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Background:Oxidative stress is involved in regulating various biological processes
in human cancers. However, the effect of oxidative stress on pancreatic
adenocarcinoma (PAAD) remained unclear.

Methods: Pancreatic cancer expression profiles from TCGA were downloaded.
Consensus ClusterPlus helped classify molecular subtypes based on PAAD
prognosis-associated oxidative stress genes. Limma package filtered
differentially expressed genes (DEGs) between subtypes. A multi-gene risk
model was developed using Lease absolute shrinkage and selection operator
(Lasso)-Cox analysis. A nomogram was built based on risk score and distinct
clinical features.

Results: Consistent clustering identified 3 stable molecular subtypes (C1, C2, C3)
based on oxidative stress-associated genes. Particularly, C3 had the optimal
prognosis with the greatest mutation frequency, activate cell cycle pathway in
an immunosuppressed status. Lasso and univariate cox regression analysis
selected 7 oxidative stress phenotype-associated key genes, based on which
we constructed a robust prognostic riskmodel independent of clinicopathological
features with stable predictive performance in independent datasets. High-risk
group was found to be more sensitive to small molecule chemotherapeutic drugs
including Gemcitabine, Cisplatin, Erlotinib and Dasatinib. The 6 of 7 genes
expressions were significantly associated with methylation. Survival prediction
and prognostic model was further improved through a decision tree model by
combining clinicopathological features with RiskScore.

Conclusion: The risk model containing seven oxidative stress-related genes may
have a greater potential to assist clinical treatment decision-making and prognosis
determination.
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Introduction

Pancreatic adenocarcinoma (PAAD) is one of the most
difficult malignancies to treat (Katona et al., 2021), with
gallstones, chronic pancreatitis, smoking, alcohol drinking as
the most common risk factors for PAAD (Lowenfels et al.,
1993). Ductal adenocarcinoma of the pancreas is the
predominant histopathological type accounting for 85% of all
the PAAD cases. Surgical resection is not available to
proximately 80%–85% of patients due to a lack of typical
manifestations at the initial stage (Singhi et al., 2019). For
those patients with PAAD who have taken surgery, 5-year
overall survival probability is only about 20% (Wu et al.,
2019). The technology of genome sequencing has further
characterized the molecular patterns and genotypic
heterogeneity of pancreatic cancer. Given that molecular
targeting therapies have become indispensable in treatment,
discovering new therapeutic targets is crucial. Hence, for
improving the prognostic prediction of PAAD, it is
imperative to identify novel prognostic indicators.

Oxidative stress functions importantly in pathogenesis of
multiple diseases, including inflammatory diseases, cancer, and
immune-mediated (Azmanova and Pitto-Barry, 2022). Oxidative
stress induces reactive oxygen species (ROS) that could damage
lipids, proteins, DNA, and produce mutagenic metabolites to
affect tumor biological behaviors and transform malignant
phenotype (Sosa et al., 2013). Tumor microenvironment
consists of surrounding tissue components and interacting
tumor cells, with the latter favoring biological behaviors of
tumor cells. ROS has a complex and multifaceted role in
tumor microenvironment. A study found that the non-
classical glutamine pathway promotes the development of
pancreatic cancer with dysregulation of oxidative stress (Son
et al., 2013). ROS inhibits the arginine methylation enzyme
CARM1, which in turn inhibits MDH1 activity. Thus, ROS
could activate non-classical glutamine metabolism to promote
pancreatic cancer cell growth (Son et al., 2013). Glutamine and
asparagine are two key nutrients affecting pancreatic cancer cell
development, moreover, these two are one of the bases of protein
synthesis in pancreatic cancer cells to promote resistance to
oxidative stress and are essential for pancreatic cancer cell
growth and proliferation. Pathria et al. showed that
simultaneous inhibition of asparagine metabolic pathway and
MAPK pathway inhibited pancreatic cancer development
(Pathria et al., 2019). Methionine residues has been found to
serve as a reversible redox switch in controlling different
signaling outcomes. To control tumor metastasis, MSRA-
PKM2 axis is a regulatory bridge between cancer metabolism
and redox biology (He et al., 2022). Therefore, future studies on
the role of oxidative stress in PAAD and the impact on TME are
needed to optimize immunotherapy or develop new therapeutic
strategies.

Consistent clustering screened stable molecular subtypes
utilizing genes of oxidative stress pathway. We also compared
immune features, mutational, clinical pathway features among
the subtypes. Finally, we identified genes associated with
oxidative stress phenotypes using differential expression
analysis and LASSO. Moreover, a risk model and clinical

prognostic model was developed for facilitating personalized
PAAD treatment.

