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Objective: Pancreatic adenocarcinoma (PAAD) is a highly malignant gastrointestinal
tumor with almost similar morbidity and mortality. In this study, based on
bioinformatics, we investigated the role of gene methylation in PAAD, evaluated
relevant factors affecting patient prognosis, screened potential anti-cancer small
molecule drugs, and constructed a predictionmodel to assess the prognosis of PAAD.

Methods: Clinical and genomic data of PAAD were collected from the Tumor
Genome Atlas Project (TCGA) database and gene expression profiles were
obtained from the GTEX database. Analysis of differentially methylated genes
(DMGs) and significantly differentially expressed genes (DEGs) was performed on
tumorous samples with KRAS wild-type and normal samples using the “limma”
package and combined analysis. We selected factors significantly associated with
survival from the significantly differentially methylated and expressed genes
(DMEGs), and their fitting into a relatively streamlined prognostic model was
validated separately from the internal training and test sets and the external
ICGC database to show the robustness of the model.

Results: In the TCGA database, 2,630 DMGs were identified, with the largest gap
between DMGs in the gene body and TSS200 region. 318 DEGs were screened,
and the enrichment analysis of DMGs and DEGs was taken to intersect DMEGs,
showing that the DMEGs were mainly related to Olfactory transduction, natural
killer cell mediated cytotoxicity pathway, and Cytokine -cytokine receptor
interaction. DMEGs were able to distinguish well between PAAD and
paraneoplastic tissues. Through techniques such as drug database and
molecular docking, we screened a total of 10 potential oncogenic small
molecule compounds, among which felbamate was the most likely target drug
for PAAD. We constructed a risk model through combining three DMEGs (S100P,
LY6D, and WFDC13) with clinical factors significantly associated with prognosis,
and confirmed the model robustness using external and internal validation.

Conclusion: The classification model based on DMEGs was able to accurately
separate normal samples from tumor samples and find potential anti-PAAD drugs
by performing gene-drug interactions on DrugBank.
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1 Background

Pancreatic adenocarcinoma (PAAD) is the 14th most
common cancer globally (Kocarnik et al., 2022), with an
estimated 458,918 confirmed pancreatic cancer cases and
432,242 death cases each year all over the world (Ferlay et al.,
2019). The incidence of PAAD varies widely by country, as
Europe and North America showed the highest age-
standardized incidence, which was the lowest in South-Central
Asia and Africa (Ilic and Ilic, 2016). Incidence rate of PAAD is
generally higher in developed countries compared to developing
countries, with a standardized incidence rate of 4.9/100,000 and
3.6/100,000 for men and women, respectively. In the
United States, 5-year survival rate of PAAD is 9.3%, and it is
the fourth leading factor resulting in cancer-related mortality
(Gandhi et al., 2018). Apart from smoking, diabetes, alcohol
drinking, obesity, occupational exposure and genetic factors,
PAAD is as well an epigenetic disease (Goral, 2015; Midha
et al., 2016; Hu et al., 2021). Abnormal DNA methylation
patterns are a common human tumorous feature (Kulis and
Esteller, 2010). From precancerous lesions to PAAD,
epigenetic changes play an important role in the multistage
carcinogenesis (Xu et al., 2019).

Epigenetics are changes in gene expression but not in DNA
sequence, and the major epigenetic alteration leading to PAAD
progression is DNA methylation (Wang et al., 2016). To detect
epigenetic abnormalities in PAAD, it is necessary to identify
genome-wide patterns of DNA methylation. Nones et al.
(2014) used high-density arrays to capture 167 untreated
PAAD sample methylation and compared it with normal
tissue adjacent to the cancerous one and identified
3,522 abnormally methylated genes. In addition, partial
methylation of CDKN1C promoter CpG islands and reduced
expression of protein products are observed when comparing
PAAD precursor cells methylation expression to normal
pancreatic duct epithelial cells (Sato et al., 2008). Basic studies
have shown that in PAAD precursor cells, CDKN1C gene is
under-expressed and there is reduced expression of protein
products and partial methylation of CDKN1C promoter CpG
islands. The above evidence supports that aberrant DNA hypo/
hypomethylation occurs in PAAD precursor lesions leading to
further progression to PAAD (13).

As research continues, aberrant methylation of DNA CpG
islands has become a prominent feature of PAAD and a potential
diagnostic marker and therapeutic target for PAAD. However, the
results of clinical trials were disappointing, probably due to the
low level of epigenetic specificity (Matsubayashi et al., 2006;
Marabelle et al., 2020). Therefore, in order to use methylation
as a future therapeutic tool for PAAD, an in-depth understanding
of the methylation expression profile and supporting pathways of
PAAD is needed. According to the mutation and gene
expression profile data of PAAD patients and gene expression
profiles of normal pancreas from GTEX, this study screened
differentially methylated and expressed genes (DMEGs),
and confirmed that methylation was a reliable prognostic
marker for PAAD and a potential oncogenic drug target
for PAAD.

