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Upregulation of pyruvate kinase M2 (PKM2) is critical for the orchestration of
metabolism and inflammation in critical illness, while autophagic degradation is a
recently revealed mechanism that counter-regulates PKM2. Accumulating
evidence suggests that sirtuin 1 (SIRT1) function as a crucial regulator in
autophagy. The present study investigated whether SIRT1 activator would
downregulate PKM2 in lethal endotoxemia via promotion of its autophagic
degradation. The results indicated that lethal dose of lipopolysaccharide (LPS)
exposure decreased the level of SIRT1. Treatment with SRT2104, a SIRT1 activator,
reversed LPS-induced downregulation of LC3B-II and upregulation of p62, which
was associated with reduced level of PKM2. Activation of autophagy by rapamycin
also resulted in reduction of PKM2. The decline of PKM2 in SRT2104-treated mice
was accompanied with compromised inflammatory response, alleviated lung
injury, suppressed elevation of blood urea nitrogen (BUN) and brain natriuretic
peptide (BNP), and improved survival of the experimental animals. In addition, co-
administration of 3-methyladenine, an autophagy inhibitor, or Bafilomycin A1, a
lysosome inhibitor, abolished the suppressive effects of SRT2104 on
PKM2 abundance, inflammatory response and multiple organ injury. Therefore,
promotion of autophagic degradation of PKM2 might be a novel mechanism
underlying the anti-inflammatory benefits of SIRT1 activator.
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Introduction

A growing body of evidence suggests that metabolic reprogramming would be actively
involved in the orchestration of metabolic processes and inflammatory responses under
various pathological circumstance including critical illness, metabolic syndrome, tumor,
et al. (Mazumdar et al., 2020). Pyruvate kinase M2 (PKM2), a key enzyme in the last step of
glycolysis, has been regarded as a crucial regulator in inflammatory diseases such as sepsis,
asthma as well as encephalomyelitis (Yang et al., 2014; Damasceno et al., 2020; Manuel et al.,
2021). PKM2 is significantly upregulated in inflammatory response, which promotes the
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expression of pro-inflammatory genes via a diverse of mechanisms
(Yang et al., 2014; Palsson-McDermott et al., 2015). Previous studies
have found that hypoxia inducible factor 1 (HIF-1) as well as other
transcriptional factors were involved in the upregulation of
PKM2 expression (Ma et al., 2015; Li et al., 2022), but the
turnover of PKM2 in inflammatory response remains unknown.

Autophagy is a self-degradation process that transports cellular
contents to lysosomes for degradation, which has been considered as
an evolutionarily conserved adaptive response (Parmar et al., 2022).
Accumulating evidence suggests that autophagy, via degradation of
key components in inflammation, is involved in the negative
regulation of inflammation and suppressed autophagy contributes
to the development of lethal inflammatory injury (Lin et al., 2022;
Liu et al., 2022). Recent studies have found that activation of
autophagy by low-intensity pulsed ultrasound promoted the
degradation of PKM2 in macrophages (Zhang et al., 2020a). In
addition, autophagic degradation of PKM2 has been suggested to be
involved in endothelial-to-mesenchymal transition (Gao et al.,
2020). Thus, promotion of PKM2 autophagic degradation might
be a novel approach to control the level of PKM2.

Acetylation as well as other post-translational modifications
(PTMs) plays essential roles in the regulation of autophagy (Xu
and Wan, 2022). Sirtuin 1 (SIRT1), a longevity factor, is a well-
studied deacetylase that removes acetyl group from the lysine
residue from acetylated proteins (Yang et al., 2022). Previous
studies have found that SIRT1 functions as a crucial regulator at
different stages of autophagy and activation of SIRT1 promoted
autophagy (Baeken, 2023). In addition, treatment with
SIRT1 activator has been suggested as an effective approach to
alleviate inflammatory injury (Yang et al., 2022). Therefore, we
hypothesized that activation of SIRT1 might promote autophagic
degradation of PKM2, and thus attenuated lethal inflammatory
injury.

