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Medicinal plants play a key role in protection of chronic non-communicable
ailments like diabetes, hypertension and dyslipidemia. Berberis brandisiana
Ahrendt (Berberidaceae) is traditionally used to treat diabetes, liver problems,
wounds, arthritis, infections, swelling and tumors. It is also known to be enriched
with multiple phytoconstituents including berbamine, berberine, quercetin, gallic
acid, caffeic acid, vanillic acid, benzoic acid, chlorogenic acid, syringic acid,
p-coumaric acid, m-coumaric acid and ferulic acid. The efficacy of B.
brandisiana has not been established yet in diabetes. This study has been
planned to assess the antidiabetic activity of B. brandisiana in high fat diet and
streptozotocin (HFD/STZ)-induced diabetes using animals. Administration of
aqueous methanolic extract of B. brandisiana (AMEBB) and berbamine (Berb)
for 8 weeks caused a dose dependent marked (p < 0.01) rise in serum insulin and
HDL levels with a significant decline (p < 0.01) in glucose, triglycerides,
glycosylated hemoglobin (HbA1c), cholesterol, LDL, LFTs and RFTs levels when
comparedwith only HFD/STZ-administered rats. AMEBB and Berb alsomodulated
inflammatory biomarkers (TNF-α, IL-6) and adipocytokines (leptin, adiponectin
and chemerin). AMEBB (150 mg/kg and 300mg/kg) and Berb (80 mg/kg and
160mg/kg) treated rats showed a marked increase (p < 0.001) in catalase
levels (Units/mg) in pancreas (42.4 ± 0.24, 47.4 ± 0.51), (38.2 ± 0.583, 48.6 ±
1.03) and liver (52 ± 1.41, 63.2 ± 0.51), (57.2 ± 0.58, 61.6 ± 1.24) and superoxide
dismutase levels (Units/mg) in pancreas (34.8 ± 1.46, 38.2 ± 0.58), (33.2 ± 0.80,
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40.4 ± 1.96) and liver (31.8 ± 1.52, 36.8 ± 0.96), (30 ± 0.70, 38.4 ± 0.81),respectively
while a significant (p < 0.01) decrease in serum melondialdehyde levels (nmol/g) in
pancreas (7.34 ± 0.17, 6.22 ± 0.22), (7.34 ± 0.20, 6.34 ± 0.11) and liver (9.08 ±
0.31,8.18 ± 0.29), (9.34 ± 0.10, 8.86 ± 0.24) compared to the data of only HFD/STZ-
fed rats. Histopathological studies of pancreas, liver, kidney, heart and aorta
revealed restoration of normal tissue architect in AMEBB and Berb treated rats.
When mRNA expressions of candidate genes were assessed, AMEBB and Berb
showed upregulation of IRS-1, SIRT1, GLUT-4 and downregulation of ADAM17.
These findings suggest that AMEBB and Berb possess antidiabetic activity, possibly
due to its effect on oxidative stress, glucose metabolism, inflammatory biomarkers
and adipocytokines levels. Further upregulation of IRS-1, SIRT1, GLUT-4 and
downregulation of ADAM17, demonstrated its potential impact on glucose
homeostasis, insulin resistance and chronic inflammatory markers. Thus, this
study provides support to the medicinal use of B. brandisiana and berbamine in
diabetes.
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Introduction

Diabetes and obesity are the paramount recurrent endocrine-
metabolic disorders that are categorized by hyperglycemia and
impaired insulin secretion and/or its action (Kiziltas et al., 2022;
Mutlu et al., 2023). Loss of β-cells function and impaired insulin
secretion in obesity and diabetes results in persistent hyperglycemia
and dyslipidemia (Eguchi et al., 2021). Although the etiology of
diabetes is complex, however, genetic proclivity combined with an
unbalanced diet play an important role in its onset and progression.
Its prevalence has been increased dramatically which might be the
result of sedentary lifestyle and increased consumption of high-
energy foods (Sankaranarayanan et al., 2018). As per Global
Diabetes Alliance, there are 537 million grown-ups with diabetes.
This figure is also projected to reach 643 million by 2030 (Miaffo et
al., 2021) and will further increase to780 million by 2045. It has also
become one of the top 10th global causes of death (Li et al., 2020).
Persistent hyperglycemia in diabetes is crucial in the development
and progression of diabetes related complications possibly through
induction of pro-inflammatory cytokines, reactive oxygen species
and adipocytokines (Nedosugova et al., 2022). Consumption of high
fat diet (HFD) and streptozotocin (STZ) in animals leads to β-cells
damage and impaired insulin secretion and/or function (Hong et al.,
2021). Metabolic syndrome has usually been associated with
inflammation which results due to stimulation of inflammatory
cytokines (TNF-α and IL-6) and adipocytokines (leptin, adiponectin
and chemerin) (Zorena et al., 2020; Matthews et al., 2021). Diabetes
is exacerbated by overproduction of reactive oxygen species (ROS)
which disrupts the insulin signaling pathway, resulting in the
development of insulin resistance in diabetes. Multiple evidences
support that oxidative stress and hyperglycemia activate serine
kinase cascades, which has several possible targets in the insulin
signaling pathway, including insulin receptor substrate (IRS)
proteins family. Increased phosphorylation of IRS at specific
threonine or serine sites, causes decreased phosphorylation of
tyrosine, hence resulting in impaired action of insulin (Batista
et al., 2021). Serine/threonine phosphorylated IRS molecules are

less likely to interrelate with insulin receptor (IR) signaling. In this
case, downregulation of target molecules, particularly,
phosphatidylinositol 3-kinase (PI3K) is mainly involved in
impaired insulin action and glucose transport.
Phosphatidylinositol 4, 5-biphosphate (PIP2), an intracellular
membrane substrate, is phosphorylated by PI3K to form
phosphatidylinositol 3, 4, 5-triphosphate (PIP3), which recruits
signaling proteins such as AKT (Saltiel, 2021). PI3K/AKT
signaling is important in cellular physiology as it mediates critical
cellular processes like lipid metabolism, protein synthesis and
glucose homeostasis (Camaya et al., 2022). ROS is known to play
a part in activation of intracellular stress kinases and inhibition of
IRS-1, thus potentially influencing insulin signaling and to promote
via GLUT-4 translocation and down streaming of AKT resulting in
insulin resistance, obesity and diabetes mellitus (Li et al., 2022).

There are growing evidences that development of insulin
resistance is related with an increase in the release of pro-
inflammatory cytokines and adipocytokines (Menghini et al.,
2013; Al-Mansoori et al., 2021). Stimulated production of TNF-
α contributes in degradation of β-cell and increased activity of
ADAM 17, a mediator of TNF- α production (Al-Kuraishy et al.,
2021). Imbalance between antioxidants and reactive oxygen species
in diabetes usually stimulates the production of ADAM17 and TNF-
α. It has been reported that there is association between increased
TNF-α levels in diabetes and impaired insulin signaling possibly by
increasing IRS-1 serine phosphorylation. This inhibits tyrosine
kinase IR activity and thus intervening signal down streaming
(Lee et al., 2022).

Sirtuin-1 (SIRT1) modulates insulin signaling through IRS
after IR tyrosine phosphorylation stimulated by insulin,
continues to activate AKT, resulting in positive regulation of
insulin secretion in pancreatic β-cells, protection from
inflammation and oxidative stress and plays important roles in
the metabolic pathway through modulation of insulin signaling
(Lee et al., 2009). The overexpression of SIRT 1 in diabetic animal
represents significantly amelioration of glucose intolerance and
insulin resistance. As a result, SIRT1 is a promising therapeutic
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target for the treatment of insulin resistance and diabetes (Feng
et al., 2021).

Despite the availability of multiple therapeutic treatment
options for treatment of diabetes, the disease progression spectra
are increasing day by day. The currently available treatment options
are either introducing exogenous insulin or to increase the
sensitivity of insulin. These therapeutic options remain unable to
provide sustained glycemic control or halt the disease progression
(Bhatti et al., 2022). Herbal products have recently received a lot of
attention as a complementary and/or adjuvant therapies
(Abdulghafoor et al., 2021; Gall et al., 2021; Ayaz et al., 2022).
The use of traditional medicinal plants in the treatment of diseases
including diabetes is endorsed byWHO. Diabetes has been managed
by using a variety of medicinal plants including Zingiber officinale,
Allium sativum, Elephantopus scaber, Areca catechu, Elephantopus
scaber, Ricinus communis and Ocimum sanctum since ancient times
(Aumeeruddy and Mahomoodally, 2021).

