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Nephropathy is a general term for kidney diseases, which refers to changes in the
structure and function of the kidney caused by various factors, resulting in
pathological damage to the kidney, abnormal blood or urine components, and
other diseases. The main manifestations of kidney disease include hematuria,
albuminuria, edema, hypertension, anemia, lower back pain, oliguria, and other
symptoms. Early detection, diagnosis, and active treatment are required to
prevent chronic renal failure. The concept of nephropathy encompasses a wide
range of conditions, including acute renal injury, chronic kidney disease, nephritis,
renal fibrosis, and diabetic nephropathy. Some of these kidney-related diseases are
interrelated and may lead to serious complications without effective control. In
serious cases, it can also develop into chronic renal dysfunction and eventually end-
stage renal disease. As a result, it seriously affects the quality of life of patients and
places a great economic burden on society and families. Ginsenoside is one of the
main active components of ginseng, with anti-inflammatory, anti-tumor,
antioxidant, and other pharmacological activities. A variety of monomers in
ginsenosides can play protective roles in multiple organs. According to the
difference of core structure, ginsenosides can be divided into protopanaxadiol-
type (including Rb1, Rb3, Rg3, Rh2, Rd and CK, etc.), and protopanaxatriol
(protopanaxatriol)- type (including Rg1, Rg2 and Rh1, etc.), and other types
(including Rg5, Rh4, Rh3, Rk1, and Rk3, etc.). All of these ginsenosides showed
significant renal function protection, which can reduce renal damage in renal injury,
nephritis, renal fibrosis, and diabetic nephropathy models. This review summarizes
reports on renal function protection and the mechanisms of action of these
ginsenosides in various renal injury models.
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1 Introduction

Nephropathy is a general term for kidney-related diseases, which refers to changes in the
structure and function of the kidney caused by various factors, resulting in pathological damage
to the kidney, abnormal blood or urine components, and other diseases. The main clinical
manifestations of nephrosis are hematuria, albuminuria, edema, hypertension, anemia, lower
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back pain, oliguria, and other symptoms. Nephropathy can be divided
into glomerular, renal tubular, renal interstitial, and vascular diseases
according to the main components of the disease. Chronic renal
diseases may eventually lead to chronic renal failure. Renal disease
can be divided into acute renal injury and chronic renal failure
according to the degree, reversibility, and time of occurrence of
renal function damage. Nephropathy can be divided into primary
and secondary nephropathy. Primary nephrosis includes immune
reaction-mediated nephritis, infectious diseases of the urinary
system, renal vascular diseases, renal stones, renal tumors, and
congenital nephrosis. Secondary nephropathy can be induced by
tumors, metabolism, autoimmune diseases, and other diseases,
which are also observed with various drugs, toxins, and other
damage to the kidney. Acute kidney injury (AKI) is a prevalent
critical renal disease associated with a high risk of death in
hospitalized patients. Data from 2015 showed that both the
incidence of AKI and mortality after AKI in inpatients exceeded
20% and the prognosis of AKI did not improve significantly
(Mehta, et al. 2015). Recent studies have confirmed that renal
function cannot completely recover or even require long-term renal
replacement therapy in some patients with AKI. AKI eventually
progresses to chronic kidney disease (CKD) or end-stage renal
disease (ESRD) (Bucaloiu, et al. 2012). Nephritis is one of the most
common kidney-related diseases. In clinical practice,
glomerulonephritis (GN) is usually referred to as nephritis, which
is an immune reaction disease (Coresh, et al. 2003). Renal fibrosis (RF)
is a pathophysiological change that is a progressive process of renal
function, deteriorating from health to injury until loss of function
occurs. RF is also involved in the terminal pathway in CKD and
nephritis. The therapeutic effects of CKD and nephritis are closely
related to the degree of RF (Gewin, et al. 2017). Diabetic nephropathy
(DN) is another major category of kidney-related disease. DN
manifests as glomerulosclerosis, caused by diabetic
microangiopathy. Once DN develops, most patients develop ESRD
(Reutens and Atkins, 2011). Nephropathy, especially CKD and DN,
has become a global public health issue with increasing annual
prevalence. These urgent problems have prompted researchers to
develop more drugs and methods for the treatment of nephropathy.

In recent years, a class of chemical drugs, including selective
endothelin receptor antagonists and phosphodiesterase inhibitors,
have been used to improve renal function because of their effects
on reducing fasting blood glucose and glycosylated hemoglobin levels,
as well as anti-inflammatory and anti-fibrosis effects. However,
through the summary of previous clinical experience, it was found
that some drugs are very easy to produce a variety of adverse reactions
in the process of use, and can induce urinary tract infections, thus
reducing the efficiency of clinical treatment. After a series of research
experiments medical experts found that Chinese medicine plays an
important role in the treatment of the disease, and Chinese medicine
can regulate blood sugar as well as lipid metabolism to minimize
kidney damage, thus creating favorable conditions for promoting early
recovery.