Lipopolysaccharide (LPS), a major toxic component of
Gram-negative bacteria, is a representative pathological factor
that strongly activates of inflammatory cascade (Gorman and
Golovanov, 2022). A growing body of evidence indicates that the
level of LPS in serum increased, also known as endotoxemia,
under a serial of pathological circumstance (Munford, 2016). In
the most serious inflammatory situation, endotoxemia is
involved in the development of lethal inflammation in patients
with sepsis or infectious shock (Kellum et al., 2023). Systemic
exposure to LPS is widely used to induce endotoxemia with lethal
inflammatory injury in experimental studies (He et al., 2021;
Zhang et al., 2022a). In the present study, SRT2104, a
sirt1 activator (Wu et al., 2022), was administered in mice
with lethal endotoxemia to investigate the pharmacological
significance of SIRT1-autophagy-PKM2 pathway in
inflammatory injury.

Materials and methods

Chemicals and reagents

Lipopolysaccharide (LPS, O55:B4, #01473370) was purchased
from Sigma-Aldrich (St. Louis, MO, United States). Sirtuin
1 activator SRT2104 (#SC0272) was purchased from Beyotime

Biotech (Shanghai, China). 3-methyladenine (3-MA, #HY-19312),
Bafilomycin A1 (BafA1, #HY-100558) and Rapamycin (#S1842)
were provided by Med Chem Express (Shanghai, China). The
detection kit for blood urea nitrogen (BUN, #C013-2-1) was
obtained from Nanjing Jianchen Bioengineering Institute
(Nanjing, China). The dsDNA Assay Kit (#Q33263), the
bicinchoninic acid (BCA) protein assay kit (#23227) and the
enhanced chemiluminescence (ECL) reagents (#WP20005) were
provided by Thermo Fisher Scientific (Rockford, IL,
United States). The Evo M-MLV Mix Kit (#AG11728) and the
SYBR Green Premix Pro Taq HS qPCR Kit (#AG11701) were
purchased from Accurate Biology (Changsha, China). The
enzyme linked immunosorbent assay (ELISA) kits for
determination of mouse tumor necrosis factor-α (TNF-α,
#EMC102a), interleukin-6 (IL-6, #EMC004.96) and monocyte
chemotactic protein-1 (MCP-1, #EMC113.96) were purchased
from NeoBioscience Technology Company (Shenzhen, China),
the ELISA kits for C-X-C motif chemokine ligand 1 (CXCL1,
#EK296/2-96), CXCL2 (#CK2142/2-96) and myeloperoxidase
(MPO, #EK2133/2-96) were purchased from Multi Sciences
Biotech (Hangzhou, China), and the ELISA kits for brain
natriuretic peptide (BNP) was purchased from USCN Business
(Wuhan, China). The antibodies for determination of AMPK
(#2603), phosphorylated AMPK (p-AMPK, #2535), mTOR
(#2983), p-mTOR (#5536), PKM2 (#4053) and the HRP-linked
anti-rabbit (#7074) or anti-mouse (#7076) second antibodies were
purchased from Cell Signaling Technology (Danvers, MA,
United States). The antibodies against SIRT1(#AF0282), S6K1
(#AF0258), p-S6K1 (#AF5889), 4EBP1 (#AG 1824), p-4EBP1
(#AF5806) and LC3B (#AF5225) were provided by Beyotime
Biotech (Shanghai, China). The antibodies for p62 (#18420-1-AP)
and β-actin (#4ab000001) were provided by Proteintech (Wuhan,
China) and 4A Biotech (Beijing, China), respectively.

Scheme of the animal experiments

C57BL/6J mice aged 6−8 weeks with weights of 20–22 g were
purchased from animal experimental center of Chongqing Medical
University (Chongqing, China). The temperature of the feeding
room was kept at 20−25°, and the humidity was 50%–60%. The mice
were fed water and food ad libitum. The protocols of animal
experiment were approved by the Ethics Committee of
Chongqing Medical University.

Lethal endotoxemia was induced in mice with intraperitoneally
injection of LPS (10 mg/kg, dissolved in normal saline). To
investigate the pharmacological significance of SIRT1 activator,
SRT2104 (25 mg/kg, dissolved in DMSO) was administered
intraperitoneally at 30 min before LPS exposure. The
experimental animals were sacrificed 8 h post LPS exposure, the
serum and lung samples were collected for further experiments.