Materials and methods

Data collection and processing

We used TCGA GDC API to download the mutation data and
RNA-seq data [transcripts per million (TPM)] of TCGA-PAAD. A
total of 176 primary tumor samples were finally obtained after
screening. We downloaded transcriptomic data of samples from the
pancreatic cancer-Australia (PACA-AU) and pancreatic cancer-
Canada (PACA-CA) cohorts in the International Cancer Genome
Consortium (ICGC) database (https://dcc.icgc.org/projects), with
each cohort containing 267 and 215 pancreatic cancer samples,
respectively. Oxidative stress-related genes were obtained e oxidative
stress pathway “GOBP_RESPONSE_TO_OXIDATIVE_STRESS”
in MSigDB database.

Data pre-processing

The RNA-seq data from TCGA were preprocessed as follows.

1) Removing samples that did not contain clinical information of
follow-up;

2) Removing samples that did not show survival time;
3) Removing samples that did not show status;
4) Conversion of Ensembl to Gene symbol;
5) Mean value taken for expression in the cases of multiple Gene

Symbols.

Molecular subtyping of oxidative stress-
related genes

Clustering and subtyping of the samples were achieved using
ConsensusClusterPlus (Wilkerson and Hayes, 2010). To obtain
molecular subtypes, expression of cellular senescence-correlated
genes were utilized. “KM” algorithm and “1—Pearson
correlation” was the metric distance in performing
500 bootstraps. Each bootstrapping contained 80% training set
patients. Cluster number was from 2 to 10. Molecular subtypes
as well as the optimal classification were obtained through
calculation of consistency matrix and consistency cumulative
distribution function.

Risk model

1) Among subtypes, differentially expressed genes (DEGs) were
identified by the previously identified molecular subtypes, and
we used the Limma package to calculate genes differentially
expressed between C1 vs. Other, C2 vs. Other and C3 vs. Other in
the TCGA-PAAD cohort (Ritchie et al., 2015).

2) Selection of differentially expressed genes of prognostic
significance (p < 0.01).
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3) Furthermore, genes were reduced by lasso regression (Tibshirani,
1997) to obtain prognostically significant genes associated with
the oxidative stress phenotype.

4) Risk modeling, the formula RiskScore = Σβi × Expi, where Expi is
gene expression of the prognostic-related gene with features of
the oxidative stress phenotype, and β is corresponding gene lasso
cox regression coefficient, was used to calculate the risk score for
each patient. Then zscore was performed, and patient
classification into low- and high- RiskScore groups was
conducted under the threshold “0”. To draw raw curves for
prognostic analysis, KM method was used and the log-rank test
determined difference significance.

Gene set enrichment analysis (GSEA)

To explore pathways of different biological processes, we used
“GSEA” based on all the candidate gene sets in Hallmark database
for pathway analysis in different subtypes (Liberzon et al., 2015).
Significant enrichment was when false discovery rate (FDR) < 0.05.
Ferroptosis pathway were from “WP_FERROPTOSIS” in MSigDB
database; autophagy pathway were from “GOBP_REGULATION_
OF_AUTOPHAGY” in MSigDB database; from Liu et al. (Liu et al.,
2020), we obtained inflammatory signature-related gene set;
angiogenesis-related gene set were from Masiero et al. (Masiero
et al., 2013).

Protein-protein interaction (PPI) analysis

PPI networks were produced. The DEGS between subtypes were
entered into the STRING online tool (https://string-db.org/), and in
Cytoscape (version 3.9.1) software visualization of the PPI networks
were done. Next, module analysis of the PPI networks was
performed using the Molecular Complex Detection (MCODE)
tool of Cytoscape software (Bader and Hogue, 2003).

Calculation of TME cell invasion

In PAAD, CIBERSORT algorithm (https://cibersort.stanford.
edu/) was introduced to quantify relative abundance of
22 immune cells (Newman et al., 2015). ESTIMATE software was
applied for the calculation of immune cells proportion, followed by
comparison of immune cell infiltration using Wilcoxon test (Runa
et al., 2017).

Correlation analysis of risk score and drug
sensitivity

Drug sensitivity data of about 1,000 cancer cell lines were
retrieved from Genomics of Drug Sensitivity in Cancer (GDSC)
(http://www.cancerrxgene.org) (Yang et al., 2013). Area under ROC
curve (AUC) for each antitumor drug served as an indicator for drug
response in cancer cell lines. To calculate the association of AMrs
scores with drug sensitivity, Spearman correlation analysis was
carried out, we considered | Rs |> 0.1. FDR was adjusted by

Benjamini and Hochberg, a significant correlation was defined
when FDR was less than 0.01.