2 Materials and methods

2.1 Acquisition of clinical data, gene
expression profiles and data processing

Methylation data, clinical follow-up data, and gene expression
profiles of PPAD came from TCGA (https://portal.gdc.cancer.gov/)
by means of UCSC Xena. The gene expression profiles of normal
pancreas samples were obtained from the GTEX (http://www.
gtexportal.org/home/index.html) databases using UCSC Xena.

For sample data reliability, we set the following inclusion criteria
(Kocarnik et al., 2022): only normal samples and primary PAAD
samples were retained (Ferlay et al., 2019); PAAD samples with
wild-type KRAS gene were retained (Ilic and Ilic, 2016); PAAD
samples with complete clinical data were retained. A total of
182 samples were obtained from TCGA, including 178 tumor
samples, 70 KRAS wild-type tumor samples and 4 normal
samples. A total of 167 normal pancreas samples were obtained
from the GTEX database. In order to homogenize the data, the “sva”
R package was applied to remove the batch effect from the combined
data of the two datasets, and a total of 19,593 protein-coding genes
were retained by ENSG conversion of gene symbols using
genecode V35.

2.2 Analysis of differentially methylated
genes (DMGs)

The Illumina HumanMethylation450 BeadChip matrix
contained 380,097 probes of around 99% (n = 26,081) of the
RefSeq genes. For each probe, the raw gene methylation intensity
was expressed as a beta value. To identify differentially methylated
CpG sites (DMS), PAAD tumor samples were compared with
paracancer samples using the “limma” R package (Ritchie et al.,
2015). The Benjamini and Hochberg (BH) method adjusted p-value
of each methylation site to FDR (false discovery rate) (Ghosh, 2012).
Statistical thresholds were set for FDR <0.01 and |delta β-value|> 0.1.

The CpG locus to gene match files were downloaded from the
Illumina website (https://www.illumina.com/). In different regions
(TSS200, TSS1500, Gene body, 5′-UTR, 3′-UTR, transcription start
site, integration region), the average β-values of genes were
calculated with the correspondence. Using the “limma” R
package, the differentially methylated regions were calculated,
where FDR <0.01, delta β-values < -0.1 were the demethylated
regions, FDR <0.01, delta β > 0.1 were hypermethylated regions.

2.3 Analysis of differentially expressed
genes, differentially methylated genes and
pathways

Differentially expressed genes (DEGs) were analyzed for normal
and tumor samples in the TCGA-PAAD cohort using the “limma” R
package, and p values were adjusted using the Benjamini and
Hochberg (BH) method, where FDR >0.01 and log2FC > 2 were
up-regulated genes, and FDR >0.01 and log2FC < −2 were down-
regulated genes.
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To identify the relationship between gene methylation and gene
expression profiles, we took the intersection of differentially
methylated genes and DEGs to obtain differentially methylated
and expressed genes (DMEGs) and classified them into four
groups: HyperDown, HyperUp, HypoDown, HypoUp (Table 1).
Then, we used Gene Ontology (GO) functional enrichment analysis
and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database through the “clusterProfiler,” “org.Hs.eg.db,”
“enrichplot” and “ggplot2” R software packages (Wu et al., 2021),
and FDR <0.05 was used as the screening condition to perform
enrichment analysis of DEGs to discover the main biological
characteristics of DEGs and plot the bubble map.

2.4 Marker evaluation of PAAD methylation
and expression profiles

DEGs were proposed as tumor markers for the diagnosis of
PAAD, and 50% of the expression profile data of DMEGs and
methylation data of DMEGs for PAAD were the training set and
50% as the test set. The training set data were analyzed by principal
component analysis (PCA) with the “prcomp” R function (Luu et al.,
2017) to clarify the eigenvector weights of the principal components
and construct a diagnostic model of PAAD, which was plotted and
visualized using the “ggplot2” R software package (Maag, 2018).
Finally, to evaluate the diagnostic advantage of PCA model for
PAAD, the receiver operating characteristic (ROC) curves of the
PCAmodel were plotted by the “pROC” R software package and the
area under curve (AUC) was calculated for the training set and test
set (Robin et al., 2011), where AUC showed a low accuracy at
0.5–0.7, higher accuracy at 0.7–0.9, and high accuracy at AUC
above 0.9.

2.5 The prediction of DMEGs and target
drugs

The use of key genes as potential therapeutic targets is a
cornerstone in the development of therapeutic agents for sepsis.
We determined PAAD and drug proximity based on drug-target
pairs from the drugbank database (https://go.drugbank.com/) and
the Protein-Protein interaction (PPI) network (threshold score of
400). Here, given distance d (s,t) as the shortest path between node s
and node t (where s ∈ S, PAAD-related genes; t ∈ T, drug target
genes), D (degree of related gene set nodes in PPI), T (set of drug
target genes), S (PAAD-related genes), and the calculation is as
follow:

d S, T( ) � 1
T| | ∑t∈T

mins∈S d s, t( ) + ω( ) (1)

where ω, the weight of the target gene, was calculated as ω = -ln
(D+1) if the target gene was a gene in the PAAD-related gene set,
otherwise ω = 0.