Research findings have been published by various labs on the
phytochemical and pharmacological properties of Berberis species.
Berberis brandisiana Ahrendt is member of Berberidaceae family, a
dicotyledonous genus mainly woody, spiny, evergreen shrubs and
flowers (Khan and Khatoon, 2007). It consists of 17 Genera and
650 species. Berberis species belonging to this family are originated
from the mountainous regions in Pakistan at sea level of above
1400–3500 m and are also used both in modern system of medicines
and traditionally as well. Its vernacular names are “Ishkeen and
Shugloo”. It has been traditionally used in various disorders like
diabetes, kidney stones, liver problems, wounds, arthritis, infections,
tumors, leucorrhoea and swellings (Khan et al., 2016). Berberis
species have been widely used in Ayurveda as raw materials or as
ingredients for wound healing, arthritis, eye infections,
hemorrhoids, piles, reducing obesity, treating dysentery and
indigestion (Khan and Khatoon, 2007; Bhardwaj and Kaushik,
2012). A number of clinical and pharmacological studies on
various Berberis species have been published, demonstrating their
significance as medicinal plants with great therapeutic potential
(Rahimi-Madiseh et al., 2017). Berberis aristata, Berberis chitria and
Berberis lycium extracts have been used as a home remedy for
diabetes, bleeding piles, conjunctivitis, skin diseases, ophthalmic
problems, ulcers, jaundice, inflamed spleen and liver since ancient
times (Khan et al., 2016). From various parts of the Berberis plants,
phytochemicals including alkaloids, phenolic acids, sterols, lignins,
anthocyanins, flavanoids, carotenoids, terpenoids, vitamins, lipids
and proteins were isolated (Khan et al., 2016). Berberis plants were
used to extract alkaloids like berberine, berbamine, baluchistanamine,
thalifoline, isotetrandrine and flavonoids rich in polyphenols like
caffeic acid, quercetin, meratin, rutin, chlorogenic acid and other
nutrients and minerals such as β-carotene, anthocyanin, and
ascorbic acid (Khan et al., 2016). Berberis plants contain two
important alkaloids, berberine and berbamine (Chander et al., 2017).

Berbamine (Berb) is a bis-benzylisoquinoline alkaloid reported
to be present in Berberis plants including Berberis aristata, Berberis
vulgaris, Berberis poiretil schneid, Berberis amurensis and Berberis
brandisiana (Wang et al., 2009; Khan et al., 2016) belongs to
Berberidaceae family. Berb has long been used in clinical settings
for variety of ailments due to its reported anti-inflammatory effect
by inhibiting (NF-κB, ERK1/2 and JNK signaling pathways) through
the activation of macrophages and neutrophils (Jia et al., 2017),

anticancer (Farooqi et al., 2022), antioxidant (Sithuraj and
Viswanadha, 2018), immunomodulatory (Zhang et al., 2020),
hepatoprotective (Sharma et al., 2021), cardioprotective (Sun et
al., 1998; Zhang et al., 2012; Han et al., 2018; Sankaranarayanan
et al., 2018) and antihypercholesterolemic effects.

Considering the therapeutic potential of B. brandisiana in diverse
health ailments and the availability of limited data on this botanical
herb, this study has been designed to investigate the antidiabetic
properties of B. brandisiana and its metabolite, berbamine with an
insight into its modulatory effects on insulin signaling pathway,
inflammatory cytokines and adipocytokines using HFD/STZ-
administered diabetic rats. Further quantitative expression of
mRNA of diabetic candidate genes like, IRS-1, GLUT-4, SIRT
1 and ADAM17 were also studied for their role on the part of
protective potential of B. brandisiana and berbamine in diabetes.

Materials and methods

Chemicals

Streptozotocin (STZ) and berbamine (Berb) were purchased from
Glenthem life sciences, United Kingdom. Metformin, cholesterol and
formalin were sourced from Sigma-Aldrich. ELISA kits for the
assessment of TNF-α, IL-6, adiponectin insulin, leptin and
chemerin; (E-EL-H0109), (E-EL-H0102), (E-EL-R3034), (E-EL-H
6122), (E-EL-R 0582) and (E-0864Ra) were purchased from
Elabscience, United States. In this study, all chemicals were of
analytical quality and obtained from Glenthem life sciences,
United Kingdom. Other ingredients including powdered milk,
vegetable oil, wheat bran, fishmeal, black treacle, wheat flour and
table salt were purchased from local supplier at clock tower market,
Faisalabad, Pakistan. Nutrivet-V and potassium metabisulfite were
purchased from local veterinary pharmacy in Faisalabad.

Animals

Wister rats, of either sex, weighing 180–250 g were obtained
from University of Veterinary Sciences, Lahore. All animals were
kept in ventilated cages (23°C temperature, 55% humidity and light/
dark cycle 12 h) with free access to water ad libitum. The animals
were acclimatized for 1 week. The studies were performed according
to methods approved by The Ethical Review Committee (ERC) at
GCUF (Ref. No. GCUF/ERC/50).

Plant collection and extraction

In March 2019, the plant material was collected from Gilgit-
Baltistan, Pakistan. The plant was identified and authenticated by a
botanist, Prof. Dr. Mansoor Hameed, Department of Botany,
University of Agriculture, Faisalabad, Pakistan. The specimen
sample was submitted at Herbarium, University of Agriculture
with voucher number (31-21-01) for future reference. The
plant specie has also been validated using online resources like
https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:106475-1
http://www.theplantlist.org/tpl1.1/record/kew-2673508; https://
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www.ipni.org/n/106475-1 https://sites.google.com/site/efloraofindia/
system/app/pages/search?scope=search-site&q=berberis+brandisiana;
http://www.efloras.org/florataxon.aspx?flora_id=5&taxon_id=
242420734). To prepare the crude extract, 1.5 kg powdered plant
material was soaked in methanol and distilled water (70:30, v/v)
for 7 days with occasional shaking. The maceration process was
repeated thrice to obtain sufficient extract. The first filtrate was
obtained by using muslin cloth and Whatman filter paper No. 1.
The procedure was carried out three times. A rotary evaporator
(Model: RE300 Stuart® United Kingdom) was used to evaporate
filtrates and to obtain extract. The percentage yield of AMEBB
was obtained 13% wt/wt.

Quantitative analysis

Estimation of total phenolic content (TPC)

To determine the total phenolic content (TPC) of AMEBB, Folin
Ciocalteu spectrophotometric method was used (Kiziltas et al., 2022b;
Topal and Gulcin, 2022). Around 40 µL AMEBB and gallic acid
(standard) were mixed with 1.8 mL of Folin–Ciocalteu reagent and
allowed to stand at room temperature for 5 min and then sodium
bicarbonate (1.2 mL, 7.5%) was added to the mixture. The mixture was
allowed to stand for 60 min at room temperature and absorbance was
measured at 765 nm. For each sample, measurements were carried out
triplicate. Gallic acid was used as a standard. TPCwere calculated as mg
of gallic acid in milligram equivalent (GAE)/g of dry extract.

Estimation of total flavonoid content (TFC)

TFCof AMEBBwere estimated by using calorimetric assay. A 4 mL
of distilled water was added to 1 mL of AMEBB. Then, 0.3 mL of 5%
sodium nitrite (NaNo2) solution was added, followed by 0.3 mL of 10%
aluminum chloride (AlCl3) solution in test tubes. Test tubes were
incubated for 5 min followed by addition of 2 mL of 1M sodium
hydroxide (NaOH) in the mixture. The volume of reactionmixture was
made up to 10 mL with distilled water. The mixture was thoroughly
vortexed. The absorbance was measured at 510 nm. A calibration curve
was prepared with catechin and the results were expressed as mg
catechin equivalent (CEQ)/100 g sample (Bilgari et al., 2008).

DPPH (1, 1-diphenyl-2picryl-hydrazyl)
radical scavenging assay of AMEBB

The DPPH has been widely used for the measurement of free
radical scavenging activity of samples (Durmaz et al., 2022; Gülçin
et al., 2022). To prepare stock solution, 4 mg of DPPH was mixed in
100 mL of methanol. Around 2800 µL of DPPH solution was mixed
with various concentrations of AMEBB. A 3 mL aliquot was filled
with 200 mL of AMEBB concentrations (200, 100, 50, 25, 12.5, and
6.25 μg/mL) and DPPH. The mixture was carefully shaken before
being stored at room temperature for 60 min. The OD (optical
density) was measured at 517 nm using a UV spectrophotometer
(Hitachi, Japan). For negative control, 2800 µLDPPH and 200 mL of
methanol were used. On the other hand, methanol was used as a

control. Following equation was used to calculate % age inhibition or
scavenging effect:

% age inhibition or scavenging ef fect � AC − AS( ) /AC[ ] × 100

Where AC denotes absorbance of negative control and AS
denotes absorbance of test samples. IC50 values were calculated
using Graph pad prism (8.4.3).

