
VEGFR1–3, FGFR1–4, platelet PDGFR α, RET, and KIT (Matsui
et al., 2008). It became the second approved first-line treatment for
patients with advanced HCC in 2018, and its efficacy against some
RTKs was superior to that of sorafenib (Kudo et al., 2018; Matsuki
et al., 2018). However, similar to sorafenib, lenvatinib initially
controls tumors well, but resistance gradually develops over time.

In contrast to classical cytotoxic agents, lenvatinib targets specific
molecular and cancer signaling pathways. Thus, diversity of genetic
drivers is decisive for primary resistance to lenvatinib compared to
sorafenib. Kinases such as FGFR1, FGFR4, and VEGFR, as targets of
lenvatinib, have been shown to influence lenvatinib efficacy at high
and low levels of expression (Zhao et al., 2021c; Zhao et al., 2021d; Shi
et al., 2021). FGFR1 levels were shown to be an independent predictor
of response to rosuvastatin (Yamauchi et al., 2020). Certain alkaloid
extracts such as Oxysophocarpine and Sophoridine can improve
lenvatinib sensitivity by inhibiting these target kinases (Zhao et al.,
2021c; Zhao et al., 2021d; Shi et al., 2021). In hepatocellular
carcinoma, CSC initiates tumor development, induces tumor
development and regulates chemoresistance (Lee et al., 2022). Ma
et al. found CD73 to be a potential marker for CSC recognition in
HCC, overexpression of CD73 rendered HCC cells significantly
resistant to rosuvastatin, and purified CD73+cells showed excellent
resistance compared with CD73−cells (Ma et al., 2020).
Mechanistically, CD73 maintains CSC traits by upregulating
SOX9 expression and maintaining the stability of its protein,
which would be a potential target to overcome resistance to
Lenvatinib (Ma et al., 2020).

Similarly, patients with HCC developed varying degrees of
Acquired resistance to lenvatinib, and the development of this
resistance involved alterations in multiple intracellular signaling
pathways. JIN et al. found that high levels of EGFR conferred
resistance to lenvatinib in HCC patients (Jin et al., 2021). This is
due to inhibition of FGFR by lenvatinib treatment resulting in
aberrant activation of the EGFR/PAK2/ERK5 signaling axis (Jin
et al., 2021). Lenvatinib inhibits its downstream pathway by
inhibiting kinases, in which aberrant activation of PI3K/Akt and
MEK/ERK signaling pathways alters drug resistance in HCC cells.

TABLE 2 Previous studies that show the involvement of miRNAs in sorafenib resistance in HCC.

Name Effects on sorafenib resistance Target Reference

miR-622 Inhibiting KRAS Dietrich et al. (2018)

miR-7 Inhibiting TYRO3 Kabir et al. (2018)

miR-486-3p Inhibiting FGFR4/EGFR Ji et al. (2020)

miR-138-1-3p Inhibiting PAK5 Li et al. (2021)

miR-122 Inhibiting IGF-1R Xu et al. (2016)

miR-378a-3p Inhibiting IGF-1R Lin et al. (2020)

miR-32-5p Promoting PTEN Fu et al. (2018)

miR-21 Promoting LncRNA SNHG1 Li et al. (2019)

miR-140-5p Inhibiting lncRNA MALAT1 Fan et al. (2020)

The following references were added.
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Lu et al. performed a genome-wide screen of HCC cells treated with
or without Lenvatinib and identified NF1 and DUSP9 as key factors
for Lenvatinib resistance (Lu et al., 2021). Loss of NF1 reactivates
PI3K/AKT as well as MAPK/ERK pathways in HCC cells inhibited
by Lenvatinib, loss of DUSP9 activates MAPK/ERK pathway and
induces phosphorylation of AKT and ERK to induce Lenvatinib
resistance (Lu et al., 2021). Levels of autophagy also influence
sustained therapeutic efficacy of lenvatinib. Lu et al. found that
LAPTM5 could promote intrinsic macroautophagic/autophagic flux
by facilitating autolysosome formation to drive lenvatinib resistance
(Pan et al., 2022). Non-coding RNAs are also involved in the
development of lenvatinib resistance, and Yu et al. confirmed
that the lncRNA MT1JP was upregulated to inhibit apoptotic
signaling pathways in LR-HCC cells, thereby reducing the
sensitivity of hepatocytes to lenvatinib (Yu et al., 2021). Recently,
Anqi Duan et al. first reported that long non-coding RNA XIST can
promote lenvatinib resistance in hepatocellular carcinoma cells
through epigenetic inhibition of NOD2 (Nucleotide-binding
oligomerization domain 2) (Duan et al., 2022). Mechanistically,
lncXIST is able to bind to the histone modifying enzyme EZH2,
which acts as a core subunit of the PRC2 complex (Polycomb
Repressive Complex 2) and promotes transcriptional silencing by
catalyzing trimethylation of histone H3K27, thus negatively
regulating NOD2 expression (Liu et al., 2021; Bae et al., 2022).
EZH2 has been reported to be overexpressed in HCC and associated
with poor prognosis [ 106]. The results of this study further suggest
EZH2 as a target to overcome lenvatinib resistance in HCC cells.
Furthermore, Zhang et al. found that the circRNA circMED27 was
significantly upregulated in HCC serum, and it acts as competitive
endogenous RNA formiR-655-3p (Duffy and Greten, 2017). It act as
a sponge to adsorb miR-655-3p and then upregulate the expression
of ubiquitin-specific peptidase 28 (USP28), promoting the resistance
of HCC cells to lenvatinib (Zhang et al., 2021b). Research into the
resistance mechanism of lenvatinib, as the second first-line HCC
treatment, will benefit the treatment of patients with HCC.