Next, between these simulated drug targets and the key gene set, we
calculated the distance d (S,R), and generated the simulated reference
distributions after performing random repetitions for 10,000 times, at
the same time we the observed distances corresponding to the actual
were scored using the mean and standard deviation of the μd (S,R) and
σd (S,R) reference distributions and converted into a normalized
scoring, i.e., the proximity z.

z S, T( ) � d S, T( ) − μd S,R( )
σd S,R( )

(2)

Finally, a gene set distance density score map was constructed by
normalized distance scoring.

2.6 Molecular docking

A technique for designing drugs based on receptor features and the
way that drug molecules interact with receptors is called molecular
docking. In the realm of computer-aided drug development, it is a
theoretical modeling technique that primarily investigates the
interaction between molecules (such as ligands and receptors) and
forecasts their binding mechanism and affinities. (Lohning et al., 2017;
Saikia and Bordoloi, 2019). Autodock Vina software was used in
molecular docking (Trott and Olson, 2010). To prepare input files,
we applied AutoDockTools 1.5.6. The pdb file of the protein came from
Protein Data Bank (Velankar et al., 2021) with PDB ID 6SUK. The
Polar hydrogens were added to the solution after all water molecules,
potassium ions, and protein B chains had been eliminated. The zinc
ion’s charge was modified in the receptor protein’s PDBQT file to +2.0,
and the grid’s coordinates in each XYZ direction were −19.5, 74.5, and
34.8 during molecular docking. The lengths were 20 in each XYZ
direction. The Lamarckian approach was utilized to determine the
ligand molecule’s strongest binding mode. The maximum number of
output conformations was set to 10, the exhaustiveness was set to 8, and
the allowable energy range was set to a maximum of 3 kcal/mol. With
the aid of Pymol, the output maps were processed.

2.7 Dynamics simulation

In this study, the binding stability of the receptor-ligand complex
was assessed by performing molecular dynamics simulations of 100 ns
(Zhou et al., 2022) using the Gromacs2019 package. In the molecular
dynamics simulations the CHARMm36 force field was employed.With
the aid of the CHARMMCommon Force Field (CGenFF) software, the
str files for the ligands were acquired. The system was dissolved in
TIP3P water molecules in a dodecahedral box. At a concentration of
0.154M, sodium and chloride ions were introduced to the system to
neutralize its charge. Using a cutoff of 5,000 steps and the steepest
descent algorithm, the solventized system’s energy was minimized. The
LINCS method was used to restrict the length of covalent bonds. Using
the PME technique, the total electrostatic interactions were determined.

TABLE 1 Criteria for grouping DMEGs.

Groups Methylation cut-off Expression cut-off

HypoUp FDR <0.01 and delta β-value < −0.1 FDR <0.01 and log2FC > 2

HypoDown FDR <0.01 and delta β-value < −0.1 FDR <0.01 and log2FC < -2

HyperUp FDR< 0.01 and delta β-value >0.1 FDR <0.01 and log2FC > 2

HyperDown FDR <0.01 and delta β-value >0.1 FDR <0.01 and log2FC < -2

FDR:false discovery rate; log2FC: log2 fold change.
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FIGURE 1
Analysis of PAAD differentially methylated genes. (A) Volcano plot of differentially methylated within the gene body, TSS200 and TSS1500 regions.
(B)Histograms of differentially methylated genes within the three regions. (C) Venn diagram of hypermethylation within three different regions. (D) Venn
diagrams of demethylated genes within three different regions. (E) KEGG andGO functional enrichment analysis of differentially methylated genes, where
the color from blue to red indicates that the FDR is from large to small, and the dots from small to large represent the increasing number of enriched
genes, left: hypermethylation, right: demethylation.
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At constant temperature (300 K) and pressure (1 bar), NVT and NPT
simulations were then run for 100 ps, with the compound’s confined
atoms re-establishing the system’s equilibrium at its initial coordinates.
Finally, a 100 ns long Pruduct MD run with a 2 fs time step was
completed. The Gromacs built-in tool was used to determine the
ligands’ root mean square deviation (RMSD) values.

2.8 Development and verification of the
prognostic gene signature model associated
with DMEG

In the TCGA-PAAD dataset, we first randomly and equally divided
241 KRAS wild samples into training (Train) and validation (Test)
groups according to the ratio of 1:1, and then reduced the associated
genes (Tibshirani, 1997) by Least absolute shrinkage and selection
operator (Lasso) regression method. In regression analysis, by

compressing some coefficients at the same time setting some
coefficients to zero, Lasso regression can better solve
multicollinearity. We choose the number of factors when the
coefficients of independent variables tended to zero with the gradual
increase of lambda. Then, we used the AIC deficit pool information
criterion through stepwise regression that takes the statistical fit of the
model and parameter numbers into account. A better model of smaller
value indicated a sufficient fit of the model with fewer number of
parameters (Zhang, 2016). After that, the “survminer” packagewas used
to find the best cutoff (Niu et al., 2021) of the gene signature in the Train
dataset of TCGA, and the PAADwas divided into two groups based on
the cutoff value, and finally the log-rank test was used to compare the
survival differences between the two groups.