HPLC analysis of AMEBB for detection of
alkaloids

The aqueous methanolic extract of B. brandisiana (AMEBB) was
evaluated using HPLC fingerprinting and content determination
method. HPLC (Perkin Elmer, United States) was attached with
Flexer Binary LC pump and UV/VS LC detector (Shelton City,
06484 United States). HPLC column (C 18) with dimensions of 260 ×
4.6 mm and a thickness of 5 µm was used. Temperature of column
was 36°C. A 10 µL was injected volume of the sample. The mobile
phase was methanol-water (water containing 4% acetic acid) and
methanol: water ratio was 66:34 v/v. The flow rate was 1 mL/min
and detectors were used at the wavelength of 290 and 250 nm.
Whereas, berbamine standardization was carried out with methanol
(60%) and water (40%); v/v. Quantification of berbamine in AMEBB
was performed by standard method using berbamine ≥98% HPLC
(Batch #. 066AZF, Glenthem Life Sciences, United Kingdom) as
standard. The stock solution of plant sample was prepared bymixing
50 mg of the dry extract in a 1000 mL solution of methanol/water
(70:30, v/v). The HPLC chromatogram was obtained using same
mobile phase and detection wavelength as used for berbamine (Dar
et al., 2014). For data analysis, software version 4.2.6410 was used.

HPLC analysis of AMEBB for detection of
Flavonoids and Phenolics

AMEBB sample was prepared for high performance liquid
chromatography analysis by mixing 50 mg sample in 24 mL of
methanol, 16 mL of distilled water and 10 mL of 6 M HCl. The
mixture was incubated at 95°C for 2 h. Solution was filtered through
membrane filter (0.45 μm nylon). Gradient HPLC (Shimadzu,
Japan; SPD 10AV) was used for separation of phenolics and
flavonoids from AMEBB using C18 (shim-pack CLC-ODS), 5 μm
column (25 cm × 4.6 mm) linked with UV- visible
spectrophotometer detector at wavelength of 280 nm and injector
for sampling. Separation was carried out on gradient mobile phase
(A: Water and acetic acid, B: Acetonitrile). Flow rate was 1 mL/min.
The gradient used for solvent B was 15% for 0–15 min, 45% for
15–30 min and 100% for 35–45 min compounds were interpreted by
comparing the retention time (Rt) and the UV visible peaks
previously obtained by standards. External standardization was
used for quantification (Shaukat et al., 2022).

Design of experiments

Wister rats were divided into nine groups (n = 6, each) prior to
dietary manipulation. For 4 weeks, six groups of animals were fed
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high fat diet composed of 5 kg refined wheat flour, 5 kg wheat bran,
2.25 kg fish meal, 75 g table salt, 33 g multivitamin, 150 g black
treacle, 2 kg powdered milk, 500 g vegetable oil, 15 g potassium
metabisulphate and 2% cholesterol/15 kg feed (Aziz et al., 2013).
Following that, freshly prepared intraperitoneal injection of
streptozotocin (40 mg/kg) was administered after dissolving in
citrate buffer (0.1 M and pH 4.5). After 1 week, fasting blood
glucose levels were measured and rats with glucose levels more
than 250 mg/dL were classified as diabetic. Diabetic animals were
treated as follows for 56 days. Normal control rats were fed
standard diet in group I. Diabetic rats were fed high fat diet in
group II. Diabetic rats were given metformin (200 mg/kg) in group
III as positive control. In group IV and V: diabetic rats were treated
with Berb (80 and 160 mg/kg), respectively. Group VI and VII:
diabetic + AMEBB (150 and 300 mg/kg) respectively. Normal
animals were given Berb (80 and 160 mg/kg) and AMEBB
(160 and 300 mg/kg) in Group VIII and IX, respectively. The
doses of B. brandisiana extract (150 and 300 mg/kg) were finalized
on the basis of effective doses of similar species of same genera
used in animal models (Singh and Kakkar, 2009; Pareek and
Suthar, 2010; Rahimi-Madiseh et al., 2017) and, by translation
of human administered dose to animal dose. In traditional system
of medicine, B. brandisiana has been used as decoction (one
teaspoon per cup) (Khan and Khatoon, 2007; Jan et al., 2008;
Khan et al., 2016). One teaspoon thrice a day which is equivalent to
15g/day or 250 mg/kg. The % yield of B. brandisiana was found
13%, as per material to yield conversion, it became1.95 g/day/kg.
For translation from human to animal dose, human dose factor
7 has been multiplied with human dose for its conversion to its
respective animal dose (Nair and Jacob, 2016). It resulted as
195 mg/kg. Based on aforementioned references and
calculations, we have selected lower dose as 150 mg/kg and
higher dose as 300 mg/kg of B. brandisiana. Similarly, the doses
(80 and 160 mg/kg) of berbamine were chosen from the results of
our preliminary pilot experiment, performed on small number of
animals (data not shown) and the results of previous animal
studies (Sankaranarayanan et al., 2018; Sharma et al., 2021; Yin
et al., 2022) where berbamine has been used in range of
50–200 mg/kg in different studies.

Acute toxicity research

In accordance with OECD 425 guidelines, doses of 1000 and
2000 mg/kg were used for assessment of acute toxicity of AMEBB.
After 24 h, rats were observed for toxicity indicators like agitation,
lacrimation, general behavior and respiration as well as mortality
(Shaukat et al., 2022).

Estimation of body weight, food intake and
fluid intake

During the experimental period, an electronic weighing balance
(Sartorius-Power™, United States) was used to measure the increase
in body weight of animals in each group to determine the effect of
HFD feed intake. To assess the impact of diet, food intake of each rat
in all groups was calculated daily. Water was provided in graduated

drinking bottles and daily consumption was recorded (Sholikhah
and Ridwan, 2021).

Biochemical analysis

At 12th week of experiment, animals were starved for 18 h before
being euthanized followed by achievement of deep anesthesia with
isoflurane (5%–10% v/wt) through inhalation in a closed chamber.
For the assessment of glucose levels in blood and glycosylated
hemoglobin (HbA1c) levels, blood samples were drawn through
cardiac puncture in EDTA tubes (EDTA, sodium citrate, heparin).
Tissues were dissected, washed in ice-cold normal saline and
homogenized with phosphate buffer (0.1 M, pH 7.5). The
supernatant was collected after centrifugation at 3000 /rpm for
10 min. The blood was centrifuged at 4000 /rpm for 10 min to
obtain serum. The serum and tissue homogenates were stored
at −80°C. Serum and homogenates were preserved for further
biochemical analysis (Javaid et al., 2021).

Estimation of glucose, insulin and
glycosylated hemoglobin

Blood glucose levels were measured using a digital glucometer
(EVOCHECK GM700S), while serum insulin levels were measured
by ELISA kit (E-EL-R3034) sourced from Elabscience, USA, with
sensitivity range of 3.75 pg/mL, and a detection range of
6.25–400 pg/mL. The reaction was observed at 450 nm
wavelength. HbA1c levels were determined using a commercial
kit (A1C EZ 2.0 ™) sourced from Wuxi Bio Hermes Biomedical
Technology Co., Ltd. Beijing, China (Sankaranarayanan et al., 2018).

Determination of inflammatory biomarkers

Pro-inflammatory cytokines (TNF-α, IL-6) levels were
measured with ELISA kits (E-EL-H0109) and (E-EL-H0102)
sourced from Elabscience, United States, with sensitivity and
detection ranges are of 4.69 pg/mL and 7.81–500 pg/mL,
respectively. The reaction was observed at 450 ± 2 nm
wavelength. The mixture reaction was provided with 100 ul of
serum in already coated wells in the ELISA plate reader (DIA
source, Germany). Following the recommendations of
manufacturer, TNF-α and IL-6 concentrations were calculated
using the standard markers included in the assay kits. The results
are presented in ng/mL (Shaukat et al., 2022).

Estimation of adipocytokines levels in serum

The obesity biomarkers in serum, adiponectin (E-EL-H 6122),
leptin (E-EL-R 0582), Elabscience, United States, and chemerin
(E0864Ra), BT LAB, Birmingham, United Kingdom, levels were
estimated using ELISA kits according to the instructions of
manufacturer with sensitivity ranges of 0.1 ng/mL and 0.52 ng/
mL, respectively. The ELISA plates were pre-coated with
antibodies specific to rat LEP, ADP and CHEM maintained at
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37°C. The reaction was observed at 450 ± 10 nm wavelength. Serum
leptin, adiponectin and chemerin levels were measured in ng/mL
(Shaukat et al., 2022).

Determination of lipid profile, LFTs and RFTs

Lipid profile including triglycerides (TGs), total cholesterol (TC)
and high-density lipoprotein (HDL) levels were measured in serum
samples (Rabbi et al., 2021). To carry out standardized enzymatic
procedures, commercial kits (CAT # ETI10150100-4, CAT #
ETI11630100-3) sourced from Humen, Germany were used. The
fraction of low-density lipoprotein (LDL) was obtained through
subtracting high-density lipoprotein from total cholesterol. LFTs
(ALT, AST) and RFTs (creatinine and urea) levels were measured in
isolated samples of serum. The results were shown in U/L and mg/dL.

Antioxidant studies on tissue homogenates

The antioxidant activities of tissue homogenates were
determined by assessing the levels of catalase (CAT), superoxide
dismutase (SOD) and melondialdehyde (MDA). All animals were
euthanized followed by achievement of deep anesthesia with
isoflurane (5%–10% v/wt) through inhalation in a closed
chamber. The pancreas, kidney, liver, aorta and heart were
removed and kept at −80°C after being washed with ice-cold
normal saline. The experiments were carried out according to
pre-established procedures (Javaid et al., 2021).