Resistance to other kinase inhibitors

After many patients failed treatment with sorafenib because of
multi-mechanism resistance, regorafenib was approved by the FDA
in 2017 for the second-line treatment of patients with unresectable
HCC (Bruix et al., 2017; Duffy and Greten, 2017). Therefore, current
studies on regorafenib resistance have focused more on the
mechanism of its Acquired resistance. Pin1, a unique
phosphorylation-specific peptidyl-prolyl cis-trans isomerase, is a
common regulator of a variety of oncogenic signaling networks,
and it was identified as a key isomerase in regulating HCC
progression (Wei et al., 2015; Pu et al., 2018). Wang et al.
demonstrated that inhibition of Pin1 can reverse acquired
resistance to regorafenib in HCC in part by inhibiting EMT
through the Gli1/Snail/E-cadherin pathway (Zhang et al., 2021b).
Their study revealed for the first time the molecular mechanism of
regorafenib resistance in HCC, suggesting that Pin1 inhibitors will
be an alternative treatment class for the treatment of aggressive and
regorafenib-resistant HCC (Wang et al., 2019). Recently, many
findings illustrated that overexpression of sphingosine kinase 2
(SphK2) is associated with drug resistance in tumor cells (Liu

et al., 2016). Shi et al. first demonstrated that SphK2/S1P is a key
regulator mediating regorafenib resistance to HCC through NF- κ B
and STAT3 activation (Shi et al., 2020). Thus, ABC294640, a
selective inhibitor of SphK2, exhibited high potential to increase
the sensitivity of regorafenib-resistant HCC cells to the drug (Shi
et al., 2020). Karabici et al. found that HCC tumors with abnormal
Wnt/β-catenin activation may have higher intrinsic regorafenib
resistance (Karabicici et al., 2021). After this, Zongwen Wang
et al. found that silencing TOP2A, a key pro-oncogene in a
variety of tumors, blocked the EMT process and reversed
acquired resistance to regorafenib through the Wnt- β-catenin
pathway (Wang et al., 2022). In addition, regorafenib resistant
cells have enhanced TGF- β signaling activity and significantly
higher in vivo migration ability, which could be reversed upon
TGF β -R1 inhibition (Karabicici et al., 2021). Therefore, the
combined use of TGF- β pathway inhibitors and regorafenib is a
promising method for sensitization and prevention of tumor
recurrence in patients with HCC with acquired regorafenib
resistance. Regorafenib is structurally similar to sorafenib, but
regorafenib is more potent against VEGFR kinases, and this
potent anti-angiogenic effect provides a precondition for
regorafenib to improve resistance to anti-PD-1/PD-L1 therapy
(Liu et al., 2022). Recently, some preclinical findings suggest that
regorafenib exhibits anti-immunosuppressive properties as an anti-
angiogenic agent (Schmittnaegel and De Palma, 2017; Arai et al.,
2019). For example, regorafenib can promote anti-tumor immunity
by regulating macrophages and increasing the proliferation and
activation of CD8 +T cells, so the combination of regorafenib with
immune checkpoint inhibitors can be regarded as a new dosing
strategy, which may delay the development of its resistance (Granito
et al., 2021).