To verify the robustness of the gene signature model, we first
used the same model and the same coefficients as the training set in
the validation set, and then compared the survival differences
between the two groups by log-rank test. After that, we

FIGURE 2
Analysis of PAAD differential genes. (A) Volcano plot of differentially expressed genes in expression profile. (B) Heat map of differentially expressed
genes. (C) Results of differential gene KEGG enrichment. (D) Results of differential gene GO BP enrichment. (E) Differential gene GO CC enrichment
results. (F) Differential gene GO MF enrichment results, the color from blue to red in CDEF represents FDR from large to small, the size of the dot
represents the number of enriched to genes, a larger dot indicates more enriched genes.
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downloaded the expression profiles of PAAD from the ICGC
database as well as clinical information, and then used the model
constructed above to calculate each score separately and obtain the
best cutoff, and then performed the survival curve analysis in the
external dataset for the high- and low-risk groups.

2.9 Statistical analysis

All statistical analyses were operated in R software (version 4.1.2,
https://cran.r-project.org/doc/manuals/R-lang.html). The optimal
threshold of gene expression or score was selected for risk
grouping of PAAD using the surv_cutpoint function of the
“survminer” package. The Kaplan-Meier assessment method was
used to assess the survival differences between the low-risk and high-

risk groups, and the Log-rank test was used for comparison. Unless
otherwise stated, all statistical tests were two-sided and p < 0.05 was
considered statistically significant. Comparisons between multiple
groups were performed and plotted using the “ggpubr” and
“ggplot2” packages, and the statistical significance of box plots
was assessed using the Mann-WhitneyU or Kruskal–Wallis tests.

3 Results

3.1 Analysis of differentially methylated
genes in PAAD

To identify differential gene methylation in PAAD, we first
performed a comparative analysis of methylation data from

FIGURE 3
Joint analysis of differentially expressed genes and differentially methylated genes. (A) Venn diagram of differentially expressed genes with
differentially methylated genes in the GeneBody region. (B) Venn diagram of differentially expressed genes with differentially methylated genes in the
TSS200 region. (C) Venn diagrams of differentially expressed genes versus differentially methylated genes within the TSS1500 region. (D)Quadrant plots
of differentially expressed genes versus differentially methylated genes within the TSS200, TSS1500, and GeneBody regions. (E) Histogram of four
regulatory patterns of differentially expressed genes and differentially methylated genes in TSS200, TS1500, and GeneBody.
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185 KRAS wild-type PAAD samples and 10 normal samples, and
identified a total of 2,630 differentially methylated genes
(FDR <0.01, |delta β-values| > 0.1, Figure 1A), within the
Gene body region, 758 genes were hypermethylated and
418 genes were demethylated. 834 genes were hypermethylated
and 462 genes were demethylated in TSS20; 748 genes were
hypermethylated and 498 genes were demethylated in
TSS1500. We found that the number of hypermethylation in
the three regions was slightly larger than that of
hypermethylation overall (Figure 1B). In the Gene body and
TSS200 regions, the difference between hypermethylation and
demethylation was the largest, with a ratio of about 1.8:1. Among

the hypermethylated genes, 244 genes appeared in all three
regions of Gene body, TSS20 and TSS1500, 369 genes
appeared in two of them, and the remaining 870 genes
appeared in only one region (Figure 1C). Among the
demethylated genes, only 32 genes appeared in all three
regions, and 163 genes appeared in two of them. These
differentially methylated genes were mainly associated with
GABAergic synapse, Neuroactive ligand-receptor interaction,
Nicotine addiction, and other pathways, as shown by GO and
KEGG functional enrichment analysis (Figure 1D). (Figure 1E).
The above results confirmed that PAAD methylation was region-
specific.

FIGURE 4
Analysis of DMEGs. (A) Distribution of DMEGs on the genome. From inside to outside, there are DMGs in the TSS1500 region, DMGs in the
TSS200 region, DMGs in the genebody region, DEGs, and corresponding values. The outermost circle is the corresponding chromosome position. (B)
PCA analysis could distinguish tumor from normal samples based on the gene expression and methylation of DMEGs. (C) ROC curves of tumor and
normal samples based on a linear discriminant model using the expression profiles and methylation of DMEGs. (D) Results of KEGG and GO
enrichment analysis of DMEGs, where different colors represent different pathways and connecting lines represent the existence of association between
genes and pathways.
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3.2 Analysis of differential genes in PAAD and
combined analysis of differentially
metaylated genes

