
Extracellular vesicles mediate
biological information delivery: A
double-edged sword in cardiac
remodeling after myocardial
infarction

Peipei Cheng1,2, Xinting Wang1,2, Qian Liu1,2, Tao Yang1,2,
Huiyan Qu2,3* and Hua Zhou1,2,3*
1Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang
Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2Branch of
National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to
Shanghai University of Traditional Chinese Medicine, Shanghai, China, 3Department of Cardiovascular
Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai,
China

Acute myocardial infarction (AMI) is a severe ischemic disease with high morbidity
and mortality worldwide. Maladaptive cardiac remodeling is a series of
abnormalities in cardiac structure and function that occurs following
myocardial infarction (MI). The pathophysiology of this process can be
separated into two distinct phases: the initial inflammatory response, and the
subsequent longer-term scar revision that includes the regression of
inflammation, neovascularization, and fibrotic scar formation. Extracellular
vesicles are nano-sized lipid bilayer vesicles released into the extracellular
environment by eukaryotic cells, containing bioinformatic transmitters which
are essential mediators of intercellular communication. EVs of different cellular
origins play an essential role in cardiac remodeling after myocardial infarction. In
this review, we first introduce the pathophysiology of post-infarction cardiac
remodeling, as well as the biogenesis, classification, delivery, and functions of EVs.
Then, we explore the dual role of these small molecule transmitters delivered by
EVs in post-infarction cardiac remodeling, including the double-edged sword of
pro-and anti-inflammation, and pro-and anti-fibrosis, which is significant for
post-infarction cardiac repair. Finally, we discuss the pharmacological and
engineered targeting of EVs for promoting heart repair after MI, thus revealing
the potential value of targeted modulation of EVs and its use as a drug delivery
vehicle in the therapeutic process of post-infarction cardiac remodeling.
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1 Introduction

Among the leading causes of death and disability worldwide are acute myocardial
infarction (AMI) and end-stage heart failure (HF), causing approximately 17 million deaths
annually and accounting for 30% of all deaths globally (Ong et al., 2018; Roth et al., 2020).
Coronary atherosclerosis underlies the development of myocardial infarction (MI), which
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contributes to vessel lumen narrowing and ultimately elicits
myocardial necrosis due to hypoxia/ischemia. Currently, the
primary goal of clinical treatment for such disease is to promptly
restore flow in the occluded vessel and restore the ischemic
myocardium, commonly performed by direct percutaneous
coronary intervention. Intriguingly, however, such interventions
can contribute to cardiomyocyte death and myocardial injury
(Schirone et al., 2022). Consequently, novel therapies and
interventions are urgently required to attenuate adverse
ventricular remodeling and mitigate HF.

The heart undergoes a series of structural and functional
alterations to adapt to cardiac injury induced by MI, which is
known as cardiac remodeling (Zhao et al., 2020). Specifically,
cardiac remodeling is a complex pathophysiological process,
including inflammation, mitochondria dysfunction, oxidative
stress, cardiac hypertrophy, and cardiac fibrosis. The entire
process can be divided into two stages, the inflammatory phase
and the fibrotic scar revision phase (Schirone et al., 2017; Liu H et al.,
2020). The initial phase involves the exposure of intracellular
contents into the extracellular environment due to cell necrosis,
called damage-associated molecular patterns (DAMPs), triggering
and exacerbating sterile inflammation. While the latter phase is
attributed to the transdifferentiation of fibroblasts into
myofibroblasts stimulated by multiple factors, including
inflammatory factors, angiotensin II, and mechanical stress
stimulation, which secrete collagen and facilitate scar repair in
the infarcted region and maintain the structural integrity of the
ventricle (Prabhu and Frangogiannis, 2016; Peet et al., 2020).

During cardiac remodeling, numerous immune cells
recruitment to the infarct area, interact with cardiac fibroblasts
(CFs) which crucially coordinates the balance between profibrotic
and antifibrotic effects (Zaidi et al., 2021). In the initial
inflammatory phase of AMI, the recruitment and activation of
immune cells, such as macrophages, neutrophils, and monocytes,
not only secrete inflammatory mediators to aggravate the
inflammation but also shift towards an anti-inflammatory
phenotype, which can prevent the release of their contents into
the extracellular environment by removing necrotic cellular debris
from the MI zone to attenuate inflammation (Ong et al., 2018;
Andreadou et al., 2019; Doran et al., 2020). Besides this, the crosstalk
between other diverse cells, including mesenchymal stem cells,
endothelial cells (ECs), and cardiomyocytes is also essential for
maintaining dynamic balance throughout the whole process.
Interestingly, however, these cells secrete large numbers of EVs,
which carry numerous bioactive substances, including miRNAs,
lipids, and proteins. The bioactive substances not only have
similar roles to parental cells but are also essential regulators of
intercellular communication (Xiong et al., 2021). In general, there
are three major subtypes of EVs, apoptotic bodies (ABs),
microvesicles (MVs), and exosomes (Sanchez-Alonso et al.,
2018), of which the most comprehensively explored are
exosomes. In contrast, the least well-studied are ABs.