Histopathological analysis

Histopathological analysis was performed using formalin (10%)
to preserve the liver, pancreas, kidney, aorta and heart of rats.
Organs were stained with hematoxylin and eosin followed by
harvesting with a microtome (Leica, Germany) and observed
under light microscope (ACCU-SCOPE 3001- LED Digital
Microscope, USA) (Madić et al., 2021).

Quantitative reverse transcription
polymerase chain reaction (q RT-PCR)

q RT-PCR was used to estimate the mRNA expression of IRS-1,
GLUT-4, SIRT 1, ADAM 17 and β-actin. Trizol reagent (Tri Quick
Reagent, Cat #R1100) was used to homogenize frozen liver tissues and
to extract total RNA. Reverse transcriptase kit of cDNA was used to
acquire cDNA from approximately 2 µg of total RNA/sample
(Molecular Biology, Thermoscientific, Lithuania). Amplification of
cDNA was carried out using SyberGreen PCR (Molecular Biology,
Thermoscientific, Lithuania). The primer stock solutions were used in
accordance with the protocol ofmanufacturer (Macrogen, Korea).With
a total volume of 20 μL, PCR for IRS-1, GLUT-4, SIRT 1, ADAM
17 and β-actin was performed in the presence of 2.5 μL of cDNA
template, Sybergreen (10 μL), RNAase free water (4.5 μL), forward
primer (1.5 μL) and reverse primer (1.5 μL) into each sets of the
primers (The primer sequence is listed in Table 1). The annealing

temperatures used for all primers were (58°C–60°C for 60 s). The 2−ΔΔCt

method was used to calculate the relative mRNA levels of candidate
genes, which were normalized to β-actin levels and compared to
untreated control group (Aljohani et al., 2022).

Results

Total flavonoid content (TFC) and total
phenolic content (TPC)

Total flavonoid and phenolic equivalent contents of AMEBB were
calculated using catechin and gallic acid standard regression lines,
respectively. TFC and TPC contents were found to be 77.76 mg CEQ/g
dry extract weight and 89.69 mg GAE/g dry extract, respectively.

Antioxidant activities of AMEBB

AMEBB inhibited DPPH in a concentration-dependent manner
with maximum of 78.15% scavenging activity at 200 µg/ml. The IC50

value of AMEBB was 40.32 μg/mL with 95% CI of 20.46–80.38, n =
3, similar to the IC50 value of ascorbic acid which was 87.09 μg/mL
(51.72–156.7, n = 3) (Figure 1).

HPLC analysis of AMEBB for detection of
alkaloids

The HPLC chromatogram of the aqueous methanolic extract of
B. brandisiana (AMEBB) displayed different metabolites with
respective concentrations like, berbamine (74.95 mg) and
berberine (52.15 mg) [Figures 2A, B].

HPLC analysis of AMEBB for detection of
Flavonoids and Phenolics

The HPLC chromatogram of the aqueous methanolic extract of B.
brandisiana (AMEBB) revealed various metabolites with different
concentrations in ppm like quercetin (11.14), gallic acid (23.68),
caffeic acid (8.53), vanillic acid (14.43), benzoic acid (15.49),
chlorogenic acid (19.89), syringic acid (13.41), p-coumaric acid
(1.9 m), m-coumaric acid (15.54) and ferulic acid (25.96) [Figure 2C].

Acute toxicity study

At highest administered dose of 2000 mg/kg of AMEBB, animals
showed no signs of toxicity. All the animals were survived with no
disability or deaths.

Effect of AMEBB and Berb on body weight,
food and fluid intake

Bodyweight of rats in groups 2–7 significantly (p< 0.001) increased
after 28 days of high fat diet consumption. Only high fat diet and
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streptozotocin administered rats for 56 days, showed a noticeable (p <
0.01) attenuation in the body weights when compared with normal
animals (Table 2). Similarly, diabetic rats consumed significantly (p <
0.001) more food and fluids throughout the experiment. Oral
administration of AMEBB (150 and 300 mg/kg) and Berb (80 and
160 mg/kg) for 8 weeks significantly (p < 0.01) reduced food intake
(grams) (39.20 ± 0.80, 40 ± 0.70), (40.60 ± 1.03, 39.60 ± 1.91) and fluid
intake (mL) (220.2 ± 1.93, 217.6 ± 1.03), (224.4 ± 0.51, 216.8 ± 0.91) in
diabetic animals compared to control (30 ± 1.73) and (179.2 ± 0.37),
respectively. These findings were found similar to those on the part of
metformin, a standard antidiabetic drug, administered group (Figure 3).

Effect of AMEBB and berb on glucose, insulin
and HbA1c levels

Serum insulin levels (5.54 ± 0.22 µU/mL) were significantly (p <
0.001) reduced in high fat diet and streptozotocin-fed diabetic rats,
while blood glucose levels (346 ± 13.27 mg/dL) were significantly
(p < 0.001) increased compared to normal control (87 ± 1.09)
animals (Table 3). Administration of AMEBB (150 and 300 mg/kg)

and Berb (80 and 160 mg/kg) for 8 weeks caused a significant (p <
0.01) improvement in serum insulin levels in µU/mL (12.11 ± 0.14,
13.08 ± 0.24) (8.3 ± 0.27, 12.92 ± 0.09) and blood glucose levels in
mg/dL (156.4 ± 1.83, 135.6 ± 2.62) (242.4 ± 2.66, 158 ± 4.57),
respectively compared to HFD/STZ-induced diabetic rats. HbA1c
(%) levels were found significantly (p < 0.001) enhanced (7.66 ±
0.18) in HFD/STZ-induced diabetic rats vs. normal rats. AMEBB
(150 and 300 mg/kg) and Berb (80 and 160 mg/kg) considerably (p <
0.01) reduced HbA1c levels (5.22 ± 0.04, 6.22 ± 0.05), (5.24 ± 0.14,
5.26 ± 0.07), respectively. However, AMEBB and Berb caused no
significant changes in normal rats. AMEBB and Berb also showed
marked effect at higher dose vs. its effect at lower dose in insulin and
glucose levels as depicted in Table 3.

Effect of AMEBB and Berb on inflammatory
biomarkers

When AMEBB (150 and 300 mg/kg) and Berb (80 and 160 mg/kg)
were given to HFD/STZ-induced diabetic rats, these presented marked
(p< 0.001) decline in serumTNF-α (20.39 ± 0.17, 19.20 ± 0.37) (20.43 ±
0.39, 19.95 ± 0.27) and IL-6 (ng/mL) levels compared to only HFD/
STZ-exposed rats. Administration of AMEBB and Berb showed no
marked difference in serum TNF-α and IL-6 levels of normal rats.
AMEBB and Berb also showedmarked effect at higher dose vs. its effect
at lower dose in serum IL-6 levels as depicted in Figure 4.

Effect of AMEBB and Berb on adipocytokines
levels

HFD/STZ-induced diabetic rats exhibited marked (p < 0.001)
increase in serum leptin (20.38 ± 0.11) and chemerin (1.48 ±
0.15) levels compared to normal rats. In treated animals, AMEBB
(150 and 300 mg/kg) and Berb (60 and 180 mg/kg) significantly
(p < 0.01) decreased leptin (18.27 ± 0.15, 15.52 ± 0.10) (18.21 ±
0.04, 17.71 ± 0.19) and chemerin (0.76 ± 0.03, 0.62 ± 0.04),
(0.80 ± 0.04, 0.60 ± 0.03) levels, respectively, compared to only
HFD/STZ-exposed rats. However, a noticeable (p < 0.001)

TABLE 1 List of Primers used in q RT- PCR.

Genes Forward/reverse Sequences Gene accession no.

IRS-1 Forward 5′CCAAGGGCTTAGGTCAGACA 3′ 2011202-005_E7

Reverse 5′CCACTTGCATCCAGAACTCG 3′

GLUT-4 Forward 5′ TTGCCCTTCTGTCCTGAGAG 3′ 2011202-005_D9

Reverse 5′CGCTCTCTTTCCAACTTCCG 3′

ADAM17 Forward 5′AAGACCCCAGCACAGATTCA 3′ 2011202-005_D11

Reverse 5′GGCTCCCACTAACACTCTGT 3′

SIRT 1 Forward 5′GCAGTAACAGTGACAGTGGC 3′ 2011202-005_E4

Reverse 5′AACTGCCTCTTGATCCCCTC 3′

β-actin Forward 5′CACCATGTACCCAGGCATTG 3′ 2011202-005_E10

Reverse 5′ACAGTCCGCCTAGAAGCATT 3′

Bold values are represent as IRS-1: Insulin receptor substrate- 1, GLUT-4: Glucose transporter-4, SIRT1: Sirtuin-1, ADAM 17: A disintegrin and A metalloproteinase 17, β-actin: ACTB gene.