To investigate the role of autophagy in the regulation of PKM2,
rapamycin (5 mg/kg, dissolved in DMSO) was administered
intraperitoneally at 30 min before LPS exposure. Then, the mice
were sacrificed and the lung samples were collected 8 h post LPS
exposure.

To investigate whether the modulatory effects of
SRT2104 depend on autophagic degradation, endotoxemic mice
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were injected with SRT2104 30 min before LPS exposure, and then
the autophagy inhibitor 3-MA (15 mg/kg, dissolved in DMSO) or
the lysosome inhibitor Bafilomycin A1 (1 mg/kg, dissolved in
DMSO) was administered intraperitoneally at 30 min before
SRT2104 injection. The serum and lung samples were collected
8 h post LPS exposure.

Evaluation of the clinical status of the
experimental animals

The body temperature of the mice was determined at 0 h, 2 h,
4 h, 6 h, and 8 h post LPS exposure with a mouse rectal
temperature thermometer (Zhongjiao, China). The clinical
status of mice was blindly scored based on the methods
described previously (Weber et al., 2015; Fan et al., 2018), the
clinical score of each animal is the total of the points from the
categories listed in Table 1. A higher score means a worse clinical
situation of the experimental animal.

Survival analysis

The survival of the experimental animals was recorded every 6 h
for 7 days, and the survival rate of the mice was analyzed by Kaplan-
Meier curve.

Lung histopathologic examination

The left lung tissues of mice were immobilized in 4%
paraformaldehyde and then encapsulated in paraffin. The
samples were sectioned into 5.0 μm slices for staining with

hematoxylin and eosin (H&E). Histological abnormalities of lung
tissues were visualized under a light microscope (Olympus, Japan)
and blindly scored according to the scoring method described
previously (Fan et al., 2018). Briefly, the degree of histological
abnormalities was scored on the following features: congestion,
edema, inflammation, and hemorrhage with a scale of 0–4 (0,
normal; 1, light; 2, moderate; 3, strong; 4, intense). The
histological score is the total of the points from the four features
and a higher score means more severe histological lesions.

ELISA

The serum samples were collected 8 h post LPS exposure for the
determination of TNF-α, IL-6, MCP-1, CXCL1 and CXCL2 with the
ELISA kits following the manufacturer’s instructions. In addition,
lung tissues were homogenized and centrifuged at 12,000 g (4°C) for
15 min. The supernatant was collected for the determination of
MPO level according to the manufacture’s protocols. The OD was
detected at 450 nm by microplate reader. The concentrations of
these molecules were calculated based on standard curves.

Quantitative RT-PCR analysis

Total RNA was extracted from lung tissues with using Trizol
reagent (Takara, Japan) following the manufacturer’s instruction.
The RNA was reversed transcription to cDNA by using an Evo
M-MLV Mix Kit with gDNA Clean for qPCR (Accurate Biology).
Subsequently, cDNA was amplified using the SYBR Green
Premix Pro Taq HS qPCR Kit (Accurate Biology) by real-time
PCR on 7,300 Real-time PCR system with the primers listed in
Table 2.

TABLE 1 The scoring points for clinical evaluation.

Points Coat Activity Respiration Posture Stool

1 smooth normal normal moving or resting normally normal

2 mild ruffling moves slowly without stimulation labored huddled diarrhea

3 significant ruffling moves only with stimulation irregular

4 minimal movement with stimulation

TABLE 2 The primer sequences for qPCR.

Gene Forward primer (5′ to 3′) Reverse primer (5′ to 3′)