Results

Molecular subtyping based on oxidative
stress-associated genes

The expression pattern of oxidative stress-related genes
pancreatic cancer samples in the TCGA-PAAD and PACA-AU
datasets with clinical information was determined via univariate
Cox regression. A total of 27 oxidative stress genes showing
significant prognosis in both pancreatic cancer datasets were
screened. Univariate cox analysis of these 27 genes in TCGA-
PAAD and PACA-AU filtered 19“risk genes” and 8“protective
genes” (Figures 1A,B). Next, we classified patients by consistent
clustering based on 27 prognostically significant oxidative stress
gene expression profiles, and according to the cumulative
distribution function (CDF), determined the optimal number of
clusters. From CDF Delta area curve, we could see that the Cluster
selection of 3 had more stable clustering results (Figures 1C,D), and
three molecular subtypes (C1, C2, C3) were categorized under k = 3
(Figure 1E). Furthermore, we analyzed their prognostic
characteristics and significant differences in prognosis
(Figure 1F). Generally, the prognosis of C3 was better in contrast
to a worse prognosis of C1. Also, this result was validated in the
PACA-AU cohort (Figure 1G).

Analysis on the “oxidative stress ssGSEA scores” for each
pancreatic cancer patient in the TCGA-PAAD cohort showed
that the C1 subtype had higher “oxidative stress ssGSEA scores”
and it was the lowest in C3 (Figure 1H), noticeably, C1 presented
activated oxidative stress. We also compared the expression
differences of 27 oxidative stress genes in different molecular
subtypes (Figure 1J). C1 subtype showed an overall high-
expressed “Risk” genes, while in the C3 subtype, the “Protective”
gene was high-expressed. This phenomenon was also observed in
the PACA-AU cohort (Figures 1I,K).

Genomic landscape between molecular
subtypes

To further investigate the potential molecular mechanisms
underlying the classification of oxidative stress subtypes, we
explored genomic alteration differences among these three TCGA
cohort molecular subtypes. Here, information of molecular
signature of TCGA-PAAD was acquired from a previous pan-
cancer study (Thorsson et al., 2018). The Anenploidy Score, loss
of heterogeneity (LOH), tumor mutation burden (TMB),
Homologous Recombination Defects all differed greatly among
the three subtypes. It has been observed that the C1 subtype had
higher levels of these four indicators (Figure 2A). In addition, in this
study, according to 160 different immune signatures, five molecular
subtypes of PADD were categorized, among which the most
favorable prognosis was the immunoassay subtype C3. Then,
comparison of the current molecular subtypes were compared
with the five immune molecular subtypes showed that our
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C3 subtype was more occupied by the immune molecular subtype
C3, which coincided with the most favorable prognosis of our
molecular subtype C3 (Figure 2B). The top significant 20 genes
were shown (Figure 2C). It could be seen that genes such as KRAS
and TP53 had significantly different mutation frequencies between
the three molecular subtypes.

Immune characteristics between molecular
subtypes and differences in
immunotherapy/chemotherapy

Between different molecular subtypes, differences in the PAAD
immune microenvironment was further explored by assessing
immune cell infiltration in patients in TCGA-PAAD and PACA-
AU cohorts based on gene expression in the immune cells. Relative

abundance of 22 immune cell types was determined using
CIBERSORT, and in the TCGA-PAAD cohort we found that six
immune cell types (Mcrophages, CD8 T cells, naive B cells,
Monocytes, memory CD4 T cells, regulatory T cells,
Macrophages M0) differed significantly between subtypes, and T_
cells_CD8 and Monocytes were enriched in the C3 subtype
(Figure 3A). Immune cell infiltration was assessed using
ESTIMATE. In the TCGA cohort, the three subtypes differed
significantly in distribution in the StromalScore, ImmuneScore
and ESTIMATEScore, and the highest score was in the
C3 subtype but the lowest was in the C1 subtype (Figure 3B).
We also analyzed the PACA-AU data set and found that eight
immune cell types, including resting memory CD4 T cells,
M0 Macrophages, naïve CD4 T cells, M1 Macrophages,
CD8 T cells, helper follicular T cells, Monocytes, Neutrophils, in
the PACA-AU cohort differed significantly between subtypes

FIGURE 1
Three pancreatic cancer molecular subtypes based on oxidative stress-related genes. (A) In the TCGA-PAAD cohort, the forest plot of
27 prognostically significant oxidative stress genes; (B) The forest plot of 27 prognostically significant oxidative stress genes in the PACA-AU cohort; (C)
CDF curves of TCGA-PAAD samples; (D) CDF Delta area curves of the samples, with the horizontal axis indicating the number of categories k and the
vertical axis indicating the relative change in area under the CDF curve; (E) At consensus k = 3, the heatmap of clustered samples; (F) KM curve of the
prognosis of three subtypes of the TCGA-PAAD samples; (G) KM curve of the prognosis of three subtypes of the PACA-AU samples; (H) Differences in
“oxidative stress ssGSEA scores” among the TCGA-PAAD molecular subtypes; (I)Differences in “oxidative stress ssGSEA scores” among the PACA-AU
molecular subtypes; (J)Heatmap of prognostic significant oxidative stress-related genes in TCGA-PAAD subtypes; (K)Heatmap of prognostic significant
oxidative stress-related genes in PACA-AU subtypes.
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(Figure 3C). Furthermore, immune cell infiltration in the PACA-AU
cohort was consistent with the TCGA-PAAD cohort (Figure 3D).