Ginsenosides are the main active components of the traditional
Chinese herbal medicine Panax ginseng C. A. Mey (Song, et al. 2022).
At present, nearly 200 ginsenosides have been isolated and identified
from the roots, stems, leaves, flower buds, and berries of Panax ginseng
C. A. Mey. (Zhao, et al. 2022a). Ginsenosides can be divided into three
classes according to their aglycone structure: protopanaxadiol (PPD),
protopanaxatriol (PPT), and oleanolic acid. The PPD types mainly

include ginsenosides Rb1, Rd, Rg3, Rh2, CK, and F2, etc., PPT types
mainly include ginsenosides Re, Rf, Rg1, Rg2, Rh1, and F1, etc., and
oleanolic acid types mainly include ginsenoside Ro (Hou, et al. 2021,
Liu, et al. 2022). Modern pharmacological studies have shown that
ginsenosides have neuroprotective (Zarneshan, et al. 2022), anti-aging
(Meng, et al. 2022), anti-oxidant (He, et al. 2022a), anti-inflammatory
(Xu, et al. 2022), and anti-cancer (Zhao, et al. 2022b), effects
(Figure 1). Nowadays, many renal protective drugs have been
widely used, but some of them have potential adverse effects.
Monomers extracted from traditional Chinese herbal medicines
have attracted considerable attention as effective and safe
substitutes for kidney diseases (Gao, et al. 2017). Ginsenoside has
been proven to have significant renoprotective effects and can be used
as an antioxidant, anti-inflammatory, and anti-apoptotic agent. This
review summarizes the protective effects and molecular mechanisms
of ginsenosides in various types of kidney diseases.

2 Nephropathy

Nephropathy is a general term for common kidney diseases that
seriously endanger human health, including different types of renal
injury, renal failure, nephritis, renal fibrosis, and DN. The
pathogenesis of kidney disease is complex and often involves
multiple mechanisms, as shown in Figure 1. Different types of
kidney diseases may also interact and progress. Here, the
characteristics of these kidney-related diseases are introduced.

2.1 Renal injury

Acute kidney injury (AKI) is a common clinical emergency
characterized by a rapid decline in renal function, which eventually
leads to acute renal failure (ARF) and other organ failures. The
etiology of AKI is complex and diverse and can be divided into
prerenal, renal, and postrenal according to the anatomical
location of the etiology. Prerenal AKI refers to a progressive
decrease in blood flow perfusion in the renal parenchyma due to
various causes, leading to a progressive decrease in the glomerular
filtration rate (GFR). Renal AKI refers to renal parenchymal
damage caused by a variety of factors, including the unrelieved
renal ischemia of pre-renal AKI and damage to glomeruli, renal
tubules, renal interstitium, and renal microvessels. Postrenal AKI
refers to urinary tract obstruction caused by many factors and can
be generally divided into intrarenal, extrarenal, and urethral
obstruction (Chen and Guo, 2019). In recent years, the
incidence of AKI has been increasing, and the incidence in
hospitalized patients which has reached 1%–5%, has been
growing rapidly. Once AKI occurs, the fatality rate of patients
increases significantly, and the death rate of severe cases is >50%
(Weiyun, et al. 2019).

Chronic kidney disease (CKD) is a disease of chronic renal
insufficiency caused by various primary or secondary causes of
renal injury and is characterized by chronic glomerular and renal
tubule injury. CKD is defined as persistent urinary abnormalities,
structural abnormalities, or impaired renal function, suggesting loss of
functional nephrons (Romagnani et al. 2017; Diwan et al. 2018). The
basic clinical manifestations of CKD include proteinuria, hematuria,
hypertension, and edema. CKD pathogenesis mainly involves immune
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responses, cytokines, inflammatory mediators, and hemodynamic
abnormalities.

Previously, it was believed that the kidney had a strong
compensatory capacity, and the renal function of patients with AKI
could recover better. However, recent studies have confirmed that the
renal function of a considerable number of AKI patients that cannot be
completely recovered, may even require long-term renal replacement
therapy, eventually progressing to CKD or ESRD (Lo et al. 2009;
Chawla et al. 2014). The important pathogenic mechanisms of AKI
progression to CKD include glomerular hyperfiltration and
hypertrophy, mitochondrial dysfunction (Zhan et al. 2013), cell
infiltration and secretion of bioactive molecules (Venkatachalam
et al. 2010), reduction in renal capillary density, and
tubulointerstitial fibrosis (Chawla and Kimmel, 2012). Cytokines
such as ET-1 (López-Farré, Gómez-Garre, et al. 1991), TGF- β
(Gentle, et al. 2013), serum galectin-3 (Calvier, et al. 2013), and
HIF (Nangaku, et al. 2013), play a role in these pathways.

Some chemotherapeutic drugs and chemical reagents for diagnosis
and treatment may lead to drug-induced AKI. As a highly effective and

broad-spectrum anticancer drug, the renal transport of cisplatin
(CDDP) is regulated by proximal tubular transporters, which
accumulate in proximal tubular epithelial cells, causing
inflammation, injury, and cell death. More than a third of the
patients receiving CDDP treatment suffer from nephrotoxicity,
manifested as AKI, loss of serum sodium and magnesium, and
dysfunction of the urine concentration (Miller, et al. 2010). AKI is
the main complication of CDDP-induced nephrotoxicity.

2.2 Nephritis

In a narrow sense, nephritis refers to glomerulonephritis, which is
generally referred to as nephritis in clinical practice. Broadly, nephritis
includes pyelonephritis, glomerulonephritis (GN), and
tubulointerstitial nephritis. Pyelonephritis is an inflammation of the
renal pelvis and renal parenchyma caused by pathogenic
microorganisms and is often accompanied by lower urinary tract
infections. Glomerulonephritis, a disease caused by an immune

FIGURE 1
Kidney related diseases, including renal injury, renal fibrosis (RF), nephritis, and diabetic nephropathy (DN). The possible mechanisms and development
trends of these diseases are listed in the figure.
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reaction, is commonly referred to as nephritis and is mainly located in
the glomerulus. Interstitial nephritis, also known as tubulointerstitial
nephritis, is a clinical-pathological syndrome of acute and chronic
renal tubulointerstitial damage caused by various factors.