GAPDH TGTGTCCGTCGTGGATCTGA TTGCTGTTGAAGTCGCAGGAG

IL-6 GAGGGATACCCCCAACAGACC TGCAATAACCACCCCTGACC

TNF-α AAGAGGGAGAGAAGCAACTACA TGGGTCAGTATGTGAGAGGAAG

MCP-1 TGCTGACCCCAAGAAGGAAT TGTGGAAAAGGTAGTGGATGC

CXCL1 GGCTGGGATTCACCTCAAGAA GTGGCTATGACTTCGGTTTGG

CXCL2 CTCAACGGAAGAACCAAAGAGAAA CTCAGACAGCGAGGCACAT
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FIGURE 1
SRT2104 activator stimulated autophagy but decreased PKM2 level in LPS-insulted mice. (A,B) C57BL/6 mice were challenged with LPS to induce
systemic inflammation. The mice were sacrificed 8 h post LPS exposure, and the lung samples were collected. (A,B) The protein levels of SIRT1 in lung
tissues were determined; n = 4. (C–F) C57BL/6 mice were challenged with LPS to induce systemic inflammation, vehicle or SRT2104 (25 mg/kg) was
administered intraperitoneally. The mice were sacrificed 8 h post LPS exposure, and the lung samples were collected. (C,D) The protein levels of
LC3B-II, p62 and PKM2 in lung tissues were determined; (E,F) The phosphorylation and total protein levels of AMPK, mTOR, 4E-BP1 and S6K1 in lung
tissues were determined; n = 4. (G,H) C57BL/6 mice were challenged with LPS to induce systemic inflammation, vehicle or rapamycin (5 mg/kg) was
administered intraperitoneally. The mice were sacrificed 8 h post LPS exposure, the lung samples were collected and the protein levels of LC3B-II,
p62 and PKM2 in lung tissues were determined, n = 4. Data were expressed as means +SD.
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Western blot analysis

Total proteins of lung tissues were extracted for western blot
analysis. All the samples were lysed in RIPA buffer with protease and
phosphatase inhibitors. The concentration of proteins was
determined with the BCA Protein Assay kit. Protein samples
were electrophoretically isolated on 6%, 7.5%, 10% or 12.5%
SDS-PAGE gels and electro-transferred onto PVDF membranes,
followed by blocking with 5% skim milk at room temperature for
2 h. Subsequently, the membranes were incubated overnight at 4°C
with the primary antibodies against AMPK (1: 1000), p-AMPK (1:
1000), p-mTOR (1: 1000), mTOR (1: 1000), p-S6K1 (1: 1000), S6K1
(1: 1000), p-4EBP1 (1: 1000), 4EBP1 (1: 1000), p62 (1: 1000), LC3B

(1: 1000), PKM2 (1: 1000) or β-Actin (1: 4000). Then, the
membranes were washed and incubated with HRP-linked second
antibody (1: 4000) for 2 h at room temperature. After washing, the
membranes were assayed with enhanced chemiluminescence (ECL)
reagent. The blots were semi-quantified by Image Lab (Bio-Rad,
version 5.2).

Statistical analysis

All data were presented as means +standard deviation (SD) and
the analyses were performed by GraphPad Prism (version 8.0, San
Diego, CA). Differences between groups were tested by one-way

FIGURE 2
SRT2104 suppressed LPS-induced inflammatory lung injury. C57BL/6 mice were challenged with LPS to induce systemic inflammation, vehicle or
SRT2104 (25 mg/kg) was administered intraperitoneally. Themicewere sacrificed 8 h post LPS exposure, and the lung samples were collected. (A–E) The
mRNA levels of (A) TNF-α, (B) IL-6, (C) MCP-1, (D) CXCL1, (E) CXCL2 in lung tissues were determined, n = 3. (F) The level of MPO in lung tissue was
determined, n = 8. (G) HE staining were performed in lung tissues and the representative image of each group was shown (Scale bar: 100 μm); (H)
The histological score was calculated based on the HE-stained sections; n = 6. Data were expressed as means +SD.
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ANOVA with Tukey’s post hoc test. Statistical significance was
considered at p < 0.05.

Results

SRT2104 activated autophagy and
decreased PKM2 level

SIRT1 has been regarded as an important regulator in
autophagy (Xu and Wan, 2022). The present study found that
LPS-induced inflammatory is associated with reduced level of
SIRT1 (Figures 1A, B). To investigate whether activation of
SIRT1 could enhance autophagy and then modulate
PKM2 abundance, a SIRT1 activator, SRT2104(21), was
administered. A previous study has found that short term
(2 weeks) or long term (>40 weeks) oral administration of

SRT2104 exhibited no detectable toxic effects in experimental
animals (Mercken et al., 2014). In agreement, the present study
found that acute intraperitoneal administration (8 h) of
SRT2104 (25 mg/kg) had little effect on body weight of the
mice or the level of ALT/AST (Supplementary Figure S1),
suggesting that treatment with SRT2104 might be safe in the
present study.