This review summarizes the dual roles of EVs derived from
diverse cells in postinfarction cardiac remodeling, including pro-
inflammatory and anti-inflammatory effects in the initial
postinfarction inflammatory response and profibrotic and
antifibrotic effects in the scar repair phase. Importantly, we
discuss the role of crosstalk between these EVs in achieving a

coordinated dynamic balance between the inflammatory response
and the fibrotic process, which is significant for maladaptive cardiac
remodeling after MI. In parallel, we also discuss therapeutic
opportunities for targeting EVs that play a significant role in
post-infarction cardiac remodeling, including pharmacological
preconditioning and engineered modification. These elements will
be beneficial in expanding therapeutic strategies for post-infarction
cardiac remodeling.

2 Pathophysiological process of cardiac
remodeling after myocardial infarction

AMI results from myocardial blood flow obstruction due to
atherosclerotic plaque rupture or erosion (Ibanez et al., 2018). AMI
is currently treated mainly by revascularization procedures such as
thrombolysis and coronary intervention. However, recanalizing
occluded vessels under long-term ischemic conditions causes
additional myocardial damage, termed “I/R injury” (Yellon and
Hausenloy, 2007). Such a process is accompanied by a blockage of
blood flow, a sudden and dramatic interruption of oxygen and
nutrient supply in the blood, a short cessation of mitochondrial
oxidative phosphorylation (Frank et al., 2012), a dramatic decrease
in available intracellular adenosine triphosphate (ATP), and a
reduction in cardiomyocyte contractile function and cardiac
stiffness and contracture minutes after the onset of ischemia
(Jennings and Reimer, 1991). In the meantime, the myocardial
ischemic injury may contribute to substantial cardiomyocyte
death via different mechanisms. At the outset of reperfusion,
cytosolic calcium overload and massive reactive oxygen species
(ROS) generation rupture the mitochondrial membrane and
release the contents, which in turn activate the caspase-mediated
intrinsic pathway of apoptosis (Schirone et al., 2022). On the other
hand, phosphorylation of receptor-interacting protein kinase 3
(RIPK3) is recruited and activated by the receptor-interacting
protein kinase 1 (RIPK1), which in turn triggers necroptosis and
exacerbate the pathological process after MI (Rodriguez et al., 2016).

The large volume of dead and injured cardiomyocyte contents
(including heat shock proteins, organelle debris, and nuclear debris)
enter the interstitial matrix, namely, DAMPs (Frangogiannis, 2012;
Timmers et al., 2012). Simultaneously, innate immunity is triggered
when pattern recognition receptors (PRRs) on leukocytes recognize
DAMPs (Suetomi et al., 2019; Silvis et al., 2020). Immediately
afterwards, the Toll-like receptor signaling pathway and other
numerous inflammatory pathways are activated, thereby inducing
proinflammatory cytokine expression, including interleukin 6 (IL-
6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α), as
well as the expression of chemokines, including monocyte
chemotactic protein-1 (MCP-1/CCL2) (Frangogiannis, 2007).
Additionally, neutrophils and inflammatory monocytes recruited
by chemokine CCL2 activation are recruited to the infarcted heart
(Dewald et al., 2005; Ley et al., 2007). On the other hand, when
tissues are damaged, nuclear factor κB (NF-κB) is activated in ROS-
dependent way and increases the expression of specific cellular
genes, which can also eventually stimulate the growth of cells
associated with inflammation and immune responses and
exacerbate the inflammation even further (Kabe et al., 2005; Sun,
2009).
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Short-term inflammatory responses contribute to debris
removal, while long-term inflammation can facilitate extracellular
matrix degradation and cell death, resulting in infarct size
expansion. Consequently, timely resolution of the inflammation
is essential for maintaining post-infarction remodeling. At the
same time, apoptosis and clearance of neutrophils in the
infarcted area is a hallmark that inflammation is beginning to
subside (Frangogiannis, 2012; Westman et al., 2016; Ong et al.,
2018). As leukocyte infiltration removes dead cells and matrix debris
from the infarct and represses inflammatory mediator release, the
anti-inflammatory monocyte subsets become dominant
(Frangogiannis, 2008; Prabhu and Frangogiannis, 2016).
Furthermore, suppressive subsets of other immune cells like
lymphocytes, monocytes, and anti-inflammatory macrophages
can suppress inflammation in the infarcted heart. Macrophages,
in particular, play a crucial role in this process by shifting from a
pro-inflammatory to an anti-inflammatory phenotype (Yan et al.,
2013). In this way, the post-infarction pathological process moves
from the pro-inflammatory response phase to the anti-inflammatory
response phase, collectively referred to as the inflammatory response
phase (within 3–7 days after MI), and eventually to the scar repair
phase (7 days after MI) (Liu S et al., 2020).

