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Acetaminophen (APAP) is a widely used as analgesic and antipyretic drug. APAP is
also added as an active ingredient in various medications to relieve pain and
reduce fever. APAP has been widely used in pregnant women in the past decades
because it is considered a relatively safe drug with recommended dose in different
countries. However, an increasing number of epidemiological and experimental
studies have shown that APAP exposure during pregnancymay increase the risk of
inducing reproductive and neurobehavior dysfunctions, hepatotoxicity in
offspring. This review aims to assess the potential effects of prenatal APAP
exposure on offspring growth and development.
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1 The effects and characteristics of APAP used in
pregnancy

APAP is a common antipyretic that has been used widely in family population, including
pregnant woman (Nilsen et al., 2023). As a household remedy, pregnant women through
self-directed or unintentional use of APAP is unavoidable (Bandoli et al., 2020). It is
estimated that parts of pregnant womenmay expose to APAP in gestation period (Patel et al.,
2022). It is reported that pregnant women usually take over-the-counter drugs (including
APAP) without medical guidance and it may adversely affect the fetus development (Thiele
et al., 2013). Experimental data in vivo show neonatal APAP exposure (single low dose with
30 mg/kg) may induce adverse actions on the developing brain (Philippot et al., 2022).
Prenatal APAP exposure may induce autism spectrum disorders in childhood, suggesting
that gestational APAP use should be clinically guided (Ji et al., 2020). Pharmacokinetic
analysis of oral APAP dose (single intake 1,000 mg) shows that the contents are highly
correlated in maternal venous blood (12.3 μg/mL) and fetal blood (11.2 μg/mL) (Nitsche
et al., 2017). It is reported that APAP content in umbilical cord blood is approximate 3.6 mg/
L as the median molar dose proportion metabolized to acetaminophen-sulphate and
N-acetyl-p-benzoquinone imine is 0.8% and 0.06% (Mian et al., 2020). Compared to
non-pregnant women, an increase in volume of distribution and an increase in clearance
of APAP in pregnant women is 3.5%–60.7% and 36.8%–84.4% respectively. Notably, the
toxic metabolite N-acetyl-p-benzoquinone imine is greatest in the first trimester, followed by
the second and third trimester in pregnant women (Brookhuis et al., 2021). During
pregnancy and breastfeeding periods, woman may use APAP to relieve acute or chronic
and it may cause negative consequence to offspring (Scialli et al., 2010). Maternal APAP use
during pregnancy is implicated in certain adverse outcomes in offspring, including attention
and sleep problems (Sznajder et al., 2022). The cohort studies report that prenatal APAP
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exposure results in adverse neurodevelopment, including attention-
deficit/hyperactivity disorder associated with frontoparietal network
brain connectivity (Ystrom et al., 2017). Relief frommaternal pain is
an important factor for smooth delivery, and it is particularly
important to use drugs rationally according to the type and
duration of symptoms (Roberge et al., 2016). However, for
various reasons, they are reported to take at least one or two
medications, both prescription and over-the-counter, during
pregnancy (Lupattelli et al., 2014). APAP is commonly used as
antipyretic and analgesic, including pregnant women (Bauer et al.,
2021). Despite the controversy occurs, APAP has potential benefits
in treating clinical symptoms in pregnant women and it is
considered to be low-risk (Toda, 2017). Collectively, current
evidences partially reason that prenatal exposure of APAP may
affect the development and function in offspring.

2 APAP-exerted neuroendocrine
disrupting actions

Mounting data suggest that APAP may exert neuroendocrine
disrupting effects, in which APAP exposure may affect
endocrinological functions from fetal life to adulthood. Increasing
reports manifest that APAP is a hormone disrupter that interferes
with sex and thyroid hormones required for normal brain
development (Aminoshariae and Khan, 2015). Exposure of APAP
during a key period of brain development can lead to a long-term
effect on cognitive functions (Viberg et al., 2014). As APAP can pass
through the blood-brain barrier, it can act both centrally and
peripherally through different molecular regulatory mechanisms.
For example, one of the mechanisms of APAP action is thought to

relieve pain is through competitive suppression of the peroxidase
moiety of prostaglandin H2 synthase and regulation of cannabinoid
receptor signaling pathway (Bührer et al., 2021). Additionally, APAP
has also been found to inhibit serotonergic mechanisms for relieving
pain in clinical studies (Pickering et al., 2008). However, the
oxidative brain impairment and mitochondrial dysfunction are
found in APAP acute exposure in vivo under 600 mg/kg for 5 h
(da Silva et al., 2012). Collectively, understanding the exact
mechanisms regarding APAP-caused neuroendocrinological
dysfunction may be indefinable. However, the potential
disrupting effects of APAP seem to be closely related to dosing
dependence. High dose of APAP exposure may induce oxidative
stress and affect Nrf2 function resulting in reduction of oxidative
stability and increment of toxic response to cause direct toxicity to
neuron and astroglia. Instead, low dose of APAP exposure may
mediate neuroprotective actions via reducing ischemic and amyloid
impairment. Both low and high APAP doses can play analgesic and
antipyretic effects viamodulation of cannabinoid system (Figure 1).