Anti-glomerular basement membrane (GBM) nephritis is an
autoimmune disease associated with the GBM antibody (Lahmer
and Heemann, 2012). Nephritis belongs to type one rapidly
progressive glomerulonephritis, the pathological classification of
which is crescentic nephritis. Most patients have an acute onset,
rapid progression, and poor prognosis (Fernandes, et al. 2016).
Most untreated patients die of acute renal failure or pulmonary
hemorrhage. The onset of the disease is characterized by rapid
progressive nephritis syndrome.

Lupus nephritis (LN) is an immune injury caused by systemic
lupus erythematosus (SLE) in different pathological kidney types.
The clinical manifestations of LN are mostly similar to those of
nephrotic syndrome or chronic glomerulonephritis, with edema,
hematuria, proteinuria, hypertension, fever, rash, and other
symptoms (Yung et al. 2017; Lin et al. 2019). LN is one of the
main complications and lethal factors of SLE. LN pathogenesis
mainly includes immune complex lesions (Anders and Fogo, 2014)
and epigenetic abnormalities (Dieker, et al. 2007). In addition,
abnormalities in the complement system (Hristova and Stoyanova,
2017), sexual hormone disorders (Feng, et al. 2010), and
environmental effects are also related to the occurrence and
development of LN.

2.3 Renal fibrosis

Renal fibrosis (RF) is a pathological result of long-term or repeated
renal injury caused by single or multiple factors, the main pathological
feature of which is excessive deposition of the extracellular matrix. The
microscopic manifestation of RF is fibrosis of intrinsic renal cells,
which is essentially the necrosis of intrinsic renal cells due to damage
(Ke, et al. 2015). RF is the terminal stage of several chronic kidney
diseases. It is a pathological process characterized by leukocyte
infiltration, apoptosis, necrosis of renal tubular cells, the
proliferation of tubulointerstitial fibroblasts, and deposition of
extracellular matrix (Liu, 2010). Studies have shown that in
addition to epithelial damage, the mechanism of RF is related to
growth factors, such as transforming growth factor β (TGF-β) (Liu
2006), platelet-derived growth factor (Ostendorf, et al. 2014),
connective tissue growth factor (Burns, et al. 2006), and epidermal
growth factor (Stangou, et al. 2009). Renal fibrosis can be divided into
two stages depending on the extent of damage to the intrinsic cells of
the kidney and whether they can be repaired namely the reversible
stage of fibrosis formation and progression, and the scar formation
stage. The treatment of the first stage is of great significance for the
rehabilitation of kidney disease and reversal of renal failure, which
should be urgently addressed by doctors and patients. In the second
stage, although it is possible to prevent the progression of renal
fibrosis, it is difficult to repair scarred renal tissue (Humphreys, 2018).

2.4 Diabetic nephropathy

More than 30% of patients with diabetes suffer from DN, which is
the main cause of morbidity and mortality. DN is characterized by

early microalbuminuria, which gradually develops into massive
albuminuria and progressive renal insufficiency, and finally forms
ESRD. Unfortunately, once ESRD develops, the 5-year survival rate of
patients is usually less than 20% (Natesan and Kim, 2021). The main
pathological features of DN include glomerulosclerosis,
tubulointerstitial fibrosis, and renal vascular disease. The
pathogenic factors and pathogenesis are complex and include
metabolic disorder (Xu, et al. 2018; Chen, et al. 2020), genetic
factors (Wu, et al. 2021a), oxidative stress (Stehouwer, 2004; Sagoo
and Gnudi, 2018), and inflammatory mechanisms (Wada and
Makino, 2013), etc.

3 Application of ginsenosides in kidney
related diseases

Ginsenosides are usually composed of 30 carbon atoms, with a
4-ring steroid structure and a sugar group. The history of
separating ginsenosides from plants (e.g., ginseng, Panax
notoginseng, American ginseng) can be traced back to 1854.
More than 100 types of ginsenosides have been identified and
successfully classified (Shin, et al. 2015). Each ginsenoside has at
least two (C-3 and C-20) or three (C-3, C-6, and C-20) hydroxyl
groups, which are free or linked to monomers, disaccharides, or
trimers in most cases (Shin and Oh, 2016). The variety of
ginsenosides is due to the different positions and the number
of glycosyl groups connected by triterpene saponins,
stereoisomerism of ginsenosides, and variable side chains at
the C-20 position. Furthermore, it has created a variety of
active ingredients, including anti-cancer, anti-diabetes, anti-
fatigue, anti-aging, liver protection, and for kidney protection
(Yenisetti et al. 2016). According to the position of the sugar
group at C-3 and C-6, ginsenosides are divided into three
categories: protopanaxadiol (PPD)-type saponins,
protopanaxatriol (PPT)-type saponins, and oleanolic acid-type
saponins (others) (Qu, et al. 2009), as shown in Figure 2.
Ginsenosides with a high content of ginseng, such as Re, Rg1,
Rd, and Rb1, contain many sugar residues, which makes it
impossible or difficult to be directly absorbed and utilized by
the human body after ingestion. These ginsenosides usually need
to be metabolized and converted into smaller molecules before
being absorbed by the human body, which greatly affects their
biological activities. After chemical or biological transformation,
the main ginsenosides can be metabolized into rare ginsenosides
such as Rg3, Rk1, Rg5, CK, Rk3, and Rh4. These rare saponins
show higher pharmacological activity owing to the reduction of
sugar residues linked to their molecular structure, increased
hydrophobicity, and enhanced cellular penetration. In
addition, a variety of ginsenosides have been shown to exert
anti-cancer, anti-diabetic, anti-fatigue, anti-aging,
hepatoprotective and renoprotective effects (Yenisetti et al.
2016). Numerous studies have shown that ginsenosides can
protect the kidneys from damage through different pathways.
For example, Ginsenoside Rb1 can treat acute kidney injury by
activating the Nrf2/ARE pathway (Sun et al. 2012). The
mechanisms of ginsenosides to alleviate renal diseases by
improving glucolipid metabolism, inhibiting oxidative stress,
anti-inflammation, anti-apoptosis, regulating autophagy, and
anti-fibrosis are highlighted here, as shown in Table 1.
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3.1 PPD type ginsenosides