Cabozantinib is a tyrosine kinase inhibitor with potent activity
against MET, VEGFR2, RET, KIT, AXL, and FLT3. These kinases
have been implicated in HCC progression and the development of
resistance to sorafenib (Yakes et al., 2011). Cabozantinib was
approved in 2019 for patients with advanced HCC who have
been treated with sorafenib (Abou-Alfa et al., 2018). c-MET plays
a key role in the occurrence and development of HCC, which is
related to HCC cell proliferation, survival, and invasiveness,
angiogenesis and the development of resistance to
chemotherapeutic drugs (Venepalli and Goff, 2013; Bouattour
et al., 2018). c-MET is the main target of the anti-tumor activity
of cabozantinib. However, Gao et al. found that HCC cells with low
c-Met levels exhibited primary resistance to c-MET inhibitors, and
the combination of cabozantinib and the mTOR inhibitor
rapamycin exerted synergistic inhibitory effects on cell
proliferation and tumor growth in resistant cells (Gao et al.,
2021; Shang et al., 2021). Therefore, these results suggest that the
development of cabozantinib resistance can be partially avoided
using rational combinations. Increasing evidence supports the
immunostimulatory effects of cabozantinib, and the potential
interaction between cabozantinib and anti-PD-1 inhibitors has
now been investigated in preclinical studies (Cammarota et al.,
2022). In the COSMIC-021 trial (NCT03170960), the
combination of cabozantinib plus atezolizumab showed
encouraging activity in a variety of solid tumors (Cammarota
et al., 2022). Cabozantinib plus afatinib may be a new first-line
treatment option for patients with advanced hepatocellular
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carcinoma, and such a combination may slow cabozantinib
resistance (Kelley et al., 2020).

Donafenib, a deuterium derivative of sorafenib. By inhibiting
phosphorylation of serine/threonine kinases and by blocking RTK
signaling, donafenib shows similar antitumor activity as sorafenib for
the advanced HCC patients (Keam and Duggan, 2021). On July 9th of
2021, according to Chinese NMPA, donafenib produced by Suzhou
Zelgan was approved as a treatment for unresectable HCC patients
without systemic therapy (Keam andDuggan, 2021). Because donafinil
shares similar targeting sites as well as utility with sorafenib, we
speculate that it may have a potential resistance mechanism similar
to sorafenib. However, there is no evidence to prove the occurrence of
drug resistance, which needs further study and exploration.

Possible strategies

Systemic therapy plays an important role in the treatment of liver
cancer. On the one hand, patients with advanced HCC miss the
opportunity for surgical resection or local treatment. On the other
hand, the majority of patients with HCC have to receive systemic
treatment after resection treatment because of the high recurrence rate
of HCC (Villanueva, 2019). It is worthmentioning that before sorafenib
was approved as the first-line treatment for advanced HCC in 2008,
there were no curative treatments for patients with advanced HCC.

Although receptor tyrosine kinase targeted drugs such as
sorafenib prolong the survival of patients with advanced HCC,
the occurrence of drug resistance greatly reduces their clinical
benefits. It is gratifying that with the development of molecular
biology, the mechanism of kinase drug resistance has gradually been
revealed, thereby providing key insights into clinical treatment
(Kannaiyan and Mahadevan, 2018). First, in the case of
sorafenib, because of the genetic heterogeneity of tumors, many
patients exhibit primary resistance characteristics during the initial
treatment. Thus, it is possible to predict the efficacy of sorafenib by
defining molecular markers related to resistance through tumor
genome sequencing technology in clinical practice. These novel
molecular markers might include EGFR and its downstream
molecules or cellular markers affecting tumor stemness. Second,
patients who develop acquired resistance after sorafenib treatment
can be treated by adjusting the dose or changing to another targeted
drug. For example, immune checkpoint inhibitors can be used as
alternative treatment options. The combination of atezolizumab and
the antiangiogenic agent bevacizumab prolonged OS versus
sorafenib monotherapy in patients with advanced HCC (Wang
et al., 2014). In addition, drug intervention against some specific
targets can also be used to resensitize tumors to sorafenib. The Akt
inhibitor GDC0068 can reverse acquired resistance to sorafenib by
switching autophagy from cytoprotective to pro-death activity (Zhai
et al., 2014). TNF-α/NF-κB/EMT signaling inhibition using
ulinastatin overcomes sorafenib resistance in HCC (Tan et al., 2019).

Despite significant clinical benefit of lenvatinib as a VEGFR
inhibitor, dose reduction or discontinuation is generally required
due to its severe toxicity (Nakazawa et al., 2015). In addition, almost
all cancers can show resistance to VEGFR inhibitors through various
mechanisms (Nakazawa et al., 2015). Clinical studies have shown
that serum angiopoietin-2 (Ang2) levels are considered as potential
biomarkers of VEGFR inhibitor response in several cancers

(Miyahara et al., 2011; van der Veldt et al., 2012). Golvatinib is
an inhibitor of c-Met and Tie2 (Wang et al., 2012). Preclinical
studies have shown that combining lenvatinib with golvatinib can
sensitize tumors to lenvatinib and may reduce the clinical dose of
lenvatinib (Nakazawa et al., 2015). In addition, there was one
experiment show that inhibition of epidermal growth factor
receptor (EGFR) is synthetic lethal with lenvatinib in liver cancer
(Vakil and Trappe, 2022). Therefore, lenvatinib in combination with
EGFR inhibitors (gefitinib, etc.) is effective in improving lenvatinib
resistance in patients with a high EGFR profile and is a promising
combination strategy (Vakil and Trappe, 2022).