Some studies have reported that oxidative stress and
inflammation are intertwined processes in disease
progression and response to therapy by interfering with
multiple signaling pathways. Here, the enrichment scores of
seven metagenes clusters were greatly different in the three
molecular subtypes, with the exception of Interferon, STAT1,
and the remaining five metagenes clusters, and overall, the
C3 subtype had higher inflammatory activity (Figure 3E). In
addition, it has been reported that ferroptosis from oxidative
stress and inflammation plays a key role in the pathogenesis of
cardiovascular diseases (Yu et al., 2021), such as stroke, vascular

sclerosis, heart failure, ischemia-reperfusion injury. Thus,
comparison on the differences in ferroptosis scores between
the three subtypes has demonstrated significant distributional
differences between C1 and C2 subtypes, with C2 subtype
having a lower ferroptosis score (Figure 3F). In addition, a
study reported that inflammation stimulates excessive
autophagy or severe oxidative stress could result in
autophagy-dependent cell death (Cai et al., 2018). The
autophagy scores for the subtypes (Figure 3G) were
significantly different between the three subtypes, with the
C3 subtype having a higher autophagy score. Additionally,
we found statistically significant differences in angiogenesis
between C2 and C3 subtypes and between C1 and

FIGURE 2
In TCGA-PAAD cohort genomic alterations of molecular subtypes. (A) Comparison of Aneuploidy Score, LOH, tumor 25 burden, Intratumor
Heterogeneity, ploidy, Homologous Recombination Defects, purity in TCGA-PAAD subtypes; (B) Comparing our molecular subtypes to the other six
existing immune molecular subtypes; (C) Chi-square test on the somatic mutations in the three molecular subtypes. *p < 0.05; **p < 0.01; ***p < 0.001;
and ****p < 0.0001.
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C3 subtypes, with C3 subtype having the highest score
(Figure 3H).

Immunotherapy and drug sensitivity
differences between molecular subtypes

Some sample compounds were examined because immune
checkpoint blockade (ICB) cancer treatment works by
suppressing important immune checkpoints. Among the
three subtypes, CTLA4 and PD-1 were differentially
distributed, and C3 was significantly more high-expressed,
while PD-L1 was not differentially expressed (Figure 4A). We
also applied the “T-cell-inflamed GEP score” to assess the
predictive potential of different molecular subtypes in

immunotherapy for cancers. It could be observed from
Figure 4B, the C3 subtype had a noticeably higher “T-cell-
inflamed GEP score”. Considering that IFN-γ is a cytokine
with a key role in anti-cancer immunity and
immunomodulation (Rydyznski Moderbacher et al., 2022),
our analysis revealed that in the C3 subtype the IFN-γ
response was significantly enhanced (Figure 4C).
Additionally, we also found that Cytolytic activity (CYT)
scores, which reflects cytotoxic effects, were significantly
higher in C3 subtypes compared with other subtypes
(Figure 4D).

Additionally, response of the molecular subtypes in the
TCGA-PAAD cohort to the conventional chemotherapeutic
agents such as Gemcitabine, Erlotinib, Cisplatin, 5-
Fluorouracil were analyzed, and found that C1 was more

FIGURE 3
Immune characteristics of different subtypes. (A) TCGA-PAAD molecular subtypes varied in the differences of 22 immune cell scores; (B) TCGA-
PAAD molecular subtypes varied in the differences of ESTIMATE immune infiltration; (C) PACA-AU molecular subtypes varied in the differences of
22 immune cell scores; (D) PACA-AU molecular subtypes varied in the differences of ESTIMATE in immune infiltration; (E) TCGA-PAAD molecular
subtypes varied in the differences of scores of seven inflammation-related gene clusters; (F) TCGA-PAAD molecular subtypes varied in the
differences of ferroptosis pathway; (G) TCGA-PAAD molecular subtypes varied in the differences in scores of autophagy pathway; (H) TCGA-PAAD
molecular subtypes varied in the differences in scores of angiogenesis-related genes; *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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sensitive to Gemcitabine, Erlotinib, Cisplatin (Figure 4E), while
C3 was more sensitive to 5-Fluorouracil.

Differential functional analysis between the
molecular subtypes

Limma package was used to determine DEGs. There is
64 DEGs in C1vs. other in TCGA-PAAD dataset and PACA-
AU dataset, 137 DEGs in C3 vs. other in TCGA-PAAD dataset
and PACA-AU dataset. After union analysis, 144 DEGs were
obtained. Functional enrichment analysis was conducted on the
DEGs among the subtypes. The enrichment results of GO and
KEGG pathways on the DEGs in the “C1” subtype demonstrated
that the DEGs had significant enrichment in some biological
functions than cellular communication (Supplementary Figure

S1A). However, in “C3” subtype these DEGs were significantly
enriched to some immune-related biological pathways
(Supplementary Figure S1B). To better investigate the
interactions among these DEGs, the STRING online tool for
developing a PPI network (Supplementary Figure S1C) was
applied. In addition, two important modules in the PPI
network were determined based on the module analysis
(Supplementary Figure S1D).