The PPD type ginsenoside uses PPD as an aglycone. Generally,
ginsenosides are divided into two configurations: 20 S)—PPD and
20 R)—PPD, according to the substitution of C-3 or C-20 hydroxyl
groups of aglycones by different sugar groups. The structural formulas
of common PPD-type ginsenosides are shown in Figure 1. The PPD
ginsenoside group has been shown to have significant pharmacological
activities, including ginsenosides Rb1, Rb2, Rb3, RC, Rg3, Rh2, Rd,
and CK (Table 2). PPD has good biological activities such as
antioxidant and anti-inflammatory (Yang et al. 2019). Several
studies have reported the nephroprotective effects of PPD and
related mechanisms.

3.1.1 Ginsenoside Rb1
Ginsenoside Rb1 is one of the main active monomers of ginseng

and has the ability to scavenge oxygen free radicals and thus has
antioxidant activity. Ginsenoside Rb1 has been shown to inhibit renal

ischemia-reperfusion injury and interstitial fibrosis and reduce renal
cell apoptosis and oxidative damage. For instance, ginsenoside
Rb1 upregulates Nrf2 and heme oxygenase-1 (HO-1) by activating
the nuclear factor-related factor 2 (Nrf2)/ARE pathway, which in turn
attenuates acute kidney injury caused by intestinal ischemia-
reperfusion (Sun et al. 2012). In addition, the possible protective
effects and mechanisms of ginsenoside Rb1 on oxidative damage and
renal interstitial fibrosis in rats with unilateral ureteral obstruction
(UUO) have been widely studied. Fan et al. found that ginsenoside
Rb1 significantly inhibited renal interstitial fibrosis in UUO rats by
down-regulating TGF-β1 (Xie et al. 2009) expression or ihibiting Bip/
eIF2α/CHOP signaling-mediated EMT (Ni et al. 2022). There are
reports that ginsenoside Rb1 treats acute kidney injury by activating
the Nrf2/ARE pathway which acts against oxidative stress (Sun et al.
2012). Ginsenoside Rb1 can further prevent autophagy by inhibiting
the Wnt/β-catenin pathway (Xu, et al. 2017) or by regulating Akt-
independent (cell proliferation and survival) and AMPK-dependent
mTOR signaling-involved in cell survival under energy stress (Zhou

FIGURE 2
Chemical structures of ginsenosides with renal function protection. The chemical structures of the ginsenosides included in this publication were drawn
using the ChemDraw program.
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TABLE 1 The mechanism of action of various ginsenosides on different kidney related diseases.

Type Ginsenosides Nephropathy Mechanism of drug action References

PPD Rb1 AKI Activating the Nrf2/ARE pathway Sun et al. (2012)

CKD Reducing oxidative stress and inflammation Zhang et al. (2022)

CKD Inhibiting the Wnt/β-catenin pathway Xu et al. (2017)

CKD Regulation of Akt-independent and AMPK-dependent mTOR
signaling to inhibit autophagy

Zhou et al. (2019)

RF Downregulation of TGF-β1 expression Xie et al. (2009)

RF Inhibiting Bip/eIF2α/CHOP signaling-mediated EMT Ni et al. (2022)

Type 2 DN Regulating the expression of miR-3550 and further combining with
Wnt/β-catenin signaling

Shao et al. (2019)

Type 2 DN Inhibiting aldose reductase activity He et al. (2022a)

Rb3 cisplatin-induced AKI Regulating AMPK-/mTOR-mediated autophagy and inhibiting
apoptosis

Xing et al. (2019)

cisplatin-induced AKI TGF-β-mediated mitochondrial apoptosis Wu et al. (2021a)

Rg3 D-galactose induced AKI Inhibiting the renal oxidative stress caused by D-galactose, and at
the same time activated the PI3K/AKT signaling pathway to

attenuate the apoptosis of liver and kidney cells

Sun et al. (2013)

LPS-induced AKI Reducing the expression of NF-kB and iNOS proteins, and reduced
the expression of COX-2 and HO-1 proteins

Kang et al. (2007)

cisplatin-induced AKI Regulation of PI3K/AKT and NF-κB-mediated apoptosis and
inflammatory pathways

Zhang et al. (2021)

cisplatin-induced AKI Inhibiting NLRP3 by inhibiting apoptosis and autophagy Zhai et al. (2021)

cisplatin-induced AKI Blocking the JNK-p53-caspase-3 signaling cascade Han et al. (2016)

cisplatin-induced AKI Regulating inflammation and apoptosis Park et al. (2015)

Type 2 DN Regulation of MAPK/NF-κB signaling pathway Li et al. (2021)

Type 2 DN Inhibit inflammation Zhou et al. (2020)

Type 2 DN Inhibiting oxidative stress and advanced glycation end product
formation

Kang et al. (2010b)

kidney cancer Blockade of TRPM7 channel activity Kim et al. (2011)

Rd cisplatin-induced AKI Inhibiting free radical-mediated lipid peroxidation while inhibiting
apoptosis

Yokozawa and Dong (2001)

cisplatin-induced AKI Inhibition of lipid peroxidation by free radicals Yokozawa and Liu (2000)

kidney cancer Inhibiting TRPM7 channel activity Kim et al. (2013)

Rh2 cisplatin-induced AKI Acting on a caspase-mediated pathway Qi et al. (2019)

Type 2 DN Down-regulating discoid domain receptor 1 Shen et al. (2021)