In addition, the results indicated that LPS exposure decreased
the level of LC3B-II, the most widely used molecular marker of
autophagy (Baeken et al., 2020), in lung tissue, which was reversed
by SRT2104 (Figures 1C, D). Treatment with SRT2104 also
prevented LPS-induced elevation of p62 (Figures 1C, D).
Consistently, the immunofluorescence analysis indicated that LPS
suppressed the formation of LC3B-II puncta while treatment with
SRT2104 reversed the suppressive effects of LPS on LC3B-II puncta
(Supplementary Figure S2A). LPS exposure also resulted in elevation
of p62, which was suppressed by SRT2104 (Supplementary Figure

FIGURE 3
SRT2104 alleviated LPS-induced systemic inflammation. C57BL/6 mice were challenged with LPS to induce systemic inflammation, vehicle or
SRT2104 (25 mg/kg) was administered intraperitoneally. The mice were sacrificed 8 h post LPS exposure, and the serum samples were collected. (A–E)
The serum levels of (A) TNF-α, (B) IL-6, (C) MCP-1, (D) CXCL1 and (E) CXCL2 were determined; (F,G) The serum levels of (F) BUN and (G) BNP were
determined; (H) The level of extracellular DNA in serum was determined; (I) The body temperature of the experimental animals was recorded; (J)
The clinical score of the experimental animals was calculated; n = 8; (K) The survival of the experimental animals was monitored, n = 20. Data were
expressed as means +SD.
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S2B). Interestingly, SRT2104 administration significantly reduced
pulmonary level of PKM2 in LPS-challenged mice (Figures 1C, D).
Thus, treatment with SRT2104 might activate autophagy and
downregulate PKM2.

AMP-activated protein kinase (AMPK)/mammalian target of
rapamycin (TOR) pathway plays central roles in the regulation of
autophagy, which would be profoundly modulated by SIRT1 (Xu
and Wan, 2022). The present study found that treatment with
SRT2104 prevented LPS-induced dephosphorylation of AMPK,
which was accompanied with suppressed phosphorylation of mTOR
(Figures 1E, F). Consistently, LPS-induced phosphorylation of 4E-BP1

and S6K1, two target proteins downstream mTOR, was inhibited by
SRT2104 (Figures 1E, F). Thus, activation of autophagy by SRT2104 was
associated with activation of AMPK and inhibition of mTOR.

To investigate the roles of autophagy in the regulation of
PKM2 in inflamed-lung tissue, rapamycin, a widely used mTOR
inhibitor and autophagy inducer (Ye et al., 2022), was administered.
As expected, administration of rapamycin increased the level of
LC3B-II but decreased the level of p62 in LPS-insulted mice (Figures
1G, H). Treatment with rapamycin also reduced the level of PKM2
(Figures 1G, H). Thus, activation of autophagy might also induce
PKM2 reduction.

FIGURE 4
Autophagy inhibitor 3-MA reversed the suppressive effects of SRT2104 on PKM2 and inflammation. C57BL/6 mice were challenged with LPS to
induce systemic inflammation, vehicle or SRT2104 (25 mg/kg) was injected intraperitoneally with or without 3-MA (15 mg/kg) co-administration. The
mice were sacrificed 8 h post LPS exposure, and the lung samples as well as serum samples were collected. (A,B) The protein levels of LC3B-II, p62 and
PKM2 in lung tissues were determined, n = 4. (C–E) The mRNA levels of (C) TNF-α, (D) IL-6 and (E) MCP-1 in lung tissues were determined, n = 3.
(F–H) The serum levels of (F) TNF-α, (G) IL-6 and (H) MCP-1 were determined, n = 8. Data were expressed as means +SD.
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SRT2104 alleviated LPS-induced
inflammatory injury