Identification of key genes for the oxidative
stress phenotype

Next, we performed univariate COX regression analysis on
144 DEGs among the subtypes and identified 61 genes showing
great prognostic significance (p < 0.01), including 31“Risk” and

FIGURE 4
Differences in treatment sensitivity among the molecular subtypes. Among different molecular subtypes, (A) Differences in “T cell inflamed GEP
score”; (B) differences in “response to IFN-γ”; (C) Differences in “response to IFN-γ". (B) Differences in “response to IFN-γ”; (C) Differences in immune
checkpoint gene expression; (D)Differences in “Cytolytic activity”; (E) Box plots of IC50 of cisplatin, gemcitabine, 5-fluorouracil, erlotinib in TCGA-PAAD;
*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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30“Protective” genes (Figure 5A). PPI network analysis indicated
that these genes are related to each other (Supplementary Figure S2).
To further compress these 61 genes in the risk model, Lasso
regression was used. Independent variable’s trajectory is shown in
Figure 5B. The number of independent variable coefficients close to
zero likewise showed a progressive increase as the lambda gradually
increased. Moreover, 10-fold cross-validation was applied to develop
a model and to analyze confidence intervals under each lambda
(Figure 5C). When lambda = 0.119, the model was optimized,
therefore, 7 genes at lambda = 0.119 were determined in this
study as the genes related to oxidative stress to affect patients
prognosis (Figure 5D). These genes included ATP2A3, ANLN,
GJB4, FAM83A, CEP55, COL17A1, and SCAMP5. The formula
as followed: RiskScore = + 0.134*ANLN-
0.086*SCAMP5+0.048*FAM83A-0.111*ATP2A3+0.322*CEP55 +
0.11*GJB4+0.1*COL17A1 Single-cell division TISCH2 (http://
tisch.comp-genomics.org/home/) analyzed the expression
distribution of seven genes in multiple single-cell data of
pancreatic cancer, and the results showed that the expression of
COL17A1 and FAM83A genes in malignant cells was significantly
higher than that in other cell types (Supplementary Figure S3).

The performance and validation of
prognostic model

The expression and coefficients of seven prognostic genes were
used to construct a clinical prognostic model and for calculating and
ranking the risk values of TCGA-PAAD samples. According to the
cut-off, we divided 81 samples into “Low-risk” group and 95 samples
were in the “High-risk” group. The prognosis prediction at 1, 2, and
3 years (s) was further analyzed for its classification efficiency
(Figure 6B), respectively. The model demonstrated a high area
under the AUC line (1-Year, AUC = 0.73; 2-Year, AUC = 0.75;
3-Year, AUC = 0.79). KM curves were plotted and a highly
significant difference was shown between the two RiskScore
groups (p < 0.0001), with the “Low-risk” group showing a
significantly better prognostic outcome than “High-risk” group
(Figure 6C). To confirm the robustness of the clinical prognostic
model, we performed validation in 2 additional independent
pancreatic cancer cohorts (PACA-AU, PACA-CA), and it can be
seen that in the validation cohort showed similar results to the
training set, with the “Low-risk” group showing a significantly better
prognostic outcome than “High-risk” group (Figures 6D–G).

FIGURE 5
Screening of genes correlated with oxidative stress that affect prognosis. (A) Totally 61 candidates were screened from all the DEGs; (B) With the
change of lambda, trajectory of each independent variable was shown; (C) Confidence interval under lambda; (D) Oxidative stress-related prognostic
gene markers and the distribution of LASSO coefficients.
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The RiskScore on the subtypes and various
clinicopathological features

To assess the correlation of PAAD clinical features with
RiskScore, the differences in RiskScore between different TNM
grades and clinical stages in the TCGA-PAAD and PACA-AU
datasets were studied. Samples with higher clinical grades showed
higher RiskScore. Also, C1 subtypes had the highest RiskScore
but C3 subtypes had the lowest RiskScore (Supplementary
Figures S4A,C). Additionally, difference comparison between
RiskScore groups and molecular subtypes was conducted,
showing a majority of “C1” or “C2” patients in the “high-risk”
group (Supplementary Figures S4B,D). Moreover, the prognosis
of TCGA-PAAD between the low- and high-risk groups in
relation to clinicopathological characteristics was explored,
and our risk grouping was equally effective across clinical
subgroups, with the “Low-risk” group showing a significantly
better prognosis, demonstrating the reliability of our risk

grouping (Supplementary Figures S4E). In addition, the
correlation analysis of spearman between expression levels and
methylation on 6 genes except ANLN gene showed a negative
phenomenon but had a positive with SCAMP5 gene
(Supplementary Figures S5).