3 APAP-affected reproductive
functions

Exposure of APAP in utero is involved in an increased risk of
developing male genital tract abnormalities. An in vitro study from
isolating adult human testis suggests that 10−4–10−5 mol/L APAP
exposure for 24–48 h may alter testosterone and insulin-like factor
3 in Leydig cells (Albert et al., 2013). Another ex vivo study from
isolating human ovarian fragments displays that 10−3–10−8 mol/L
APAP exposure for 7 days may decrease the total cell number
ovaries and the KI67-positive cell density, induce cell death.

FIGURE 1
High dose of APAP may induce oxidative stress and affect Nrf2 function resulting in reduction of oxidative stability and increment of toxic response
to cause direct toxicity to neuron and astroglia. However, low dose of APAP may mediate neuroprotective actions. Low and high APAP doses can exert
analgesic and antipyretic actions through regulation of cannabinoid system.
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Human fetal ovarian steroidogenesis is affected (Lecante et al.,
2022). A Danish National Birth Cohort study investigating
47,400 live-born singleton sons reports that maternal exposure of
APAP over 4 weeks during pregnancy, especially within the first and
second trimesters, may potentially elevate the presence of
cryptorchidism in offspring (Henriksen and Olsen et al., 2010). A

prospective birth cohort study involving 2,500 pregnant women
shows that exposure to analgesics including APAP during
pregnancy is related to a reduced anogenital distance (AGD) in
offspring boys that may affect normal reproductive development
(Lind et al., 2017). A prospective study from 2,229 recruited women
in UK exhibits that intrauterine exposure of APAP during

FIGURE 2
Prenatal APAP exposure may potentially disrupt human reproductive functions both male and female offspring.

FIGURE 3
Human APAP is metabolized and detoxified in liver tissue via different processes before urine excretion.
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8–14 weeks (masculinisation programming window) of gestation is
correlated to shortened AGD from birth to 24 months (Fisher et al.,
2016). A longitudinal Puberty Cohort study in Danish demonstrates
that APAP use during pregnancy and postpartum may induce
advance appearance of female pubertal development around
1.5–3 months earlier (Ernst et al., 2019). In addition to
experimental data, there are still few human studies on the long-
term reproductive functions affected by prenatal APAP exposure,
especially for intergenerational and transgenerational outcomes. In
brief, current evidences partially reason that prenatal exposure of
APAP may potentially disrupt human reproductive functions both
male and female offspring (Figure 2).

4 APAP-impacted human
neurobehavior functions

Increasing evidences data indicate APAP use during pregnancy may
induce the potential risk of developing neurobehavior problems and
hyperkinetic symptoms (Liew et al., 2014). Another An Auckland
Birthweight Collaborative study from 871 infants shows that APAP
exposure during pregnancymay increase the risk of developing attention-
deficit/hyperactivity disorder (ADHD)-like symptoms in children at
7 and 11 years of age (Thompson et al., 2014). Prenatal and postnatal
exposure of APAP up to 18months result in autism spectrum conditions
(ASC) andADHD in offspring (Alemany et al., 2021).A prospective birth
cohort from 7,796mothers presents that APAP use in 18–32 weeks of
pregnant women results in increased risk of multiple behavioral
problems, including emotional symptom (Stergiakouli et al., 2016).
The meta-analysis systematic review, meta-analysis, and meta-
regression analysis of cohort studies from 132,738 mother-child pairs
suggests that prenatal APAP use is involve in the elevated for inducing

ADHD, autism spectrum disorder (ASD) and hyperactivity syndromes
(Masarwa et al., 2018). Eight cohort studies included 244,940 participants
exhibits thatAPAP exposure to pregnancymay raise the risk ofADHD in
offspring, in which a longer duration of prenatal APAP exposure is likely
associated with a higher risk outcome (Gou et al., 2019). The available
data is of observational nature only. However, current demographical
data is of observational nature only, and pathological mechanism
regarding APAP-induced human neurobehavior dysfunction is
limitedly revealed in details.