Previous studies have suggested that PKM2 function as a crucial
enhancer in inflammatory injury (Liu et al., 2021). In the present study,
treatment with SRT2104 suppressed LPS-induced upregulation of both
proinflammatory cytokines, such as TNF-α and IL-6, and chemokines,
such as MCP-1, CXCL1 and CXCL2, in lung tissue (Figures 2A–E). In
addition, SRT2104 intervention suppressed the elevation of pulmonary
MPO and alleviated histological abnormalities in lung (Figures 2F, G). In
agreement with the attenuated inflammatory in lung, the elevation of
chemokines and cytokines in serum (Figures 3A–E), the upregulation of
circulating BUN and BNP (Figures 3F, G), biomarkers for renal injury
andmyocardial injury (Zhang et al., 2021;Huan et al., 2022), the elevation

of extracellular DNA in serum (Figure 3H), a biomarker for non-specific
tissue injury (Shi et al., 2020), the decline of body temperature (Figure 3I)
and the increase of clinical score (Figure 3J) were also inhibited after
SRT2104 administration. Most importantly, administration of
SRT2104 significantly improved the survival rate of LPS-insulted mice
(Figure 3K). Therefore, decreased PKM2 is associated with alleviated
inflammatory injury in endotoxemic mice with SRT2104 intervention.

Inhibition of autophagy reversed the
protective benefits of SRT2104

Autophagy has been suggested to be involved in the negative
regulation of inflammation (Liu et al., 2022). Consistently, the

FIGURE 5
Autophagy inhibitor 3-MA reversed the beneficial effects of SRT2104 on multiple organ injury. C57BL/6 mice were challenged with LPS to induce
systemic inflammation, vehicle or SRT2104 (25 mg/kg) was injected intraperitoneally with or without 3-MA (15 mg/kg) co-administration. Themice were
sacrificed 8 h post LPS exposure, and the lung samples as well as serum samples were collected. (A) HE staining was performed in lung tissues and the
representative image of each group were shown (Scale bar: 100 μm); (B) The histological score was calculated based on the HE-stained sections;
n = 6. (C) The level of MPO in lung tissue was determined. (D,E) The serum levels of (D) BUN and (E) BNP were determined; (F) The level of extracellular
DNA in serum was determined; (G) The body temperature of the experimental animals was recorded; (H) The clinical score of the experimental animals
was calculated; n = 8. Data were expressed as means +SD.
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present study found that induction of autophagy by rapamycin was
accompanied with suppressed pulmonary inflammation and alleviated
lung injury (Supplementary Figures S3A–F). In addition, treatment
with rapamycin also blunted systemic inflammatory injury
(Supplementary Figures S4A–H). Thus, reduction of PKM2 by
rapamycin was associated with alleviated inflammatory injury.

To investigate whether the suppressive effects of ST2104 on
PKM2 were autophagy-dependent, an autophagy inhibitor, 3-
methyladenine (3-MA) (Zhao et al., 2022a), was co-administered
with SRT2104. Administration of 3-MA prevented SRT2104-induced
upregulation of LC3B-II and downregulation of p62 and PKM2
(Figures 4A, B). In addition, the suppressive effects of SRT2104 on
pro-inflammatory cytokines expression were also reversed by 3-MA
(Figures 4C–H). Consistently, the alleviated histological lesions in lung

tissue (Figures 5A, B), the downregulation of pulmonary MPO
(Figure 5C), the decreased level of BUN, BNP and extracellular
DNA in serum (Figures 5D–F), the suppressed decline of body
temperature (Figure 5G) and the reduced clinical score (Figure 5H)
in SRT2104-treated group were reversed by 3-MA. Thus, the
downregulation of PKM2 by SRT2104 might result from autophagy-
dependent degradation of PKM2.

Lysosome inhibition reversed the protective
benefits of SRT2104

Lysosome is responsible for the degradation of cellular cargo
in autophagy (Yim and Mizushima, 2020). To further confirm

FIGURE 6
Lysosome inhibitor Bafilomycin A1 (BafA1) reversed the suppressive effects of SRT2104 on PKM2 and inflammation. C57BL/6 mice were challenged
with LPS to induce systemic inflammation, vehicle or SRT2104 (25 mg/kg) was injected intraperitoneally with or without BafA1 (1 mg/kg) co-
administration. Themice were sacrificed 8 h post LPS exposure, and the lung samples as well as serum samples were collected. (A,B) The protein levels of
LC3B-II, p62 and PKM2 in lung tissues were determined, n = 4. (C–E) The mRNA levels of (C) TNF-α, (D) IL-6 and (E) MCP-1 in lung tissues were
determined, n = 3. (F–H) The serum levels of (F) TNF-α, (G) IL-6 and (H) MCP-1 were determined, n = 8. Data were expressed as means +SD.
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that the suppressive effects of SRT2104 on PKM2 depend on
autophagic degradation, a lysosome inhibitor, Bafilomycin A1
(BafA1) (Baeken et al., 2020), was co-administered with
SRT2104. Similarly, treatment with BafA1, prevented the
reduction of LC3B-II, p62 and PKM2 in SRT2104-treated
experimental animals (Figures 6A, B), which was associated
with elevated expression of pro-inflammatory cytokines
(Figures 6C–H). In addition, the beneficial effects of
SRT2104 on lung injury as well as other organs injury were
also reversed after BafA1 administration (Figures 7A–H). Thus,
lysosome is responsible for the promotive effects of SRT2104 on
PKM2 degradation.