Immune infiltration/pathway characteristics
between RiskScore subgroups

Differences in immune microenvironment in the RiskScore
subgroups were studied, we used ESTIMATE to assess immune
cell infiltration (Figure 7A), and observed that the “Low-risk”
group was significantly higher in immune cell infiltration. The
most significant top 10 pathways showing differences between
the high- and low-risk groups are shown in Figure 7B. It can be
seen that high-RiskScore was significantly enriched to some cell
cycle-related pathways such as G2M_CHECKPOINT, MTOTIC

FIGURE 6
Generation and evaluation of risk score models using 7 genes related to oxidative stress. (A) RiskScore, expression of oxidative stress-related
prognostic genes and survival time and status in TCGA dataset; (B) RiskScore classification in TCGA dataset and ROC and AUC curves; (C) Distribution of
KM survival curve of RiskScore in TCGA dataset; (D, E) ROC curve and KM survival curve distribution of RiskScore in PACA-AU cohort; (F, G) ROC curves
and KM survival curves of RiskScore in the PACA-CA cohort.
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SIGNSLING, and E2F TARGETS. Furthermore, association of
the RiskScore with the enrichment scores of these functions was
analyzed, with the functions showing a correlation greater than
0.5 being identified. Figure 7C manifests a positive correlation
of the RiskScore with cell cycle-related pathways.

Differences in chemotherapy/
immunotherapy among the RiskScore
subgroups

First, we used the “T-cell-inflamed GEP score” to assess the
prediction potential of the different RiskScore subgroups in
cancer immunotherapy (Figure 8A), and the results showed that
in the low-RiskScore group the “T-cell-inflamed GEP score” was
significantly higher. Further analysis on the response to IFN-γ
in both groups revealed that the response to IFN-γ was
significantly enhanced in the low-RiskScore group
(Figure 8B). Moreover, the CYT score had cytotoxic effect,
and it was significantly lower in the high-RiskScore group
(Figure 8C). Some representative immune checkpoint
molecules were significantly high-expressed CTLA4, PD-1 in
the low-RiskScore group, while PD-L1 was not differentially
expressed between molecular subtypes (Figure 8D).

The effect of RiskScore on drug response was analyzed based on the
relationship between RiskScore and cancer cell lines’ response to drugs.
There were 11 drug sensitivities in the GDSC database showing
significant correlation with RiskScore. There were three drug
sensitivities showing a negative correlation with RiskScore, namely,
KU-55933, Tozasertib, Dasatinib (Figure 8E). Furthermore, we also
analyzed the signaling pathways of the genes targeted by these drugs,
which mainly target the SRC pathway (Figure 8F).

Moreover, response degree of the TCGA-PAAD subtypes to
chemotherapeutic agents (Gemcitabine, Erlotinib, Cisplatin, 5-
Fluorouracil, and Dasatinib) was studied. We found that the
High-risk group responded to Gemcitabine, Cisplatin, Erlotinib
and Dasatinib. Overall, High-risk group showed a higher
sensitivity to Gemcitabine, Cisplatin, Erlotinib and Dasatinib.
Low-risk group had higher sensitivity to 5-Fluorouracil (Figure 8G).

RiskScore in combination with
clinicopathological features to improve
survival prediction and the prognostic
models

For the TCGA-PAAD cohort (Figure 9A), only RiskType, and
Age, N Stage remained in the decision tree that was originally

FIGURE 7
Immunology and pathway between different RiskScore subgroups. (A) ESTIMATE software was applied to determine immune cell components in
the TCGA database; (B) The top 10 pathways showing the greatest significant differences between Low-risk and high-risk groups; (C)Correlation analysis
results on the RiskScore and KEGG pathways scored greater than 0.5; *p < 0.05; **p < 0.01; * **p < 0.001; and ****p < 0.0001.

Frontiers in Pharmacology frontiersin.org10

Zhang et al. 10.3389/fphar.2023.1091378

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1091378


established with TNM Stage, gender, pathology information and
RiskScore, patient age, and it identified four different risk
subgroups (Lowest, Low, Mediate, High). Among them
RiskType was the parameter of the greatest impact. The four
risk subgroups showed significant difference in overall survival,
with the “Lowest” group having the optimal prognosis and the
“High” group having the worst prognosis (Figure 9B). Patients in
the risk subgroups were all “Low","Lowest”, and “Mediate” Low-
risk group patients (Figure 9C). In addition, “High-risk” group
showed more distribution of our defined molecular subtypes
C1 and C2 (Figure 9D). From Figures 9E,F, the most
significant prognostic factor was the RiskScore. To quantify
survival probability of PAAD patients and the risk assessment,
other clinicopathological characteristics were combined with
RiskScore for nomogram development (Figure 9G), here, the
RiskScore demonstrated the greatest impact on predicting
patients’ survival. Furthermore, we evaluated the model
prediction accuracy with calibration curve (Figure 9H). At the
calibration points of 1, 2, 3 years (s), the prediction calibration

curves almost completely encircled the standard curve, indicating
good prediction accuracy. We also assessed model reliability by
decision curve analysis, and in comparison to the extreme curves,
benefit of both RiskScore and Nomogram was significantly
greater and the two showed a stronger survival prediction
(Figure 9I).