To screen the differential genes between normal and KRAS wild-
type PAAD samples, we analyzed the differential genes between
171 normal samples and 70 KRAS wild-type tumor samples using
the “limma” package, and obtained a total of 2,928 significantly DEGs,
of which 2029 were down-regulated and 1,163 were up-regulated in
tumors (FDR <0.01, |log2FC| > 2, Figure 2A). A total of
2,928 significantly DEGs were obtained, of which 1,163 were up-
regulated and 2029 were down-regulated in tumors (FDR <0.01, |
log2FC| > 2, Figure 2A). Then, unsupervised hierarchical clustering of
these significantly differentially expressed genes revealed that the
differential genes could clearly screen tumor samples from the
normal ones (Figure 2B). KEGG study showed that the significant
differential genes were mainly related to Fat digestion and absorption
(Figure 2C). Biological process (BP) enrichment study demonstrated
that the differential genes were largely correlated with Lipid transport,
Lipid localization and other pathways; cellular components (CC)
showed that the differential genes were associated with neural cell
body, trans-Golgi. The results of Molecular Function (MF) showed that
the differential genes were related to Cytokine-cytokine receptor
interaction, natural killer cell-mediated cytotoxicity, Olfactory
transduction, and other such pathways that have been previously
reported to be associated with PAAD occurrence Figures 2D–F
(Malchiodi and Weiner, 2021; Hu et al., 2022).

To search for genes more critical for PAAD occurrence,
differentially methylated and expressed genes (DEMGs) were
obtained by intersection analysis of DMGs and DEGs. In Gene
body, TSS200 and TSS1500, 141, 187 and 154 DEMGs were
obtained, respectively (Figures 3A–C). The methylation ploidy
and expression difference ploidy of these DMEGs are shown in
Figure 3D, and each graph shows the 22 genes with the largest
expression difference ploidy. Next, we counted DMEGs in the three
regions and identified a total of 318 DMEGs, including 56 in
HyperUp, 112 in HyperDown, 69 in HypoUp, and 81 in
HypoDwon (Figure 3E).

3.3 Analysis of DMEGs genes in PPAD

To further investigate the role of DMEGs in PAAD, we first used
the “circlize” package to map the distribution of 318 DMEGs on
chromosomes, with chromosomes chr11 and chr12 having the
largest number of 26 DMEGs, chr10, chr12, chr17, chr16, chr2,
chr19, chr3, chr20, chr5, chr4, chr7, chr6, and chr6. Chr17, chr16,
chr2, chr19, chr3, chr20, chr5, chr4, chr8, chr7, chr6 chromosomes
also possessed more than 10 DMEGs each (Figure 4A). We
constructed a linear judgment classification model using the gene
expression profiles of DMEGs and methylation data from
GeneBody, TSS200 and TSS1500, respectively, to evaluate the
difference of DNA methylation patterns and gene expression
between PAAD tumors and normal samples, and also performed
PCA and ROC analyses. The results of PCA showed that DMEGs
could classify PAAD and normal samples effectively (Figure 4B),
and the AUC values were all 1, suggesting an excellent performance
in classification (Figure 4C). GO and KEGG enrichment analysis
showed that DMEGs were mainly associated with cell differentiation
in spinal cord, neuron fate commitment, calcium signaling pathway,
phospholipase C-activating G protein-coupled receptor signaling
pathway, digestion, central nervous system neuron differentiation,
neuroactive ligand-receptor interation, cell fate commitment,
regionalization, and pattern specification process (Figure 4D).

3.4 DMEGs and potential target therapeutic
agents

As mentioned previously, DMEGs may be the key genes causing
PAAD, and therefore targeting DMEGs is a potential target for the
treatment of PAAD. To this end, we calculated the proximity of
DMEGs to PAAD according to Formula 1 and converted the
observed distances into normalized scores according to Formula
2. We found that either with our randomly selected gene set as a
sample or DEMGs as a sample, using the random data acquired for
multiple hypothesis testing and selecting drugs with a distance set
distributed around 0 to 3 and FDR <0.01, a total of 78 potential
target drugs were obtained, and Figure 5 shows the distance density
fraction of drugs to DMEGs.

3.5 Molecular docking and pharmacokinetic
simulation

Currently, the ADRA1A protein does not have any resolved
crystal structure. We used the AlphaFold Protein Structure Database
website (https://www.alphafold.ebi.ac.uk/) website for ADRA1A
homology modeling to obtain the 3D structure of the ADRA1A
protein and the Deepsite (https://www.playmolecule.com/deepsite/)
website to predict the protein activity of ADRA1A (32). In addition,
the Gromacs2019 software package was used to predict potential
small molecule compounds, and a total of 10 small molecule
compounds were identified by calculating RMSD values, namely
DB06201, DB12733, DB00610, DB00450, DB00699, DB06706,
DB06711, DB06764 DB00949, and DB08954 (see Table 2).

