AUTHOR=Kee Ping Siu , Maggo Simran D. S. , Kennedy Martin A. , Chin Paul K. L. TITLE=The pharmacogenetics of CYP2D6 and CYP2C19 in a case series of antidepressant responses JOURNAL=Frontiers in Pharmacology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1080117 DOI=10.3389/fphar.2023.1080117 ISSN=1663-9812 ABSTRACT=

Pharmacogenetics has potential for optimizing use of psychotropics. CYP2D6 and CYP2C19 are two clinically relevant pharmacogenes in the prescribing of antidepressants. Using cases recruited from the Understanding Drug Reactions Using Genomic Sequencing (UDRUGS) study, we aimed to evaluate the clinical utility of genotyping CYP2D6 and CYP2C19 in antidepressant response. Genomic and clinical data for patients who were prescribed antidepressants for mental health disorders, and experienced adverse reactions (ADRs) or ineffectiveness, were extracted for analysis. Genotype-inferred phenotyping of CYP2D6 and CYP2C19 was carried out as per Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. A total of 52 patients, predominantly New Zealand Europeans (85%) with a median age (range) of 36 years (15–73), were eligible for analysis. Thirty-one (60%) reported ADRs, 11 (21%) ineffectiveness, and 10 (19%) reported both. There were 19 CYP2C19 NMs, 15 IMs, 16 RMs, one PM and one UM. For CYP2D6, there were 22 NMs, 22 IMs, four PMs, three UMs, and one indeterminate. CPIC assigned a level to each gene-drug pair based on curated genotype-to-phenotype evidence. We analyzed a subgroup of 45 cases, inclusive of response type (ADRs/ineffectiveness). Seventy-nine (N = 37 for CYP2D6, N = 42 for CYP2C19) gene-drug/antidepressant-response pairs with CPIC evidence levels of A, A/B, or B were identified. Pairs were assigned as ‘actionable’ if the CYP phenotypes potentially contributed to the observed response. We observed actionability in 41% (15/37) of CYP2D6-antidepressant-response pairs and 36% (15/42) of CYP2C19-antidepressant-response pairs. In this cohort, CYP2D6 and CYP2C19 genotypes were actionable for a total of 38% pairs, consisting of 48% in relation to ADRs and 21% in relation to drug ineffectiveness.