CK Primary GN Enhancing autophagy induction by inhibiting
NLRP3 inflammasome activation in kidney tissue, macrophages,

and bone marrow-derived dendritic cells, increasing
SIRT1 expression, and triggering autophagy-mediated

NLRP3 inflammasome inhibition

Wu et al. (2020)

TIN Inhibiting NLRP3 inflammasome initiation and mitochondria-
related activation signaling in tubulointerstitial lesions

Hsu et al. (2020)

Type 2 DN Inhibiting NLRP3 inflammasome activation and NF-κB/
p38 signaling pathway in diabetic nephropathy in high-fat diet/

streptozotocin-induced diabetic mice

Song et al. (2018)

Type 2 DN Enhancing antioxidant capacity, reduced the damage of TGF-β1 to
renal tissue

Shao et al. (2015)

CK kidney cancer Regulating ROS and LNRNA THOR Chen et al. (2021)

(Continued on following page)
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et al. 2019), thereby reducing oxidative stress and inflammation in
patients with CKD (Zhang, et al. 2022). In detail, ginsenoside
Rg1 treatment significantly reduced ROS production and
inhibited NOX4 and NLRP3 inflammatory vesicle activation,
which in turn ameliorated LPS-induced chronic kidney injury
and renal fibrosis (Zhang et al. 2022). Rb1 can also inhibit the
Wnt/β-linked protein pathway by activating peroxisome
proliferator-activated receptor γ (PPAR-γ) to exert anti-
calcium properties and thus improve the symptoms of CKD. In
recent years, studies have found that ginsenoside Rb1 can regulate
Type two diabetic nephropathy by regulating the expression of
miR-3550 and further combining with Wnt/β-catenin signaling
(Shao et al. 2019) or inhibiting aldose reductase activity (He et al.
2022b).

3.1.2 Ginsenoside Rb3
Ginsenoside Rb3, which is one of the main pharmacologically

active ingredients, mainly exists in the roots, flower buds, stems, and
leaves of Panax ginseng; the roots, stems, and leaves of Panax
quinquefolium; and the stems and leaves of Panax notoginseng.
According to reports, ginsenoside Rb3 can regulate cisplatin-
induced AKI by regulating AMPK/mTOR-mediated autophagy and
inhibiting apoptosis in vitro and in vivo (Xing et al. 2019). Among
them, Li et al. demonstrated for the first time the protective effect and
potential mechanism of ginsenoside Rb3 on cisplatin-induced renal
failure, restoring the antioxidant system by regulating the AMPK/
mTOR signaling pathway, and inhibiting proximal tubular damage by
inhibiting ROS-mediated apoptosis and autophagy. Some evidence
suggests that the TGF-β pathway may lead to cisplatin-induced

TABLE 1 (Continued) The mechanism of action of various ginsenosides on different kidney related diseases.

Type Ginsenosides Nephropathy Mechanism of drug action References

PPT Rg1 AKI Inhibition of sideroporosis in renal TEC by FSP1 Guo et al. (2022)

D-galactose induced AKI Preventing DNA damage by attenuating oxidative stress Fan et al. (2016)

CKD Inhibiting NOX4-NLRP3 signaling in mice Liu (2010)

Anti-GBM RPGN Increasing renal blood flow Hattori et al. (1991)

Anti-GBM RPGN Activating NRF2 signaling Guo et al. (2019)

RF Downregulation of TGF-β1 expression Xie et al. (2008a)

RF Blocking TEMT by inhibiting the expression of TSP-1, thereby
inhibiting the activation of TGF-β1

Xie et al. (2008b)

RF Inhibiting endoplasmic reticulum stress-induced apoptosis in rats
after unilateral ureteral obstruction

Li et al. (2015)

RF Inhibiting TGF-β1-induced transdifferentiation of rat renal tubular
epithelial cells

Xie et al. (2008c)

RF Inhibiting NOX4 and NLRP3 inflammasome activation in
SAMP8 mice

Shen et al. (2020)

RF Regulating Klotho/TGF-β1/Smad signaling pathway Li et al. (2018)

Type 2 DN Regulating the PI3K/AKT/FOXO3 pathway Liu et al. (2021)

Type 2 DN Reducing the expression of TGF-β1 and the already mentioned
inflammatory response factors in renal tissue

Ma et al. (2010)

Type 2 DN Reducing the expressions of TNF-α and MCP-1 Zhang et al. (2009)

Type 2 DN Reducing oxidative stress and inhibits TGF-β1/Smads signaling
cascade in renal fibrosis in diabetic nephropathy rats

Du et al. (2018)

Rg2 and Rh1 AKI Blockade of LPS-TLR4 signaling reduced p38-STAT1 activation and
NF-κB translocation, which in turn suppressed the transcription of
inflammatory cytokines and mediators such as IFN-β, TNF-α, IL-

1β, and iNOS

Huynh et al. (2020)

Rh1 Type 2 DN Regulation of AMPK/PI3K/Akt-mediated inflammatory and
apoptosis signaling pathways

Su et al. (2021)

Others Rg5 cisplatin-induced AKI Inhibiting inflammation, oxidative stress and apoptosis Li et al. (2016)

cisplatin-induced AKI Regulating inflammation and apoptosis Park et al. (2015)

Type 2 DN Inhibiting NLRP3 inflammasome activation and MAPK signaling
pathway in high-fat diet/streptzotocin-induced diabetic mice

Zhu et al. (2020)

Rh3 kidney cancer Inhibition of the JNK and ERK mitogen-activated protein kinase
signaling cascades

Lee and Kang (2017)

Rh4 and Rk3 cisplatin-induced AKI anti-oxidation Baek et al. (2006)
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nephrotoxicity, and ginsenoside Rb3 can have a protective effect on
nephrotoxicity in the treatment of oral cancer with CPT through
TGF-β pathway-mediated mitochondrial apoptosis (Wu et al.
2021b).