Taken together, DB0094 (Felbamate) 9 had the highest
molecular docking score and therefore had a higher potential to

FIGURE 5
DMEGs and potential target therapeutic drugs. Density
fractionation plot of drug to DMEGs gene set distance.
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be a potential inhibitor of GRIN2B protein. Compound
DB0094 interacted with GRIN2B protein, and the RMSD value
of compound DB0094 was relatively stable overall (basically stable at
around 3 Å) (Figure 5). The compound was able to produce
hydrogen bonding interactions with SER132 and GLU106 of
GRIN2B protein, and favorable hydrophobic interactions with
ILE111, PRO78, ALA107, PRO177 and ALA135, as well as with
TYR109, PHE114 and PHE176. Compound DB00949 (Felbamate)
showed a high molecular docking score that many favorable
interactions with GRIN2B protein were produced.

Figure 6A shows the changes of RMSD values of the D-protein
backbone of GRIN2B protein bound to compound DB00949
(Felbamate) during the molecular dynamics simulation at 80 ns As
can be seen from the figure, the conformation of the GRIN2B protein
was very stable during the molecular dynamics simulation at 80 ns,
which also indicated to some extent that the protein structure generated
based on homology modeling was relatively reasonable (Figure 6B). In
addition, Figure 6C gives the RMSD values of the molecular backbone
of compoundDB00949 (Felbamate) binding toGRIN2B protein during
molecular dynamics (MD) simulation of 80 ns The results

demonstrated that compound DB00949(Felbamate)’s RMSD value
fluctuated relatively large by an obvious increasing trend during the
first 20 ns The stability was basically achieved when it reached 20 ns It
remained comparatively constant in the subsequent 60 ns Since the
molecular docking was semi-flexible in this experiment, it is
understandable that the RMSD values of the ligand’s molecular
backbone fluctuated moderately in the initial stage of the dynamics
simulation. Overall, compound DB00949 (Felbamate) was relatively
stable when binding to GRIN2B protein, which further suggested that
compound DB00949 (Felbamate) had a high potential to be a potential
inhibitor of GRIN2B protein.

3.6 Establishment of prognostic gene
signature associated with DMEG

To explore the role of DMEG gene expression in PAAD
prognosis, we first randomly divided 241 KRAS wild samples
into two groups, one as the training set (n = 121) and one as the
validation set (n = 120). We used 10-fold cross-validation to execute

TABLE 2 Molecular docking scores of compounds and proteins and the important interactions generated.

Compound Compound Target Docking score H-bond interactions

DB06201 Rufinamide GRM5 −4.874 SER143, SER145, THR168

DB12733 Dipraglurant GRM5 −4.348 SER145, THR168

DB00610 Metaraminol ADRA1A −5.158 MET1, GLU87

DB00450 Droperidol ADRA1A −5.819 GLU87

DB00699 Nicergoline ADRA1A −2.137 MET1

DB06706 Isometheptene ADRA1A −2.752 GLU87

DB06711 Naphazoline ADRA1A −5.167 —

DB06764 Tetryzoline ADRA1A −5.246 —

DB00949 Felbamate GRIN2B −10.586 GLU106, SER132

DB08954 Ifenprodil GRIN2B −6.821 GLU106, ARG115, ALA135

FIGURE 6
Binding mode plot of GRIN2B protein with compound DB00949(Felbamate). (A) RMSD diagram of GRIN2B protein during 80 ns molecular
dynamics simulation. (B) RMSD values of compound DB00949 (Felbamate) during 80 ns molecular dynamics simulation. (C) Plot of the dynamic binding
pattern of GRIN2B protein with compound DB00949 (Felbamate) during 80 ns molecular dynamics simulation.
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1,000 Lasso regression analysis on the expression and clinical
survival data of these 318 DMEGs genes, and we counted the
appearances of each probe 100 times (Figure 7A). 3 probes
(S100P, LY6D, and WFDC13) appeared the most frequently, and
these 3 genes showed the highest frequency with different coefficient
of variation trajectories of lambda as Figure 7B, standard deviation
distributions of different lambda as Figure 7C. K-M survival curve
results indicated that these three genes were able to distinguish more

significantly between the two risk groups (Figures 7D–F). Finally,
the risk score formula was obtained as follow:

RiskScore � 0.44*S100P + 0.147*LY6D + 0.29*WFDC13

According to the expression level of the sample, we calculated the risk
score for PAAD samples, and the RiskScore distribution is shown in
Figure 8A. From the results of survival analysis, samples with high risk
scores showed a significantly worse overall survival (OS) (p < 0.001).

FIGURE 7
Establishment of prognostic gene signature associated with DMEG. (A) Frequency of individual gene combinations for one thousand lasso
regressions. (B) Coefficient change trajectories of individual genes under different lambda. (C) Standard deviation distribution of the models under
different lambda. (D) Prognostic KM curves of S100P in high and low expression groups. (E) Prognostic KM curves of LY6D in high and low expression
groups. (F) Prognostic KM curves of WFDC13 in high and low expression groups.
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Then, we used the “timeROC” package to perform ROC analysis for
prognostic classification of RiskScore, and the AUCs of predictive
classification efficiency were 0.82, 0.89, and 0.77 for one-, three-, and
five-year, respectively (Figure 8B), suggesting a good predictive
performance. Finally, we performed zscore for Riskscore and
determined the cut-off value, divided the sample into high-risk and
low-risk groups, and plotted K-M curves. The low-risk group showed
significantly better prognosis than that in the high-risk group (Figure 8C,
log rank p < 0.0001).