Herein, we selected three risk models from previous studies (5-
gene signature (Yan) (Yan et al., 2022), 3-gene signature (Yang)
(Yang et al., 2022) and 9-gene signature (Liu) (Liu et al., 2022)) to
compare with our model. In order to make the model have a
certain comparability, the same method is used to calculate the
sample risk score according to the corresponding genes in the three
models, and zscore is performed for Riskscore. After zscore, the
samples with Riskscore greater than zero are divided into high-risk
group and those with riskscore less than zero are divided into low-
risk group.

ROC analysis showed that the AUC value was lower than that in
our model (Supplementary Figures S6A–C). The C-index in our model
was higher than that in other 3 models (Supplementary Figure S6D).

FIGURE 8
The prognostic risk models in predicting patients’ benefit from immunization/chemotherapy. (A)Differences in “T cell inflamed GEP score” between
subgroups; (B) Differences in “response to IFN-γ” between subgroups; (C) Differences in “C-γ” between subgroups. (C) Difference of “Cytolytic activity”
between different subgroups; (D)Difference of immune checkpoint gene expression between different subgroups; (E) Spearman analysis was conducted
for correlation analysis on drug sensitivity and RiskScore, with each column representing a type of drug. Correlation significance is reflected in color
brightness. The correlation of RiskScore with drug sensitivity (Rs < 0) or drug resistance (Rs > 0) was reflected in the height of a column. (F) The horizontal
axis is the drug name and the vertical axis is the signaling pathway targeted by the drug. The signaling pathway targeted by the drug is sensitive to
RiskScore (blue); (G) Box plots of IC50 estimates for dasatinib, gemcitabine, cisplatin, erlotinib and 5-fluorouracil in TCGA-PAAD; *p < 0.05; **p < 0.01;
***p < 0.001; and ****p < 0.0001.
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Discussion

Pancreatic cancer shows a significantly poor prognosis with a 5-
year survival chance of approximately 5% (Ilic and Ilic, 2016).
Accurate prognostic evaluation enables patients suffering from
PAAD to benefit more from effective treatments such as more
intensive surgery, targeted molecular therapies, neoadjuvant
therapy, immunotherapy, radiotherapy, chemotherapy. Thus,
treatment could be personalized to individual patient for
improving prognosis. In the early diagnosis of highly
heterogeneous PAAD, molecular prognostic markers are
potentially valuable, which at the same time could help overcome
the impediment of heterogeneity. Multiple molecular markers
increase the accuracy than single molecular markers in reflecting

pancreatic cancer prognosis, the progression of which is in a
complex network involving different signaling pathways. Wu
et al. identified a 9-gene signature and also developed a
prognostic nomogram that could reliably predict PAAD overall
survival (Wu et al., 2019). Weng et al. established a multi-omics
perspective consisting of 3 mRNAs, 3 miRNAs, 60 lncRNAs related
to PAAD prognosis, and constructed a classifier based on 14mRNAs
with a good predictive function in the cohort and helped to predict
PAAD prognosis (Weng et al., 2020). Based on 14 necroptosis-
associatedgenes, Wu et al. developed a prognostic model for the
diagnosis, prognosis of PAAD and its treatment (Wu et al., 2022).
Our work identified the molecular subtypes of PAAD based on
oxidative stress due to the non-negligible regulatory impact from
oxidative stress plays.