3.1.3 Ginsenoside Rd
Ginsenoside Rd is a rare type of saponin. The content of Rd in

ginseng is very low, while that in Panax notoginseng is approximately
0.36%–1.47%, which is higher than that in ginseng. Intestinal enzymes
can metabolize Rb1 with high content into Rd; therefore, Rd is one of
the important forms of saponins that are absorbed and utilized by the
intestine after metabolism. Recent studies have found that ginsenoside
Rd has strong biological activity, especially protective effects on the
kidneys. For example, ginsenosides-Rd eliminate the damaging effects
of oxidative stress on the kidneys by inhibiting free radical lipid
peroxidation (Yokozawa and Liu 2000). Moreover, ginsenoside Rd
can regulate cisplatin-induced AKI by inhibiting free radical-mediated
lipid peroxidation while inhibiting apoptosis (Yokozawa and Dong
2001). In the research of exploring new anti-kidney cancer drugs,
ginsenoside Rd has played an important role. Studies have said that
ginsenoside Rd can regulate kidney cancer by inhibiting
TRPM7 channel activity (Kim 2013).

3.1.4 Ginsenoside Rg3
Ginsenoside Rg3 is one of the main active substances in ginseng

and has extensive pharmacological effects. With the new foci of the
research, Rg3 was found to have anti-tumor effects (Sin et al. 2012;
Ding et al. 2015), reducing the cardiotoxicity and nephrotoxicity of
chemotherapy drugs (Han et al. 2016), and anti-cicatricial (Tang et al.
2018). Through literature reading, we find that there is a growing
number of studies focusing on ginsenoside Rg3 to improve acute
kidney injury. For example, Rg3 can regulate D-galactose-induced

AKI by inhibiting the renal oxidative stress caused by d-galactose and
simultaneously activating the PI3K/AKT signaling pathway to
attenuate the apoptosis of liver and kidney cells (Sun, et al. 2013).
Rg3 can regulate LPS-induced AKI by reducing the expression of NF-
kB and iNOS proteins and reducing the expression of COX-2 and HO-
1 proteins (Kang, et al. 2007). Numerous studies have also shown that
ginsenoside Rg3 can improve cisplatin-induced AKI by modulating
multiple pathways. In details, ginsenosides Rg3 can regulate cisplatin-
induced AKI by regulating PI3K/AKT and NF-κB-mediated apoptosis
and inflammatory pathways (Zhang et al. 2021). Ginsenosides
Rg3 also reduces cisplatin-induced AKI by inhibiting apoptosis and
autophagy to suppress NLRP3 (Zhai et al. 2021) and blocking the JNK-
p53-cysteine asparticase-3 signaling cascade (Han et al. 2016). In
addition, Rg3 can also regulate type 2 diabetic nephropathy mainly
focusing on pathways that regulate MAPK/NF-κB signaling pathway
(Li et al. 2021), inhibit inflammation and oxidative stress response
(Zhou et al. 2020) and late glycosylation end product formation (Kang
et al. 2010b). There have also been recent studies that Rg3 can regulate
kidney cancer by blockading of TRPM7 channel activity (Kim et al.
2011).

3.1.5 Ginsenoside Rh2
Ginsenoside Rh2 is a rare saponin found in Panax ginseng.

Rh2 was first found in red ginseng and was later isolated from
American ginseng, Panax notoginseng, and other plants. Rh2 can
regulate the immune, central nervous, endocrine, and cardiovascular
systems, etc., and has anti-tumor, anti-allergy, anti-depression, anti-
aging, and improved myocardial ischemic effects. Ginsenoside
Rh2 regulates cisplatin-induced AKI by acting on a caspase-
mediated pathway (Qi, et al. 2019). Rh2 regulates type two diabetic
nephropathy by downregulating discoid domain receptor 1 (Shen,
et al. 2021).

TABLE 2 Pharmacological activity of PPD type ginsenosides.

Ginsenoside Activity References

Rb1 Neuroprotective, antioxidant, estrogen-like effects Lee et al. (2003a)

Park et al. (2005)

Rb2 Inhibition of tumor metastasis Fujimoto et al. (2001)

Rb3 Antioxidative Liu et al. (2002)

Liu et al. (2003)

RC Enhance immunity, anti-inflammatory effect Berek et al. (2001)

Surh et al. (2002)

Rg3 Anti-tumor, nerve protection, blood vessel protection, anti-platelet aggregation Popovich and Kitts (2002)

Keum et al. (2003)

Rd Enhance immunity, antioxidant, protect cardiovascular and cerebrovascular Berek et al. (2001)

Liu et al. (2002)

Liu et al. (2003)

Rh2 Antitumor Bae et al. (2004)

Kim and Jin (2004)

CK Anti - heritable virus effect, anti—tumor Lee et al. (1998)