FIGURE 1
Aqueous methanolic extract Berberis brandisiana (AMEBB) has
antioxidant DPPH radical scavenging activity in vitro. The values are
depicted as Mean ± S.E.M. (n = 3).
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decrease in adiponectin (0.21 ± 0.04) levels in ng/mL were
recorded in HFD/STZ-exposed rats compared to control
animals. Treatment with AMEBB and Berb at both doses
caused improvement in adiponectin (0.53 ± 0.01, 0.55 ± 0.01),
(0.52 ± 0.01, 0.56 ± 0.01) levels respectively, similar to the effect
of metformin. There was no significant modification in normal
rats when treated with AMEBB and Berb. AMEBB and Berb also
showed marked effect at higher dose vs. its effect at lower dose
effects in serum, leptin, chemerin and adiponectin levels as
displayed in Figure 5.

Effect of AMEBB and Berb on oxidative stress

Figure 6 depicts oxidative damage markers in liver, pancreas,
kidney, aorta and heart tissue homogenates. Treatment of AMEBB
and Berb to HFD/STZ-induced diabetic rats showed a noticeable
(p < 0.001) increase in serum antioxidant enzymes (CAT and SOD
in Units/mg) in pancreas (42.4 ± 0.24,47.4 ± 0.51), (38.2 ± 0.583,
48.6 ± 1.03) and liver (52 ± 1.41, 63.2 ± 0.51), (57.2 ± 0.58, 61.6 ±
1.24) and superoxide dismutase levels in pancreas (34.8 ± 1.46,38.2 ±
0.58), (33.2 ± 0.80, 40.4 ± 1.96) and liver (31.8 ± 1.52,36.8 ± 0.96),

FIGURE 2
(A)HPLC chromatogram of aqueousmethanolic extract of Berberis brandisiana (AMEBB) for detection of Alkaloids (B)HPLC fingerprints of standard
(Berbamine). (C) HPLC chromatogram of aqueous methanolic extract of Berberis brandisiana (AMEBB) for detection of Flavonoids and Phenolics.
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(30 ± 0.70, 38.4 ± 0.81), kidney, heart and aorta homogenates when
compared with only HFD/STZ-exposed animals. Administration of
AMEBB (150 and 300 mg/kg) and Berb (80 and 160 mg/kg) to HFD/
STZ-fed diabetic rats caused significant (p < 0.01) decrease in MDA
(nmol/g) levels in pancreas (7.34 ± 0.17, 6.22 ± 0.22), (7.34 ± 0.20,

6.34 ± 0.11) and in liver (9.08 ± 0.31, 8.18 ± 0.29), (9.34 ± 0.10, 8.86 ±
0.24) homogenates compared to the control group of animals.
AMEBB and Berb also showed marked (p < 0.001) effect at
higher dose vs. its effect at lower dose in tissue homogenates of
pancreas, liver, kidney, heart and aorta (Figure 6).

TABLE 2 Effect of administration of Berberis brandisiana and berbamine on body weight in high fat diet and streptozotocin-fed diabetic rats.

Weight (gm)

0 week 4th week 12th week

Control (NPD) 155.6 ± 2.32 158.4 ± 1.81 158.2 ± 1.53

Diabetic (HFD + STZ) 156.6. ± 2.48 256 ± 2.821+++ 140.8 ± 2.04+++

Diabetic + MET (200 mg/kg) 150.4 ± 12.01 172.8 ± 7.21ab 153.2 ± 5.81ab

Diabetic + Berb (80 mg/kg) 163 ± 0.84 189.4 ± 4.72ab 175.4 ± 2.68ab

Diabetic + Berb (160 mg/kg) 155.4 ± 1.57 180.4 ± 5.39ab 166.2 ± 4.99ab/ns+

Diabetic + AMEBB (150 mg/kg) 155.2 ± 1.16 185.2 ± 4.97ab 171 ± 4.92ab

Diabetic + AMEBB (300 mg/kg) 147.8 ± 6.42 178 ± 4.92ab 162 ± 4.56ab/ns+

Control + Berb (160 mg/kg) 152 ± 5.78 189.8 ± 3.17ns 201.2 ± 3.54ns

Control + AMEBB (300 mg/kg) 156 ± 11.31 188.6 ± 4.98ns 195.4 ± 4.82ns

The values are depicted as Mean ± S.E.M. (n = 6); +++p < 0.001 shows comparisons of normal vs. diabetic animals (student t-test); ab p < 0.01 shows comparison of treatment vs diseased animals

(Two Way ANOVA, followed by Dunnett’s test); ns = non-significant; Where NPD: normal pallet diet; Diabetic: High fat diet/streptozotocin; MET: metformin; Berb: berbamine; AMEBB:

aqueous methanolic extract of Berberis brandisiana; ns+ (non-significant)shows the comparison between the effect of low vs. high dose of Berberis brandisiana and berbamine (student t-test).

FIGURE 3
Effect of administration of Berberis brandisiana and berbamine on and food intake (A) fluid intake (B) in high fat diet and streptozotocin fed diabetic
rats. Mean ± S.E.M (n = 6); are used to express the bars. Where N.C- Normal control, D.C- disease control, D + AMEBB–diabetic rats treated with aqueous
methanolic extract of Berberis brandisiana (150 and 300 mg/kg), D + Berb–diabetic rats treated with aqueous solution of berbamine (80 and 160 mg/kg),
D + MET-diabetic rats treated with metformin (200 mg/kg). a, b, c p < 0.001 shows comparisons of normal vs diabetic animals (student t-test)
treatment vs diseased animals (Two Way ANOVA followed by Dunnett’s test).
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Effect of AMEBB and Berb on serum
biochemical parameters

Administration of AMEBB (150 and 300mg/kg) and Berb (80 and
160 mg/kg) in hyperglycemic rats revealed a marked (p < 0.001)
attenuation in triglycerides (TG), total cholesterol (TC), low-density
lipoprotein (LDL), aspartate aminotransferase (AST), alanine
transaminase (ALT), urea and creatinine levels compared to only
HFD/STZ-exposed rats, similar to the effect of metformin. When
AMEBB and Berb were administered to HFD/STZ-exposed diabetic
rats, it caused amarked (p < 0.001) increase in HDL levels compared to
only HFD/STZ challenged rats (Tables 4, 5).

Effect of AMEBB and Berb on histopathology
of organs

The histopathological analysis of pancreas, liver, kidney, heart,
and aortic sections from normal control and HFD/STZ-induced
diabetic rats are presented in Figure 7.

Administration of AMEBB and Berb displayed an improvement
in texture of islets of Langerhans in pancreas, betterment in disarray
of hepatocytes, accumulation of fat droplets and inflammation of
sinusoids in lives tissues. Restoration of normal glomerulus and
absence of inflammatory cells was observed in kidney tissues.
Isolated heart tissue of treated rats showed effective restoration of

TABLE 3 Effect of administration of Berberis brandisiana and berbamine on glucose insulin, and glycated hemoglobin levels in high fat diet and streptozotocin fed
diabetic rats.

Diabetic parameters
Groups

Glucose (mg/dL) Insulin (µU/mL) HbA1c (%)

Control (NPD) 87 ± 1.09 16.6 ± 0.68 4.7 ± 0.05

Diabetic (HFD + STZ) 346 ± 13.27+++ 5.5 ± 0.22+++ 7.6 ± 0.18+++

Diabetic + MET (200 mg/kg) 116.2 ± 1.07ab 12.9 ± 0.39ab 4.9 ± 0.02ab

Diabetic + Berb (80 mg/kg) 242.4 ± 2.66ab 8.3 ± 0.27ab 5.3 ± 0.14ab

Diabetic + Berb (160 mg/kg) 158 ± 4.57ab/*** 13 ± 0.09ab/*** 5.3 ± 0.07ab/ns+

Diabetic + AMEBB (150 mg/kg) 156.4 ± 1.83ab 12.1 ± 0.14ab 5.2 ± 0.04ab

Diabetic + AMEBB (300 mg/kg) 135.6 ± 2.62ab/*** 13.1 ± 0.24ab/** 5 ± 0.05ab/**

Control + Berb (160 mg/kg) 86.4 ± 0.75 ns 16.3 ± 0.04ns 5.5 ± 0.08ns

Control + AMEBB (300 mg/kg) 84 ± 0.78ns 16.2 ± 0.22ns 4.5 ± 0.06ns

The values are depicted as Mean ± S.E.M. (n = 6); +++p ˂ 0.001 shows comparisons of normal vs diabetic animals (student t-test); ap < 0.05 and; ab p < 0.01 show comparison of treatment vs

diseased animals (Dunnett’s test followed One Way ANOVA); ns = non-significant; Where NPD: normal pallet diet; Diabetic: High fat diet/streptozotocin; MET: metformin; Berb: berbamine;

AMEBB: aqueous methanolic extract of berberis brandisiana; HbA1c: glycosylated hemoglobin; ns+ (non-significant), ***p < 0.001 and ** p < 0.01 show the comparison between the effect of low

vs. high dose of Berberis brandisiana and berbamine (student t-test).