Discussion

Autophagy is emerging as a crucial regulatory in inflammation
(Liu et al., 2022). Previous studies have found that autophagic
degradation of inflammation-related proteins plays crucial roles
in the negative regulation of inflammatory cascade (Zhang et al.,
2020a; Lin et al., 2022). In the present study, LPS-induced
upregulation of PKM2 was associated with suppressed autophagy,
while induction of autophagy by rapamycin decreased the level of
PKM2 and alleviated lethal inflammation, suggesting that autophagy
is crucial for the negative regulation of PKM2 in critical illness.
Therefore, autophagic degradation of PKM2, a metabolic enzyme,

FIGURE 7
Lysosome inhibitor Bafilomycin A1 (BafA1) reversed the beneficial effects of SRT2104 on multiple organ injury. C57BL/6 mice were challenged with
LPS to induce systemic inflammation, vehicle or SRT2104 (25 mg/kg) was injected intraperitoneally with or without BafA1 (1 mg/kg) co-administration.
The mice were sacrificed 8 h post LPS exposure, and the lung samples as well as serum samples were collected. (A) HE staining was performed in lung
tissues and the representative image of each group was shown (Scale bar: 100 μm); (B) The histological score was calculated based on the HE-
stained sections; n = 6. (C) The level of MPO in lung tissue was determined; (D,E) The serum levels of (D) BUN and (E) BNP were determined; (F) The level
of extracellular DNA in serum was determined; (G) The body temperature of the experimental animals was recorded; (H) The clinical score of the
experimental animals was calculated; n = 8. Data were expressed as means +SD.
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might be another crucial mechanism for the control of excessive
inflammation by autophagy.

The upregulation of PKM2 is a critical molecular event for the
exacerbation of inflammatory injury (Damasceno et al., 2020;
Dhanesha et al., 2022; Doddapattar et al., 2022). Previous studies
have found that deletion of PKM2 resulted in suppressed
inflammatory response and beneficial outcomes in experimental
animals with autoimmune encephalomyelitis, ischemic stroke as
well as acute lung injury (Damasceno et al., 2020; Dhanesha et al.,
2022; Sun et al., 2022). Interestingly, a growing body of evidence
suggests that the induction of inflammatory injury is usually
associated with suppressed autophagy (Fan et al., 2018), which
might result in reduced degradation of PKM2 and then the
accumulation of PKM2 in inflamed tissues. Therefore, in
addition to enhanced transcription (Zhong et al., 2019),
compromised autophagic degradation of PKM2 might also
contribute to the upregulation of PKM2 under inflammatory
circumstance, and promotion of autophagic degradation of
PKM2 might be a promising strategy for the pharmacological
control of inflammatory injury.

Autophagy is regulated by PTMs such as acetylation (Xu and
Wan, 2022), and SIRT1 is a representative deacetylase that
profoundly involved in the regulation of autophagy (Baeken,
2023). Previous studies have revealed that SIRT1 modulates
autophagy at transcriptional level via deacetylating Forkhead Box
O1 (FOXO1) and Forkhead Box O3 (FOXO3) (Hariharan et al.,
2010; Dusabimana et al., 2019). In addition, SIRT1 directly
deacetylates the key regulators of autophagy, such as Beclin
1 and ATG5, which promotes the formation of autophagosome

(Lee et al., 2008; Sun et al., 2015). Most interestingly, SIRT1 directly
deacetylates LC3-I, which is necessary for the formation of LC3-II
and then the elongation of autophagosome (Huang et al., 2015). In
the present study, LPS exposure induced the reduction of SIRT1,
which might contribute to the suppressed autophagy in
inflammation. In addition, treatment with SIRT1 activator
SRT2104 alleviated inflammatory injury, enhanced autophagy,
and reduced the level of PKM2, which were reversed by
autophagy inhibitor or lysosome inhibitor. Thus, the beneficial
effects of SRT2104 in inflammatory injury might depend on, at
least partially, the activation of autophagic program and degradation
of PKM2.