3.7 Validation of the prognostic gene
signature associated with DMEG

The model was validated further by using the same coefficients and
model in the training set as in the validation set. The risk score of each
sample was calculated using the same method, and the RiskScore
distribution is shown in Figure 9A. Similarly, the AUCs of the
classification efficiency of the one-year, three-year, and five-year
prognostic predictions were 0.53, 0.86, and 0.85, respectively
(Figure 9B), and the OS of the high-risk-score samples was
significantly worse than that of the low-risk-score samples (Figure 9C,

log rank p = 5e x10-4, HR = 2.42). Next, we used the same coefficients
and model in the TCGA-PAAD cohort KRAS wild-type group samples
as in the training set. We also calculated risk scores for each sample
separately based on the expression level of the samples, and the RiskScore
distribution is shown in Figure 10A, with AUCs of 0.72, 0.88, and
0.85 for the prognostic predictive classification efficiency at one, three,
and 5 years, respectively (Figure 10B). Survival analysis showed that the
OS of the high-risk score samples was significantly smaller than that of
the low-risk score samples (Figure 10C, log-rank p= 0.00039,HR= 3.78).
Finally, we performed the same validation in the ICGC-PAAD external
data cohort, and the RiskScore distributions for each sample are shown in
Figure 11A. The AUCs for prognostic predictive classification efficiency
at one, three, and 5 years were 0.85, 0.85, and 0.91, respectively
(Figure 11B), and survival analysis showed that the OS of the high-
risk score sample was significantly worse than that of the low-risk score
sample (Figure 11C, log rank p = 0.00024, HR = 1.68).

4 Discussion

PAAD as one of the most lethal and aggressive malignancies has a
5-year survival rate of less than 10%, (Jiménez et al., 2017), and is now

FIGURE 8
Performance of the prognostic gene signature in training set. (A) Risk score, survival time and survival status and expression of the 3 genes in training
set. (B) ROC curve and AUC of the 3-gene signature classification. (C) Distribution of KM survival curves of the 3-gene signature in training set.
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among the top four leading causes resulting in tumor-associated death
(Kleeff et al., 2016). The median age of onset of PAAD is 71 years, and
with the aging of the population, its morbidity and mortality will
increase rapidly. By 2030, PAAD is estimated as a second cause to
tumor mortality (Rahib et al., 2014). The cause of pancreatic cancer is
still unclear, and only 5%–10% of pancreatic cancer patients can be
attributed to genetic factors (Siegel et al., 2022), although the mutation
rate of KRAS reaches 95%, but a single KRAS gene mutation does not
lead to the development of pancreatic cancer. Epigenetic alterations are
more closely related to environmental and age factors than genetics.
Past studies have found that epigenetic alterations occur in the early
stages of tumor and are cumulative with tumor development (Nebbioso
et al., 2018). In this study, we first DEGs and DMGs in normal samples
versus tumor samples without KRAS wild-type based on expression
profiling data of pancreatic cancer, and performed functional analysis.
Then a classification model was constructed, which can accurately
separate normal samples from tumor samples. Finally, we used DMEGs
to perform gene-drug interactions on DrugBank to find some potential
anti-PAAD drugs, which provides new ideas and potential targets for
understanding the role of methylation in PAAD and treating PAAD.

In the early 20th century, Fukushima N and other scholars
extensively studied the methylation of different genes in PAAD

and its precancerous lesions (intra-epithelial neoplasia (PanIN),
and found abnormal methylation of ppENK and p16 (13). Next, it
was shown that the incidence of aberrant methylation was 7.3%–

7.7% in PanIN-1 patients, 22.7% in PanIN-2 patients, and 46.2%
in PanIN-3 patients, a phenomenon that suggests that the
incidence of aberrant methylation increases with a more
advanced PanIN grade, but the exact mechanism is not clear
(Fukushima et al., 2002). Our study, by screening for
differentially methylated genes, initially it was found that
methylation genes were mediated through Cytokine-cytokine
receptor interaction, Natural killer cell-mediated cytotoxicity,
Olfactory transduction, and some other pathways leading to the
development of PAAD. To further confirm the pathway
correlation between PAAD and gene methylation, the
intersection of differentially genes and differentially
methylated genes was taken and performed enrichment
analysis again, and the results demonstrated that methylation
led to PAAD by affecting cytokine receptor, NK cell-mediated
cytotoxicity pathway.