FIGURE 4
Effect of administration of Berberis brandisiana and berbamine on TNF- α (A) and IL-6 (B) in high fat diet and streptozotocin fed diabetic rats. The
values are given as Mean ± S.E.M. (n = 6); +++p < 0.001 shows comparisons of normal vs diabetic animals (student t-test); ###p < 0.001 shows comparison
of treatment vs diseased animals (Dunnett’s test followed OneWay ANOVA); ns = non-significant; Where NPD: normal pallet diet; Diabetic: High fat diet/
streptozotocin; MET: metformin; Berb: berbamine; AMEBB: Aqueous methanolic extract of Berberis brandisiana; IL-6: interleukin 6: TNF-α: Tumor
necrosis factor alpha. ns+ (non-significant) and **p < 0.01 show the comparison between the effect of low vs. high dose of B. brandisiana and berbamine
(student t-test).
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myocytes and attenuation of inflammation. Whereas, aortic tissue
sections of treated animals, showed significant upgrading in the
deposition of elastic fibers and reduction in lipid deposition in tunica
intima as detailed in Figure 7.

Effect on gene expression

The mRNA expressions of IRS-1, GLUT-4, SIRT 1, and ADAM
17 were assessed using Real time qPCR. The mRNA levels of ADAM

FIGURE 5
Effect of administration of Berberis brandisiana and berbamine on leptin (A), Adiponectin (B) and Chemerin (C) in high fat diet and streptozotocin fed
diabetic rats. The values are given as Mean ± S.E.M. (n = 6); +++p < 0.001 shows comparisons of normal vs diabetic animals (student t-test); ##p <
0.01 shows comparison of treatment vs diseased animals (One Way ANOVA followed by Dunnett’s test); ns = non-significant; Where NPD: normal pallet
diet; Diabetic: High fat diet/streptozotocin; MET: metformin; Berb: berbamine; AMEBB: Aqueous methanolic extract of Berberis brandisiana; ns+

(non-significant), ***p < 0.001 and p < 0.05 show the comparison between the effect of low vs. high dose ofB. brandisiana and berbamine (student t-test).

FIGURE 6
Effect of administration of Berberis brandisiana and berbamine on CAT (A), SOD (B) andMDA (C) in high fat diet and streptozotocin-fed diabetic rats
The values are given asMean ± S.E.M. (n = 6); +++p ˂0.001 shows comparisons of normal vs diabetic animals (student t-test); #p < 0.05, ##p ˂ 0.01 and ###p ˂
0.001, ns = non-significant show comparison of treatment vs diseased animals and comparison of normal vs normal treated animals (One Way ANOVA
followed by Dunnett’s test); Where NPD: normal pallet diet; Diabetic: High fat diet/streptozotocin; MET: metformin; Berb: berbamine; AMEBB:
Aqueous methanolic extract of Berberis brandisiana; Catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA); ***p < 0.001 shows the
comparison between the effect of low vs. high dose of B. brandisiana and berbamine (student t-test).
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17 gene were markedly (p < 0.001) upregulated by 3.33 fold
compared to data of control animals. When compared to the
normal control group, IRS-1, GLUT-4, and SIRT 1 were
significantly (p < 0.001) downregulated by 1.5, 1.9, and 0.33 fold,
respectively, in HFD/STZ-exposed groups. In comparison to HFD/

STZ-induced diabetic groups, administration of AMEBB and Berb
upregulated IRS-1, GLUT-4, and SIRT 1, while caused
downregulation of ADAM 17 in liver tissues, results in
restoration of the expression of genes of interest towards normal.
AMEBB and Berb also showed marked effect at higher dose vs. its

TABLE 4 Effect of administration of Berberis brandisiana and berbamine on Lipid Profile in high fat diet and streptozotocin-fed diabetic rats.

Lipid profile
Groups

TC (mg/dL) TG (mg/dL) HDL (mg/dL) LDL (mg/dL)

Control (NPD) 121.6 ± 0.51 103.2 ± 0.97 46.6 ± 0.81 75 ± 0.20

Diabetic (HFD + STZ) 315.2 ± 4.49+++ 204.2 ± 0.66+++ 23 ± 0.58+++ 292 ± 0.40+++

Diabetic + MET (200 mg/kg) 174.6 ± 1.21 ab 116.6 ± 0.68 ab 32.60 ± 0.40 ab 142 ± 0.20 ab

Diabetic + Berb (80 mg/kg) 183.6 ± 0.87 ab 124.8 ± 0.37 ab 35.8 ± 0.66 ab 148 ± 0.37 ab

Diabetic + Berb (160 mg/kg) 172.8 ± 1.53 ab/*** 117.4 ± 0.93 ab/*** 32.4 ± 0.25 ab/*** 140 ± 0.32 ab/***

Diabetic + AMEBB (150 mg/kg) 185 ± 1.30 ab 125.8 ± 0.74 ab 36 ± 0.55 ab 149 ± 0.25 ab

Diabetic + AMEBB (300 mg/kg) 175.8 ± 1.07 ab/*** 115.2 ± 0.58 ab/*** 32.8 ± 0.66 ab/*** 143 ± 0.51 ab/***

Control + Berb (160 mg/kg) 121 ± 0.32 ns 105.2 ± 0.37 ns 44.6 ± 1.44+ 76.4 ± 1.24 ns

Control + AMEBB (300 mg/kg) 121 ± 0.22 ns 105.8 ± 0.37 ns 45 ± 0.71+ 76 ± 0.92 ns

The values are depicted as Mean ± S.E.M. (n = 6); +++p < 0.001 shows comparisons of normal vs diabetic animals (student t-test); a p < 0.05 and ab p < 0.01 show comparison of treatment vs

diseased animals (One Way ANOVA, followed by Dunnett’s test); ns = non-significant; Where NPD: normal pallet diet; Diabetic: High fat diet/streptozotocin; MET: metformin; Berb:

berbamine; AMEBB: aqueous methanolic extract of Berberis brandisiana; total cholesterol (TC) triglycerides (TGs), high-density lipoprotein (HDL) low-density lipoprotein (LDL); ***p <
0.001 shows the comparison between the effect of low vs. high dose of B. brandisiana and berbamine (student t-test).

FIGURE 7
Photomicrographic representation of pancreatic tissue, Liver, kidney, heart and aorta sections showing the influence of administration of Berb:
Berbamine (80 and 160 mg/kg body weight) and AMEBB: Aqueous methanolic extract of Berberis brandisiana (150 and 300 mg/kg body weight)
respectively in HFD/STZ-induced diabetic (D.C) and normal rats (N.C). Pancreas: Black and yellow arrows respectively show pancreatic islets and exocrine
parts of pancreas. Liver: Black, red and blue arrows respectively show: central vein, plates of hepatic cells and sinusoids. Kidney: Black, yellow and
green arrows respectively show bowman capsule, glomerulus and distil proximal convoluted tubule. Heart: Black, and green arrows respectively show
nuclei of cardiomyocytes and myofibers. Aorta: Black, blue and green arrows respectively show lumen, tunica intima, and tunica adventia.
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effect at lower dose in mRNA levels of IRS-1, GLUT-4 and SIRT1
(Figure 8).

Statistical analysis

Graph Pad Prism 8.4.3 was used for analysis and graphical
presentation of the data. Values were displayed as mean ±
standard error of the mean (SEM). For comparison of the data
in different groups One-way analysis of variance (ANOVA)
followed by Dunnett’s test or Two-way analysis of variance
(ANOVA) followed by Dunnett’s test for multiple
comparisons were used. p < 0.05 was considered significantly
different.

Discussion

Diabetes related morbidity and mortality are posing a continuous
harmful impact on health systems around the globe. Additionally,
nutritional fat consumption reduces glucose utilization mediated by
insulin and endorses insulin resistance in diabetics. Further, 40 mg/kg
streptozotocin administration to HFD-fed rats cause β-cells necrosis,
resulting in deficiency of insulin and development of diabetes (Pratiwi
et al., 2021). To assess the efficacy of a test material for its insulin
sensitizing and/or insulin secretory properties, high fat and
streptozotocin-fed animal model is considered appropriate. Similar
models have been used in numerous labs (Sakashita et al., 2021).
Traditional use of B. brandisiana in the treatment of diabetes (Jan et al.,
2008) provide basis for further studies to strengthen its potential use as

FIGURE 8
Effect of administration of Berberis brandisiana and berbamine on IRS-1, GLUT-4, SIRT 1, ADAM 17 mRNA level in high fat diet and streptozotocin fed
diabetic rats. Values are expressed as Mean ± S.E.M, n = 6; +++ p < 0.001 shows comparisons of normal vs diabetic animals (student t-test). ##p < 0.01 and
###p < 0.001 show comparison of treatment vs diseased animals (OneWay ANOVA followed by Dunnett’s test); ns = non-significant; Where NPD: normal
pallet diet; Diabetic: High fat diet/streptozotocin; MET: metformin; Berb: berbamine; AMEBB: Aqueous methanolic extract of Berberis brandisiana;
IRS-1: insulin receptor substrate-1; GLUT-4: glucose transporter −4; SIRT 1; sirtuin 1; ADAM 17: A disintegrin and A metalloproteinase 17; ***p <
0.001 shows the comparison between the effect of low vs. high dose of B. brandisiana and berbamine (student t-test).