Additionally, a previous study has found that PKM2 is
acetylated on lysine 305 and this modification promotes the
autophagic degradation of PKM2 (Lv et al., 2011). Another study
has reported that PKM2 is acetylated on lysine 433, whichmodulates
the nuclear localization of PKM2 (Lv et al., 2013), but this
modification does not affect PKM2 protein stability (Lei et al.,
2022). In addition, PKM2 is acetylated on lysine 62 and lysine
66, but there is no evidence that acetylation on these residues
modulates the stability of PKM2 (Zhang et al., 2020b; Zhang
et al., 2022b). Thus, acetylation of PKM2 on these published
lysine residues, including lysine 62, 66, 305 and 433, might not
be responsible for the reduction of PKM2 in SIRT1 activator-treated
group because none of these acetylation modifications is associated
with suppression of PKM2 degradation. Several deacetylases, such as
SIRT2, SIRT3, SIRT6 and histone deacetylase 8 (HDAC8), have
been found to be involved in the deacetylation of PKM2 (Bhardwaj
and Das, 2016; Park et al., 2016; Zhang et al., 2020b; Zhao et al.,

FIGURE 8
The schematic diagram of the mechanisms underlying the anti-inflammatory benefits of SRT2104 in the present study. LPS exposure suppresses
autophagy, which results in compromised autophagic degradation of PKM2 and the subsequent upregulation of PKM2, amplification of inflammation and
exacerbation of inflammatory injury. Administration of SRT2104 boosts autophagy, and then promotes the degradation of PKM2 and the alleviation of
inflammatory injury.
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2022b), but whether SIRT1 also directly interacts with and
deacetylates PKM2 remains to be further investigated.

The anti-inflammatory properties of SIRT1 have been well
documented (Xie et al., 2013; Yang et al., 2022). Previous studies
have found that SIRT1 suppressed inflammatory response via
deacetylate several inflammation-related transcriptional factors,
such as nuclear factor kappa B (NF-κB), activator protein 1 (AP-
1) and HIF-1, and then alters their transcriptional activity and the
subsequent expression of inflammatory genes (Yang et al., 2017;
Chen et al., 2022; Fu et al., 2022). However, the present study found
that SIRT1 stimulates autophagic degradation of PKM2, a crucial
promotor of inflammation (Liu et al., 2021), which results in
reduction of PKM2 and attenuation of inflammation. To the best
of our knowledge, the present study revealed a novel mechanism
responsible for the anti-inflammatory benefits of SIRT1.

Although SRT2104 has been widely used as a selective
SIRT1 activator both in experimental studies and clinical trials
(Sands et al., 2016; Gao et al., 2021), its potential off-target
effects could not be completely excluded because a previous
study has reported that SRT1720, another well-studied potent
SIRT1 activator, might not act as a direct activator of SIRT1
(Pacholec et al., 2010). Therefore, the roles of SIRT1 and
acetylation modification in the regulation of autophagic
degradation of PKM2 requires more detailed investigation. In
addition, the autophagosome and lysosome are regulated by a
serial of signal pathways, transcriptional factors and autophagy-
related proteins, the crucial protein targets responsible for the
stimulatory effects of SRT2104/SIRT1 on autophagic degradation
of PKM2 also remain to be further investigated.

Taken together, the present study found that the upregulation of
PKM2 in lethal inflammation was counter-regulated by autophagic
degradation, while treatment with SIRT1 activator
SRT2104 stimulated autophagic degradation of PKM2 and
dampened lethal inflammatory injury (Figure 8). Although the
underlying mechanisms remain to be further investigated, the
present study revealed a novel approach to decrease the
abundance of PKM2 and weaken the orchestration of metabolism
and inflammation in critical illness.
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