Lee et al. (2005)
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3.1.6 Ginsenoside CK(M1)
Ginsenoside CK does not exist in natural ginseng but is a metabolite

produced by diol-type ginsenosides (such as Rb1, Rb2, and Rc) under the
action of intestinal flora after oral administration (Chen, et al. 2015). CK is
one of the main components of ginsenosides that play a role in the body
with high biological activity, including inhibition of T Cells (Kang, et al.
2010a), promotion of tumor cell apoptosis (Cho, et al. 2009), anti-
inflammation (Joh et al. 2011) and protection of the myocardium
(Tsutsumi, et al. 2011). Ginsenoside CK can modulate primary
glomerulonephritis by inhibiting NLRP3 inflammasome activation in
renal tissue, macrophages, and bone marrow-derived dendritic cells,
increasing SIRT1 expression, and triggering autophagy-mediated
inhibition of NLRP3 inflammable bodies (Wu, et al. 2020).
Ginsenoside CK can regulate tubulointerstitial nephritis by inhibiting
NLRP3 inflammasome initiation and mitochondria-related activation
signaling in tubulointerstitial lesions (Hsu, et al. 2020). Ginsenoside
CK can regulate type two DN by inhibiting NLRP3 inflammasome
activation and the NF-κB/p38 signaling pathway in DN in high-fat
diet/streptozotocin-induced diabetic mice (Song, et al. 2018) enhancing
antioxidant capacity, and reducing the damage of TGF-β1 in renal tissue
(Shao, et al. 2015). Ginsenoside CK regulates kidney cancer by regulating
reactive oxygen species (ROS) and Testis-associated highly conserved
oncogenic long-stranded non-coding RNA (LNRNATHOR) (Chen, et al.
2021). Ginsenoside M1 can regulate acute severe lupus nephritis by
inhibiting NLRP3 inflammasome activation and differentially
regulating T-cell function (Lin, et al. 2019).

3.2 PPT type ginsenosides

PPT-type ginsenosides take protopanaxatriol as an aglycone.
Generally, ginsenosides are divided into two configurations: 20 S)—
PPT and 20 R)—PPT, according to the substitution of C-6 or C-20
hydroxyl groups of aglycones by different sugar groups. The structural
formulae of common PPT-type ginsenosides are shown in Figure 1. The
PPT ginsenoside group has been shown to have significant
pharmacological activities, mainly Re, Rg1, Rg2, and Rh1, as shown in
Table 3.

3.2.1 Ginsenoside Rg1
Among all the PPT saponins, ginsenoside Rg1 ranks second only to

ginsenoside Re. In addition, studies have shown that the ginsenoside
Rg1 content in Panax notoginseng is high (Rg1 accounts for 20% of the
total saponins of Panax notoginseng, and Re is only 2.5%), and thus has
great development value (Yang, et al. 2015). Rg1 has many functions
including anti-aging, anti-oxidation, and improved immunity and
memory (monakhov, Baisong et al. 2018). Ginsenoside Rg1 can

regulate D-galactose-induced AKI by preventing DNA damage by
attenuating oxidative stress (Fan, et al. 2016). Rg1 can regulate CKD
by inhibiting NOX4-NLRP3 inflammazone signaling pathways in mice
(Liu, et al. 2010). Rg1 can regulate anti-GBM GN, a rare autoimmune
disease, by increasing renal blood flow (Hattori, et al. 1991) and activating
NRF2 signaling (Guo, et al. 2019). Ginsenoside Rg1 can inhibit the
development of renal fibrosis bymodulating various pathways, such as the
downregulation of protein TGF-β1 expression (Xie, et al. 2008a), blocking
TEMT by inhibiting the expression of TSP-1 (Xie et al. 2008b), thereby
inhibiting the activation of TGF-β1 (Li, et al. 2015), inhibiting
endoplasmic reticulum stress-induced apoptosis in rats after unilateral
ureteral obstruction (Xie et al. 2008c), inhibiting TGF-β1-induced
transdifferentiation of rat renal tubular epithelial cells (Shen, et al.
2020), inhibiting NOX4 and NLRP3 inflammasome activation in
SAMP8 mice, and regulating the Klotho/TGF-β1/Smad signaling
pathway (Li et al. 2018). Ginsenoside Rg1 can inhibit the development
of type 2 DN by regulating the PI3K/AKT/FOXO3 pathway (Liu, et al.
2021), reducing the expression of TGF-β1 and the already mentioned
inflammatory response factors in renal tissue (Ma et al. 2010), and
reducing the expression of TNF-α and MCP-1 (Zhang, et al. 2009).
The combination of Rg1 and Astragalus IV can reduce oxidative stress
and inhibit the TGF-β1/Smad signaling cascade in renal fibrosis in rats
with DN (Du, et al. 2018).

3.2.2 Ginsenoside Rg2 and Rh1
Rg2 is an intermediate product of ginsenoside Re metabolism in vivo.

Rg2 has many biological activities, such as affecting the sensitivity of the
opposite nerve cell process receptors, promoting intercellular
communication, and reducing the neural activity caused by electricity
in the rat hippocampus (Sala, et al. 2002). Ginsenoside Rg2 and Rh1 can
regulate AKI by blocking LPS-TLR4 signaling, which reduces p38-STAT1
activation and NF-κB translocation, which in turn suppresses the
transcription of inflammatory cytokines and mediators, such as IFN-β,
TNF-α, IL-1β, and iNOS (Huynh, et al. 2020).

3.2.3 Ginsenoside Rh1
Ginsenoside Rh1 is a rare saponin found in red ginseng, Panax

notoginseng, and American ginseng in trace (Jeon, et al. 2020).
Because of its remarkable immunoregulatory activity, Rh1 has high
medicinal value in the treatment of many senile diseases (Tam, et al.
2018). In addition, Rh1 can inhibit inflammatory reaction (Vinh et al.
2017), regulate abnormal immune responses in hypersensitive disease
(Han and Kim, 2020), and inhibit tumor cell proliferation (Yi, 2019).
Ginsenoside Rh1 can regulate type two DN by regulating oxidative
stress, angiotensin II (Ang-II), and inflammatory processes, as well as
AMPK/PI3K/Akt-mediated inflammatory and apoptosis signaling
pathways (Su, et al. 2021).

TABLE 3 Pharmacological activity of PPT type ginsenosides.