5 APAP-induced hepatoxic effects

Usually, most of patients take around 12 g or more APAP before
inducing serious hepatotoxicity, and the peak serum transaminase
activity can occur between 48 and 96 h. It may cause liver failure in
APAP-used patients after days (Fisher et al., 2016). It is preclinically
showed that prenatal APAP exposure may induce hepatic toxicity in
offspring owing to oxidative stress and inflammatory injury (Rofaeil et al.,
2023). Other preclinical evidences indicate that an increased susceptibility
towards APAP-induced liver injury in pregnant mice, and hematopoietic
stem cells in fetal liver is functionally affected (Karimi et al., 2015). The
liver is the largest detoxifying organ in human body. When APAP enters
the body, it will undergo “first pass” metabolism in the liver tissue
approximately 25% of APAP before being excreted in the urine as
glucuronide and sulphate conjugates (Prescott, 1980). Physiologically,
most of APAP is metabolized by stage II binding enzymes characterized
as UDP-glucuronate transferase (UGT) and sulfonyltransferase (SULT)
for further being converted into non-toxic compounds. Another part of
APAP can react with cytochrome P450 enzymes (CYP) and is eventually
metabolized to the highly reactive intermediate metabolite N-acetyl-p-
benzoquinoneimide (NAPQI), a strong hepatotoxic molecule (Lancaster

FIGURE 4
Molecular mechanism of APAP-induced hepatotoxicity is revealed through integrated pathways, including oxidative stress and ER stress.
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et al., 2015). It is reported that exposure toNAPQImetabolized by APAP
may lead to hepatotoxicity and acute liver failure, in which this outcome
may affect the fetus and newborn developments (Brune et al., 2015).
Typically, NAPQI is rapidly detoxified by glutathione (GSH) action.
However, APAP overdose use can cause functional insufficiency of
specific metabolic enzymes owing to threshold saturation, resulting in
NAPQI exhausting GSH (James et al., 2003). APAP in human body is
metabolized and detoxified in liver tissue, as reveled in a graphical briefing
(Figure 3). Mitochondrial oxidative stress is one of the leading causes in
APAP-induced liver damage. Additionally, certain cellular events
including autophagy, endoplasmic reticulum stress, inflammatory
infiltration and microcirculatory dysfunction, have been found
involvement with the pathogenesis of APAP-caused liver injury (Yan
et al., 2018). An animal study shows that prenatal exposure to APAPmay
reduce the expressions of insulin receptor substrate 1 (IRS1),
phosphorylated glycogen synthase kinase-3beta (GSK-3β) and protein
kinase B (AKT), and downregulate hepatic glucose transporter 2
(GLUT2) in offspring livers. And the underlying mechanism
regarding hepatic dysmetabolism caused by prenatal APAP exposure
may be involved in disturbance of insulin-dependent AKT pathway (Wu
et al., 2016). APAP administered intraperitoneally to mice (250mg/kg)
shows that mitochondrial GSH depletion appears to be more severe than
cytoplasmic depletion (Tirmenstein and Nelson, 1989). Excessive APAP
induces mitochondrial dysfunction through production of NAPQI
binding to mitochondrial proteins, resulting in release of reactive
oxygen species (ROS) to damage mitochondrial respiration and to
affect ATP synthesis (Burcham and Harman, 1991; Ramsay et al.,
1989; Jaeschke, 1990). The massive production of ROS in the liver is
involved in APAP-induced hepatotoxicity via mediating endoplasmic
reticulum (ER) stress (Uzi et al., 2013). In addition, high expression of
peroxynitrite participation in the cytotoxicity of APAP may impair
antioxidant function and cell homeostasis, gradually causing apoptotic
or necrotic cell death in liver tissue (Denicola and Radi, 2005). Overall,
current reports comprehensively uncover the molecular mechanism of
APAP-induced hepatotoxicity, especially via mitochondrial avenue
(Figure 4).

6 Conclusion

APAP exposure during pregnancy to treat pain or other
symptoms may induce certain harmful effects on both the
mother and the fetus. Other evidences indicate that prenatal

APAP exposure may disrupt endocrine functions, including brain
and liver tissues. Both intracellular and extracellular events are
involved in pathophysiological processes in APAP-induced
cytotoxicity, including drug metabolism, mitochondrial oxidative
stress, DNA damage andmicrocirculatory dysfunction. As limited in
current reference reports, more human data and toxicological
investigation is needed to further elucidate the adverse actions of
prenatal APAP exposure to offspring. More notably, we should pay
close attention to the household use of APAP for safety, especially
pregnant women before self-directed use.
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