TABLE 5 Effect of administration of Berberis brandisiana and berbamine on LFTs and RFTs in high fat diet and streptozotocin-fed diabetic rats.

Groups LFTs and RFTs

AST (U/L) ALT (U/L) Urea (mmol/L) Creatinine (µmol/L)

Control (NPD) 113.8 ± 0.58 81.4 ± 0.510 12.3 ± 0.20 34.6 ± 0.25

Diabetic (HFD + STZ) 271 ± 1.11+++ 181 ± 0.45+++ 36.2 ± 1.24+++ 73.8 ± 1.46+++

Diabetic + MET (200 mg/kg) 166.4 ± 0.82 ab 104.4 ± 0.68 ab 14.6 ± 0.40 ab 38.8 ± 0.37 ab

Diabetic + Berb (80 mg/kg) 175.4 ± 0.25 ab 132.8 ± 0.37 ab 17.8 ± 0.12 ab 52.2 ± 0.38 ab

Diabetic + Berb (160 mg/kg) 173.2 ± 0.37 ab/*** 120.6 ± 1.40 ab/*** 16.2 ± 0.12 ab/*** 41 ± 0.45 ab/***

Diabetic + AMEBB (150 mg/kg) 177.6 ± 1.08 ab 132 ± 0.55 ab 18 ± 0.32 ab 51.6 ± 0.51ab

Diabetic + AMEBB (300 mg/kg) 175.6 ± 0.51 ab/ns+ 121.8 ± 156 ab/*** 16.2 ± 0.242ab/*** 42.3 ± 0.54 ab***

Control + Berb (160 mg/kg) 114.2 ± 0.37 ns 80.8 ± 0.37 ns 12.2 ± 0.20 ns 34 ± 0.55 ns

Control + AMEBB (300 mg/kg) 114 ± 0.32 ns 80 ± 0.37 ns 12.6 ± 0.25 ns 34 ± 0.55 ns

The values are depicted as Mean ± S.E.M. (n = 6); +++p < 0.001 shows comparisons of normal vs diabetic animals (student t-test); ab p < 0.01 shows comparison of treatment vs. diseased animals

(One Way ANOVA, followed by Dunnett’s test); ns = non-significant; Where NPD: normal pallet diet; Diabetic: High fat diet/streptozotocin; MET: metformin; Berb: berbamine; AMEBB:

aqueous methanolic extract of berberis brandisiana; aspartate transaminase (AST) alkaline phosphatase (ALT); ns+ (non-significant) and ***p < 0.001 show the comparison between the effect of

low vs. high dose of B. brandisiana and berbamine (student t-test).
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antidiabetic agent. B. brandisiana has also been found enriched with
berbamine (Khan et al., 2016). B. brandisiana and berbamine are
known for their antioxidant, anti-inflammatory, hepatoprotective and
cardiovascular beneficial effects (Sankaranarayanan et al., 2018). This
study has been designed to assess the ameliorating potential of the
aqueous methanolic extract of B. brandisiana (AMEBB) and
berbamine in HFD/STZ-induced diabetic rats.

TheHPLC analysis showed variety of phenolic acids and flavonoids
in AMEBB including, quercetin, gallic acid, caffeic acid, benzoic acid,
ferulic acid, chologenic acid, syringic acid, m-coumaric acid,
p-coumaric acid and ferulic acid. Most of these metabolites
(flavonoids, m-coumaric acid, p-coumaric acid, quercetin, gallic
acid) are known to boost insulin sensitivity, slow down the rate,
digestion and absorption of sugar, hence supporting their protective
effects in diabetes (Mihaylova et al., 2018; Sankaranayanan et al., 2018).

Administration of high fat diet for 56 days along with
streptozotocin develop glucose intolerance, insulin resistance, β-
cell destruction, alterations in inflammatory biomarkers (TNF-α, IL-
6), adipocytokines (leptin, chemerin and adiponectin) levels,
oxidative stress biomarkers (CAT,SOD and MDA) and diabetic
candidate genes like IRS-1. GLUT-4, SIRT 1 and ADAM 17.
Treatment with AMEBB and Berb to HFD/STZ-administered rats
from 28th day of induction period, resulted in weight gain, increased
food consumption and fluid intake compared to non-diabetic rats
during the experimental period. Although the food intake of diabetic
rats was increased during the experimental period, the weight gain
was significantly reduced. It has been reported that diabetes is
associated with weight loss, polydipsia, polyphagia and polyuria
(Peng et al., 2021). Energy metabolism is compromised in hepatic
tissue, thus a low energy state is stimulated for satiety center and
food consumption is increased in diabetes mellitus. As hepatic
energy influences feeding behavior, hence in turn affects body
weight (Rawlinson and Andrews, 2021). High fat diet-fed rats
showed increase in body weight over a 4-week period due to its
deposition in a variety of body fat packs. Weight gain was
significantly (p < 0.01) reduced during the experimental period
while food intake of diabetic rats was increased. In diabetic rats, the
inability to use carbohydrates as an energy source, combined with
poor glycemic control, causes extreme protein catabolism in order to
supply amino acids for gluconeogenesis, resulting in muscle
deterioration and weight loss during insulin deficiency (Kumar
et al., 2021). Flavonoids have previously been identified as active
metabolites of AMEBB, and are known for their slimming properties
(Yin et al., 2022). In comparison to normal control, osmotic diuresis
increases fluid consumption only in high fat diet (HFD) and
streptozotocin (STZ) exposed rats. Oral administration of
AMEBB and Berb considerably (p < 0.01) improved body weight
and normalized food and fluid consumption in treated rats,
indicating an improvement in glycemic control as previously
reported (Sankaranarayanan et al., 2018).

Persistent hyperglycemia causes non-enzymatic glycation of
proteins, including lens crystalline protein and hemoglobin. In
uncontrolled diabetes, glycosylation of hemoglobin occurs
gradually and is proportional to fasting blood glucose levels.
According to Babaya et al. (2021), a persistent increase in HbA1c
level was related with failure of β-cell function. Under hyperglycemic
condition due to HFD/STZ-exposure, levels of HbA1c were higher
in diabetic rats vs. normal control rats. When compared to only

HFD/STZ-exposed rats, Berb and AMEBB administration decreased
glucose and HbA1c levels in diabetic rats. Earlier reports have
revealed that antioxidant constituents are known to inhibit
glycation of protein associated with diabetes (Sarmah and Roy,
2021). These aspects offer support to the antidiabetic effect of
AMEBB and Berb. HPLC analysis confirmed the presence of
flavonoids such as gallic acid, quercetin and polyphenols as active
plant metabolites. The presence of such advantageous metabolites
contributes to the assessed benefits of AMEBB as well.

Present study showed administration of AMEBB and Berb
significantly (p < 0.01) decreased serum TNF-α and IL-6 levels
compared to only HFD/STZ-administered rats. Administration of
HFD for 4 weeks helps in progression of obesity (Leite et al., 2021).
Obese adipose tissues secrete a number of pro-inflammatory
cytokines, including TNF-α and IL-6. There is emerging evidence
that increased pro-inflammatory cytokine release is linked to
development of insulin resistance because of β-cell degradation
and has been reported to increase diabetes related complication
(Heo et al., 2021). The AMEBB and Berb significantly modified
TNF-α and IL-6 levels which is also supported by earlier studies on
the part of other botanical drugs (Zheng et al., 2021).

Adipocytokines are secreted by adipose tissues and are known to
contribute in defective insulin secretion and action, resulting in
peripheral insulin resistance (Deng et al., 2021). Obesity-related
diseases have been linked to the deficiency of adiponectin, such as
diabetes, insulin resistance and cardiovascular diseases. Findings of
our study are in line with earlier study of Achari and Jain. (2017).
Leptin, also known as “anorexigenic” hormone, promotes oxidation
of fatty acids and lipolysis while preventing lipogenesis. Other than
obesity, hyperleptinemia has been linked to insulin resistance.
Chronic hyperlipidemia imparts negative impact on leptin
function as decribed by López-Jaramillo et al. (2014). Chemerin
is a relatively new adipokine that has been discovered to have
endocrine, paracrine, and autocrine functions. It also plays
important role in lipid and glucose homeostasis, angiogenesis,
inflammation, immune modulation and blood pressure regulation
(Roman et al., 2012). The current study found a link between
AMEBB and Berb supplementation and adipocytokines levels in
diabetic rats. Lower levels of leptin and chemerin and higher level of
adiponectin were observed in diabetic rats treated with AMEBB and
Berb. AMEBB and Berb showed dose dependent effects.