FIGURE 9
The nomogram of prognostic risk models with clinicopathological features. (A) To optimize risk stratification, patients with full-scale annotations
including TNM Stage, age, gender, and RiskScore were enrolled for developing a survival decision tree; (B) Risk subgroups showed significant overall
survival differences; (C, D) Comparative analysis between different subgroups; (E, F) RiskScore and clinicopathological (E, F) Univariate and multifactorial
Cox analysis on clinicopathological features and RiskScore; (G) The nomogram model; (H) Calibration curves for 1, 3, and 5 years (s) of the
nomogram; (H:Decision curve for the columnar graph; (I) The most powerful capacity of the nomogram for survival prediction when compared with
other clinicopathological features. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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First, we employed oxidative stress-related genes to consistently
cluster three stable molecular subtypes, each of which has its own
unique prognostic, route, clinical, and immunological properties. Our
analysis demonstrated a better prognosis of C3 and a worse one of C1.
ROS could cause several types of DNAdamage (Ebrahimi et al., 2020).
Persistent DNAdamage is resulted from the continuous production of
ROS and an inflammatory cascade that triggers genomic changes and
a tendency to increase epigenetic alterations. The development of
cancer may be facilitated by the accumulation of epigenetic changes
that disrupt genome-wide cell signaling system and promote
malignant transformation (Kgatle et al., 2017). Our comparative
analysis of genomic alterations in the three subtypes revealed that
the C1 subtype showed higher “TMB”, “Homologous Recombination
Defects”, “Aneuploidy Score”, “Intratumor Heterogeneity”, “LOH”.
TMB is a sensitive biomarker for screening sensitive responders to
immunotherapy and has been shown to be correlated with more
significantly with response, with higher blockade of PD-L1 and PD-1
than PD-1 or PD-L1 expression. Mechanistically, high TMB provides
more opportunities for “non-me” neoantigen production and
activation of immune cell enrichment. Nevertheless, these theories
have only been confirmed in some places for immunotherapy of
certain tumors, but they may not be applicable to tumors such as
pancreatic cancer (Strickler et al., 2021). For immune
microenvironment differences, significantly higher immune cell
infiltration and “ImmuneScore” were observed in C2 and C3. In
addition, as oxidative stress is closely associated with multiple
physiological activities, and our analysis demonstrated that
C3 subtypes had higher inflammatory activity and autophagy
scores and the lowest angiogenic scores. Though many
achievements have been made in the immunotherapy of cancer,
not all patients can benefit from immunotherapy. Our analysis
showed significantly enhanced IFN-γ response and higher “T-cell-
inflamed GEP score” in the C3. Additionally, the CYT score, which
reflects cytotoxic effects, was noticeably higher in C3 than in other
subtypes. In the multimodal treatment of pancreatic cancer,
chemotherapy is an important component. Adjuvant
chemotherapy can significantly improve disease-free survival and
overall survival after curative resection (Springfeld et al., 2019).
Analysis on conventional chemotherapeutic drug response showed
C1 was more sensitive to Erlotinib, Cisplatin, and Gemcitabine.

Seven key genes (GJB4, CEP55, SCAMP5, ANLN, FAM83A,
ATP2A3, COL17A1) associated with oxidative stress phenotypes,
were identified. CEP55 plays an important role in cytoplasmic
division, tumor stage, aggressiveness, metastasis and poor
prognosis in many tumor types such as breast, lung, colon and
liver cancers (Jeffery et al., 2016). In many malignancies ANLN is an
upregulated actin-binding protein. Wang et al. found that in
pancreatic cancer tissues and cell lines, ANLN expression is
upregulated and is predictive of a poor PAAD prognosis. ANLN-
mediated pancreatic cancer invasion and migration, colony
formation, cell proliferation may involve EZH2/miR-218-5p/
LASP1 signaling axis (Wang et al., 2019). The gap junction β-4
protein is an integral membrane protein member involved in
tumorigenesis and may play a role as a tumor promoter (Liu
et al., 2019). Moreover, in lung cancer, it has also been found to
induce chemoresistance and metastasis via Src activation (Lin et al.,
2019). As an important component of type I hemibridges (HD),
COL17A1 encodes collagen XVII (COL17) (Yodsurang et al., 2017),

and has been identified as a marker for pancreatic cancer by Shen
et al. (Shen et al., 2017). In a variety of human tumors, family with
sequence similarity 83 member A was initially identified by
bioinformatics methods as a potential tumor-specific gene with
overexpression, including in bladder, lung, testicular, breast
cancers, etc. Chen et al. found that in pancreatic cancer FAM83A
shows significant overexpression, which promotes CSC-like features
by activating Wnt/β-catenin and TGF-β pathways. Therefore they
concluded that FAM83A has the potential of acting as a therapeutic
target for patients with pancreatic cancer (Chen et al., 2017).
SCAMP functions as a post-Golgi transporter protein in all
mammalian cells and is an effective prognostic and diagnostic
biomarker for pancreatic cancer (Mao et al., 2021). ATP2A3 is a
significantly upregulated gene that encodes a Ca2+ -ATPase
localized to the ER membrane and is involved in Ca2+ transport
(Zhang et al., 2019). Eduardod et al. showed that resveratrol
upregulates the expression of the ATP2A3 gene in breast cancer
cell lines through an epigenetic mechanism (Izquierdo-Torres et al.,
2019).

In spite of this, there are some limitations in this study, which
should be verified by PCR and immunohistochemical experiments.
We did not consider other factors because the samples lacked
necessary clinical follow-up information, especially diagnostic details.

Conclusion

This paper first identified a novel prognostic risk model consisting of
7 oxidative stress-related genes that well predict PAAD prognosis of
PAAD. The 7 genes demonstrated complex molecular functions that
remained to be explored further. In addition, this work highlighted the
correlation between of the prognosis of PAAD with oxidative stress-
related genes. The current findings facilitate personalized treatment for
PAAD patients.
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