The molecular pathogenesis of HCC is very complex and involves
different pathways andmolecular aberrations such as RAS/RAF/MEK/
ERK, PI3K/AKT/mTOR, VEGF, c-Met, and HDACs, simultaneous or
sequential elimination of the function of these key pathways or key
molecules may improve the therapeutic dilemma of HCC patients.
Inhibition of multiple nodes of a pathway, either downstream or
upstream of a driver oncogene, through dual blockade of oncogenic
signaling has been shown to be a reasonably effective way to prolong
the response to oncogenic pathway inhibition. On the other hand,
tumor survival can be curbed by using two or more drugs in the same
route or multiple drugs that simultaneously target two parallel routes
(Jin et al., 2022). Currently, in the case of sorafenib, it has been
combined with anti-angiogenic agents, MEK/ERK pathway inhibitors,
mTOR pathway inhibitors, histone deacetylase inhibitors, EGF/EGFR
pathway inhibitors, and HGF/c-Met pathway inhibitors, but to date,
treatment involving sorafenib-containing combination therapy has not
been successful in phase III trials (Huang et al., 2020). Among them,
drug toxicity amplification in combination therapy trials has become
a bottleneck in currently translating positive preclinical experiments
into HCC clinical trials. Therefore, it is recommended that drug
combinations with no or less overlapping toxicity profiles and drug
interactions minimize the risk of amplification of adverse reactions
(Gao et al., 2015).

Receptor tyrosine kinase inhibitors in the treatment of HCC
currently face barriers to resistance to mutations in genes
encoding receptors and effector factors. For example, changes
in kinase gating residues can hinder inhibitor binding by altering
hydrophobic interactions, as suggested by the Thr 315 (encoded
by ACT) mutation in BCR-ABL kinase, which leads to imatinib
resistance (Mou et al., 2021). Elevated tissue expression of pERK
and VEGFR-2 predicts adverse outcomes in advanced HCC
treated with sorafenib (Personeni et al., 2013; Negri et al.,
2015). SNPs in the VEGFR2 gene are significantly associated
with clinical outcomes in HCC patients (Hack et al., 2020).
Understanding and exploring the mechanism of resistance
mutations including EGFR and other receptor kinase domain
and optimizing future coping strategies are urgent problems to
be solved in HCC kinase inhibitor therapy. Also, given the
spatiotemporal heterogeneity of tumors as well as individual
differences in resistance mechanisms, tissue biopsies and genetic
testing are recommended for patients who still experience disease
progression following TKI therapy. This helps to identify gene
kinase domain mutations, clarify the resistance mechanism of TKIs,
carry out more targeted basic and clinical translational research, and
establish more accurate and effective treatment strategies.

Traditional cancer treatments are based on the continuous
administration of fixed doses of single or multiple drugs, using the
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MTD (maximum tolerated dose) to kill as many cancer cells as possible
to obtain the greatest therapeutic effect. However, increasing evidence
suggests that treatments aimed at eliminating susceptible subpopulations
result in altered tumor microenvironment favoring resistant
subpopulations, which enhances the probability and rate of resistance
emergence (Chatterjee and Bivona, 2019). Increasing research has
focused on dose strategies to combat resistance in tumor progression
in combination therapy, and both extremes of too high and too low
doses may unnecessarily accelerate the spread of resistance (Vakil and
Trappe, 2021; Kouyos et al., 2014). Some results suggest thatmaintaining
a low-dose treatment strategy is advantageous when the size of the
patient‘s tumor is tolerable, as it allows the susceptible clonal population
to survive and compete with the resistant subpopulation to prevent the
resistant population from propagating uncontrollably and taking over
the entire tumor, thus having more feared consequences for the patient
(Morgillo et al., 2007; Vakil and Trappe, 2021). In addition, in situations
where the patient‘s immune response increases over time, delaying the
emergence of resistance may provide sufficient time for immunity to
help prevent resistance (Hsieh et al., 2011; Ezzoukhry et al., 2012;
Hagiwara et al., 2012; Yarden and Pines, 2012; Vidal et al., 2014;
Gao et al., 2021b). These interesting findings suggest whether the
administered dose of TKIs can be minimized to delay the
development of drug resistance phenomenon under the premise of
maintaining the survival status of patients.

In conclusion, in this paper, we reviewed the resistance
mechanisms of small-molecule kinase inhibitors in the treatment
of HCC and corresponding improved strategies, hoping to improve
the outcomes of patients with HCC.
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