The CAT and SOD levels were markedly (p < 0.01) increased in
AMEBB (150 and 300 mg/kg) and Berb (80 and 160 mg/kg) treated
groups compared to HFD/STZ-exposed rats. SOD and CAT are
antioxidant enzymes that serve as the first line of defense against
ROS in cells, scavenging the toxic intermediate of partial oxidation.
Decrease in the levels of these antioxidant enzymes results in an
additional molecular oxygen and hydrogen peroxide, which
produces reactive hydroxyl free radicals and leads to the lipid
peroxidation (Repetto et al., 2012). Superoxide dismutase enzyme
protects cells from reactive oxygen species by scavenging molecular
oxygen, which causes damage to membrane and biological structure
(Ighodaro and Akinloye, 2018). The decrease in catalase activity
happens due to the enzyme being inactivated by glycation. AMEBB
and Berb treatment increased the levels of SOD and CAT in diabetic
rats compared to only HFD/STZ-induced diabetic rats. Indeed, the
return of SOD levels promoted by AMEBB and Berb may hasten the
superoxide dismutation to hydrogen peroxide, which is rapidly
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detached by CAT, protecting diabetic animal tissues from highly
toxic hydroxyl ion free radicals, result in avoiding lipid peroxidation.
These results are also in line with earlier study of Aboonabi et al.
(2014).

An abnormal blood lipid profile is another symptom of insulin
resistance. The current study found that diabetic rats had higher total
cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL),
and lower HDL levels. These changes are endorsed to an increase in
free fatty acid flux into the liver as a result of insulin deficiency or
insulin resistance which results in an excess accumulation of fatty acid
in liver and conversion to triglycerides (Adiels et al., 2008). The
inability of insulin to inhibit the liberation of free fatty acids results
in increased VLDL production in the liver (Pilz and März, 2008).
WhenVLDL and TG levels rise, the activation of lipoprotein lipase and
lecithin acyl-cholesterol transferase, results in decrease HDL and an
increase in the concentration of LDL particles (Sharma et al., 2010).
High levels of cholesterol in HFD/STZ-induced diabetic animals may
be due to increased dietetic cholesterol captivation from the small
intestine succeeding high fat diet consumption in the diabetic
condition (Naidu et al., 2015). Furthermore, hypertriglyceridemia
may increase triglycerides absorption in the form of chylomicrons
as a result of over consumption of fat-rich diet. The AMEBB and Berb
treatment showed noticeable (p < 0.01) decrease in, TG, TC, LDL and
increase in HDL levels. Dietary polyphenols, on the other hand,
effectively reduce the amount of lipoprotein rich in triglycerides
and are linked to oxidative stress in postprandial and fasting
conditions (Vries et al., 2014).

High concentrations of AST, ALT are typical indicators of liver
dysfunction often observed in HFD-fed and STZ induced diabetic
animals. Observed increase in AST and ALT levels may be due to the
outflow of enzymes from cytosol of hepatocytes into the blood
stream. The AMEBB and Berb treatment significantly (p < 0.01)
decreased levels of these elevated enzymes and subsequently relieved

liver injury. Increased levels of creatinine and urea in the serum of
diabetic animals were found to be strongly correlated with renal
damage. Renal tissue depletion in diabetic rats was caused by the
production of reactive oxygen species as a result of elevated free
radical concentrations in these tissues (El-Alfy et al., 2005). In our
study, diabetic rats treated with AMEBB and Berb had significant
(p < 0.01) reduction in serum urea and creatinine levels and restored
renal structural parameters in diabetic rats, possibly by neutralizing
free radicals in biological systems.

The histopathological data revealed that treatment with AMEBB
and Berb improved in β-cell mass and islets of Langerhans in
pancreatic tissues when compared with only HFD/STZ-exposed
rats. Histograms of diabetic rat hepatic sections showed
hepatocytes degeneration and inflamed sinusoids. Treatment with
AMEBB and Berb protected hepatic lesions and inflammation. In
diabetic group, kidney tissue sections showed degenerated renal
tubules and inflammation, whereas AMEBB and Berb treatment
resulted in revival of renal tubules damage and inflammation. Heart
tissue of treated rats showed effective restoration of myocytes and
attenuation of inflammation. Whereas, aortic tissues of treated
groups showed significant upgrading in deposition of elastic
fibers and reduction in lipid deposition in tunica intima.

Administration of HFD/STZ causes activation PI3K/AKT
pathway through production of reactive oxygen species (ROS).
ROS and PI3K/AKT pathway is indirectly involved in mediation
of insulin signaling via IRS-1, GLUT-4, SIRT 1 and ADAM 17. The
observed antidiabetic effects of B. brandisiana and berbamine were
found in line with the estimated expression of mRNA of IRS-1,
GLUT-4, SIRT 1 and ADAM 17 as elaborated in Figure 9.

IRS-1 plays important role in the signal transduction pathway
stimulated by insulin and connecting receptor of insulin to its ultimate
biological actions through intermediate effectors. IRS-1 regulation
differs in the liver as it has been observed in diabetic animals,

FIGURE 9
A flow diagram highlighting the effect of administration of high fat diet and streptozotocin on the production of reactive oxygen species and the
cross talk of insulin signaling pathway (IRS-1, GLUT4, SIRT1 and ADAM 17) with PI3K/AKT pathway.
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which may result in distinctive changes in insulin levels in liver tissue
and contribute to insulin resistance in liver. mRNA expression of IRS-1
was found lower in the livers of HFD/STZ-induced diabetic rats while
the treatment of AMEBB and Berb upregulated mRNA expression of
IRS-1, a key contributor in insulin resistance. Our finding is also in line
with an earlier study (Zheng et al., 2011). ROS is known to play a part
in activation of intracellular stress kinases and inhibition of IRS-1,
thus potentially influencing insulin signaling and to promote via
GLUT-4 translocation and down streaming of AKT resulting in
insulin resistance, obesity and diabetes mellitus (Li et al., 2022).
mRNA expression of GLUT-4 is downregulated in HFD/STZ-
induced diabetic rats, indicating that insulin acts as a positive
regulator of gene expression and explains the impaired glucose
disposal. Administration of AMEBB and Berb upregulated mRNA
expression of GLUT-4, thus offering protective potential of the
treatment in insulin resistance and diabetes. SIRT1 controls insulin
secretion by preserving pancreatic β-cells, improves insulin resistance,
inflammation, mitochondrial function, controls oxidation of fatty acid
and regulates hepatic glucose production. Therefore, for the treatment
of insulin resistance and diabetes, SIRT1 is a favorable pharmacological
target (Kitada and Koya, 2013). In our study, mRNA expression of
SIRT 1 in hepatic tissues was found upregulated in HFD/STZ–exposed
rats, while treatment showed is downregulation, hence supporting its
protective potential against high fat diet-induced hepatic steatosis (Li
et al., 2011), insulin sensitivity and oxidative stress possibly mediated
through AKT pathway. These findings are also supported by earlier
study of Abedimanesh et al. (2022). Similarly, medicinally active plants
containing flavonoids are known to reduce SIRT 1 expression in
hepatocytes (Sung et al., 2015). Diabetes is known to cause an
increase in ADAM 17 overexpression due to a decrease in
antioxidants and/or rise in ROS. It is reported that TNF-α has been
linked to signaling pathway of insulin impairment by increasing serine
phosphorylation of IRS-1, which inhibits activity of tyrosine kinase
resulting in impaired downstream signaling and development of
insulin resistance. Administration of AMEBB and Berb caused
downregulation of mRNA expression of ADAM17 in hepatic
tissues, thus offering it potential utility for the treatment of
diabetes. These findings are also in line with earlier findings on
another medical plant (Matthews et al., 2021). In current study, the
decreased levels of mRNA of IRS-1, GLUT-4, SIRT1 and increased
levels of mRNA of ADAM17 in diabetic animals, while treatment
groups showed increased levels of mRNA of IRS-1, GLUT-4,
SIRT1 and decreased level of mRNA of ADAM17. This helps to
correlate that observed efficacy of test materials might have been
achieved because of the improved insulin action which is an outcome
of insulin signaling ultimately through modulation of mRNA levels of
IRS-1, GLUT-4, SIRT1 and ADAM17. Our findings are also in line
with earlier studies (Balbaa et al., 2016).

Conclusion

This study demonstrates that B. brandisiana and Berb possess
antidiabetic effects possibly mediated through attenuation of oxidative
stress, glucose metabolism, inflammatory biomarkers and
adipocytokines levels. Further the downregulation of IRS-1, SIRT1
andGLUT-4 and upregulation of ADAM17 demonstrates its potential
impact on glucose homeostasis, insulin resistance and chronic

inflammatory markers. Thus, this study provides scientific basis to
the medicinal use of B. brandisiana and berbamine in diabetes.

Innovation

• It is the pioneer study showing the anti-diabetic potential of B.
brandisiana Ahrendt in HFD and STZ-fed animals.

• Quantitative expression of mRNA of diabetic candidate genes
like, IRS-1, SIRT 1, GLUT-4 and ADAM17 were studied for
their role on the part of protective potential of AMEBB and
Berb in diabetes.

• AMEBB and Berb demonstrated anti-inflammatory and
antioxidant potential, thus providing additional support to
the anti-diabetic effects of AMEBB and Berb.
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