Illumina human methylation 450 k bead array provides a better
technical platform for further study of DNA methylation, therefore,
we focused on methylation genes within the three regions of Gene

FIGURE 9
Validation of the prognostic gene signature in validation set. (A) Risk score, survival time and survival status and expression of the 3 genes. (B) ROC
curve and AUC of the 3-gene signature classification. (C) Distribution of KM survival curves of the 3-gene signature in the validation set.
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body, TSS1500, and TSS200. A total of 758 hypermethylated genes
and 418 demethylated genes were identified within the Gene body
region, which was consistent with the incidence of PAAD
hypomethylation reported in previous studies, and
hypomethylation was mainly associated with cell cycle cycling,
cell differentiation, and cell surface antigen/cell adhesion
(Pedersen et al., 2011; Schäfer et al., 2021; Zhu et al., 2021).
TSS1500 is a functional element belonging to differential
methylation and is located between 1.5 kb and 200 bp upstream
of the transcription start site. Previous studies identified the
TSS1500 region as an oncogenic cofactor variable in lung
adenocarcinoma and squamous carcinoma by differential
methylation probes, and extensive analysis showed that gene
probes outside the TSS1500 region could act as potential
pathogenic players by affecting the activity of
phosphatidylinositol-3,4,5-trisphosphate (Cao et al., 2022). Our
study likewise demonstrated an expression imbalance between
hypermethylation and hypomethylation in the TSS1500 region,
and by using genes in the TSS1500 region, we were able to
construct a classification model to distinguish PAAD from
normal tissue, providing a useful tool to identify PAAD.

tSS200 also belongs to the transcription factor repressor
functional element, and methylation in the TSS200 region is not
only related to tumor development, but also involved in the
acceleration of epigenetic mutational load and epigenetic age,
providing a new perspective for our understanding of the age of
DNA methylation (Yan et al., 2020).

In 2005, the European Palliative Care Research Collaborative
(EPCRC) network working group screened important clinical
markers for survival prediction in patients with end-stage cancer
based on decades of clinical evidence and recommended a variety of
prognostic tools. On this basis, researchers have successively
validated and derived several relevant prediction models
according to cancer types, and PAAD prognostic models have
emerged, which can be broadly classified into traditional manual
prediction and statistical-based bioinformatics modeling, with the
latter being the majority at present, but they all share common
problems such as small sample size, low specificity, and poor
predictive performance (Yuan et al., 2021) (Wang et al., 2021;
Zhao et al., 2021). Compared with previous PAAD models, we
performed model improvement by combining methylation genes
(S100P, LY6D, and WFDC13) with clinical factors in prognostic

FIGURE 10
Validation of prognostic gene signatures in KRAS wild-type PAAD samples. (A) Risk score, survival time and survival status and expression of the
3 genes in KRAS wild-type samples; (B) ROC curves and AUC of the 3-gene signature classification; (C) Distribution of KM survival curves of 3-gene
signature in TCGA KRAS wild-type samples.
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factors and confirmed the model robustness by external and internal
validation. S100P is a member of the S100 protein family containing
2 EF-hand calcium-binding motifs. s100 is localized in the
cytoplasm and/or nucleus of a variety of cells and is involved in
cell cycle progression and cell differentiation. Meta-analysis showed
that S100P is a highly sensitive and highly specific tool for the diagnosis
of PAAD (AUC = 0.93) (Hu et al., 2014; Camara et al., 2020). LY6D is
mainly involved in lymphoid differentiation and cell surface activity, and
the study showed that LY6D is significantly highly expressed in PAAD
and is a valid predictor of PAAD, a result consistent with our study
(Wang et al., 2020; Xu et al., 2021). WFDC13 belongs to the telomere
cluster family of genes, and there are relatively few studies on
WFDC13 in PAAD. Our data indicated that WFDC13 was a
potential prognostic gene for PAAD and was implicated in the
methylation process of PAAD, which provided new ideas for future
basic experiments. However, our study was still inadequate and further
basic experiments to elucidate the mechanism of the role of this
methylation gene in PAAD are required.

There are some limitations in this study. Although the results
showed that 3-DMEGs-based signature could distinguish tumor
samples and normal samples, the model reliability should be
improved with long-term clinical application. Additionally, we

downloaded expression profiles and methylation data of PAAD
from public databases. Thus, further prospective data should be
collected to validate the results. Besides, experimental studies and
clinical trials should be performed to verify the results of molecular
docking in this study.

5 Conclusion

With the gene expression profile data of PAAD, we identified
DEGs and DMGs between normal samples and tumor samples with
KRAS wild type; the classification model based on DMEGs was able
to accurately separate normal samples from tumor samples, and the
gene-drug interactions were performed on DrugBank to find some
potential anti PAAD drugs.
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FIGURE 11
Validation of prognostic gene signatures in external datasets. (A) Risk score, survival time vs. survival status and expression of the 3 genes; (B) ROC
curve and AUC for the 3-gene signature classification; (C) Distribution of KM survival curves of 3-gene signature in ICGC-PAAD samples.
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