Ginsenoside Activity References

Re Inhibits proliferation and protects nerves Cai et al. (2022)

Rg1 Neuroprotective effect, induction of apoptosis, estrogen-like effect Chan et al. (2002)

Rg2 Protection of central and peripheral nervous system Sala et al. (2002)

Rh1 Boost immunity, estrogen-like, inhibit proliferation Popovich and Kitts (2002)

Lee et al. (2003b)
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3.3 Other ginsenosides

Other types of ginsenosides include dammarane-type tetracyclic
triterpenoids. Some of these saponins are isolated from ginseng with
very little content, whereas others are obtained after chemical
treatment. Compared with the original PPD- and PPT-type
ginsenosides, only the skeleton of aglycone or the side chain of the
parent nucleus was partially changed.

3.3.1 Ginsenoside Rg5
Ginsenoside Rg5 is a derivative of ginsenoside, one of the main

components of red ginseng (Kim, et al. 1996). Rg5 is a secondary
saponin obtained from PPD-type saponins (Rb1, Rb2, Rb3, Rc, and
Rd) via regioselective hydrolysis and stereoselective dehydration (Lee,
et al. 2009). In animal and human clinical trials, Rg5 not only has
significant effects in improving lung inflammation (Kim et al. 2012)
and improving memory (Yao et al. 2014), anti-cancer (Liang et al.
2015), but also reduces cisplatin induced nephrotoxicity (Li et al.
2016). Ginsenoside Rh3 can regulate cisplatin-induced AKI by
inhibiting inflammation, oxidative stress, and apoptosis (Li et al.
2016). Ginsenoside Rh3 can inhibit the development of type two
diabetic nephropathy by inhibiting NLRP3 inflammasome activation
and the MAPK signaling pathway in high-fat diet/streptozotocin-
induced diabetic mice (Zhu, et al. 2020).

3.3.2 Ginsenoside Rh3
Ginsenoside Rh3 is a metabolite of ginsenoside Rg5 in the human

body (Kim et al. 2013), but it has better effects on various
pharmacological activities than Rg5 (Shin et al. 2006). Ginsenoside
Rh3 can regulate cisplatin-induced AKI by inhibiting JNK and ERK
mitogen-activated protein kinase signaling cascades (Lee and Kang,
2017).

3.3.3 Ginsenoside Rg3, Rg5 and Rk1
Black ginseng, a new processed product of ginseng, has a unique

processing method (Gao, et al. 2017). Black ginseng contains rare
saponins that are different from ginseng and red ginseng, and its
representative active components are Rg3, Rg5, and Rk1 (Gao, et al.
2017). As a tetracyclic triterpene discovered in recent years, Rk1 has
attracted much attention because of its biological activities, such as
antitumor, blood glucose regulation, and nervous system
protection (Gao, et al. 2017). Ginsenoside Rk1 regulates
cisplatin-induced AKI by regulating inflammation and apoptosis
(Park, et al. 2015).

3.3.4 Ginsenoside Rh4 and Rk3
Ginsenoside Rk3/Rh4 comprises a pair of isomers, which are

obtained by removing a sugar group from ginsenoside Rg1 and
converting it to Rh1, and then removing a water molecule at
C20 position from Rh1. Ginsenoside Rh4 and Rk3 can
regulate cisplatin-induced AKI by inhibiting oxidation (Baek,
et al. 2006).

4 Prospect and conclusion

Nowadays, kidney-related diseases have become common
worldwide, such as diabetic nephropathy, chronic kidney
disease, acute kidney disease, and hypertensive nephropathy.

The causes of kidney diseases are complex, and since the
pathogenesis of most kidney diseases is not fully understood, the
treatment of kidney diseases is mostly empirical and lacks etiologic
treatment tools (Liu and Xiao 1992). At the same time, many drugs
that protect the kidney have been widely used, but some of them
have strong adverse effects. For this reason, monomeric
components derived from traditional Chinese herbal medicines
have received much attention as effective and safe alternative drugs
for kidney diseases. Currently, ginsenosides as natural drugs have
been widely approved to exert therapeutic effects on kidney-related
drugs in vivo and in vitro. In the existing studies, we found that
ginsenosides for the treatment of nephropathy mainly focus on
mechanisms through the inhibition of inflammatory responses and
oxidative stress. Emerging reports suggest that ginsenosides can
have some binding activity to the glucocorticoid receptor and can
promote its nuclear translocation, while some ginsenosides can
exert anti-inflammatory effects by inhibiting the activity of NF-κB.
Recent findings have confirmed that NF-κB is closely associated
with foot cell injury. This shows that NF-κB pathway is a hot
pathway for kidney disease research. Current research mainly
focuses on ginsenosides, with little research on other
components such as ginsenosides polysaccharides, which should
be more widely explored in depth. The efficacy of ginsenosides in
the treatment of kidney disease has become clear, and in the future,
in-depth research on ginsenosides in the treatment of kidney
disease can be conducted from multiple angles, levels and
directions to provide better treatment for patients.

In conclusion, the pathogenesis of several major kidney-related
diseases is discussed in this review. The mechanism of ginsenosides
in various types of nephropathy has been summarized, including
PPD and PPT types. Although ginsenosides have been studied in
nephropathy, their mechanism of action has not been fully
elucidated. The animal model of nephropathy was used as the
basis for further research and discussion of the pathogenesis and
mechanism of drug action. The establishment of animal models of
nephropathy should be consistent with the pathology and course of
kidney disease, which is a goal of researchers. Therefore, it is
necessary to further study other related effects of ginsenosides
on kidney-related diseases through appropriate animal models,
which are expected to develop new drugs for the clinical
treatment of drug-induced nephrotoxic diseases, diabetic
nephropathy, renal fibrosis, and other kidney diseases.
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