In the cardiac tissue remodeling phase, fibroblast proliferation,
extracellular matrix secretion, and eventually fibrotic scar
maturation (Kologrivova et al., 2021). During the scar
proliferation phase, subpopulations of monocytes and
macrophages activate and recruit mesenchymal repair cells and
primarily fibroblast-like cells by secreting growth factors
(Frangogiannis, 2014). There is evidence that CFs originate from
circulating progenitor stem cells (PSCs) recruited into the
ventricular myocardium after birth and distribute throughout the
normal myocardium as strands and sheets between myocardial
muscle fibers and are critical effector cells in the scar repair
process (Visconti and Markwald, 2006). In the normal
physiological state, CFs account for 60%–70% of total cardiac cell
numbers (Porter and Turner, 2009). They secrete collagen, which
provides structural scaffolding for cardiomyocytes, coordinates
myocardial motion, and mediates the onset of electrical activity
(Bretherton et al., 2020). Under pathological conditions, fibroblasts
transdifferentiate into myofibroblasts (MFBs) in response to various
stimuli, including renin-angiotensin system activation,
mechanochemical signaling, and release of transforming growth
factor β (TGF-β), inflammatory factors (Frangogiannis, 2015; Han
et al., 2022).

MFBs possess characteristics of both fibroblasts and smooth
muscle cells, and secrete collagen to promote myocardial fibrosis.
Meanwhile, these cells are analogous to smooth muscle cell
contraction (as present in the vascular system), which can be
modulated by circulating factors and neurohormones, including
angiotensin II (van den Borne et al., 2010). Apoptosis of most repair
cells indicates the end of the proliferative phase, and as the
development of MI pathophysiology, the scar matures via a
steady increase in collagen cross-linking (Frangogiannis, 2012).
However, persistent MFBs differentiation and activation, as well
as extracellular matrix (ECM) deposition, contribute to a decreased
compliance of the myocardium (Umbarkar et al., 2021). On the
other hand, progressive decline in the delivery of oxygen and
nutrients induces atrophy and cell death in the cardiomyocytes,

contributing to progressive acute left ventricular dilatation and,
ultimately, dysfunction and heart failure (Gibb et al., 2020).
Thus, controlling the fibrosis process and achieving a dynamic
balance between pro-and anti-fibrosis are of great significance for
post-infarction repair. Given the complexity of post-infarction
cardiac remodeling, this review focuses on two significant
aspects: inflammatory response and fibrotic scar repair.

3 Biogenesis, sorting, delivery, and
outcome of extracellular vesicles

EVs are nanoscale lipid particles generated by the endosomal
system of eukaryotes and secreted into the extracellular environment
(Borges et al., 2013; van der Pol et al., 2014; Yanez-Mo et al., 2015;
Zaborowski et al., 2015). Currently, there is still no exact criteria on
the nomenclature of EVs. Various names are used, such as
exosomes, microparticles, MVs, ABs. Remarkably, the
nomenclature of “extracellular vesicles” proposed by Chistiakov
mainly used in this review (Chistiakov et al., 2015), which means
that EVs are typically categorized subsets by their size, formation,
marker proteins, release mechanisms, and lipid composition,
including three types of plasma membrane exfoliated vesicles:
exosomes (30–150 nm), MVs (1,000–1,000 nm), and ABs
(500–2,000 nm) (Liu H et al., 2021). Exosomes are phospholipid
bilayers membrane-enclosed vesicles (Pegtel and Gould, 2019),
which were initially discovered in sheep reticulocytes in 1983 and
then were named “exosomes” by Johnstone in 1987 (Pan and
Johnstone, 1983; Johnstone et al., 1987). Several studies have
indicated that the inward budding of the early endosomal
membrane forms early endosomes and then matures into late
endosomes which are often packed with small intraluminal
vesicles (ILVs) and evolve into multivesicular bodies (MVBs)
(Ohayon et al., 2021). After a series of intracellular transport, the
degradation of vesicles occurs when some MVBs fuse with
lysosomes. While other MVBs release ILVs such as exosomes
when fusing with the plasma membrane (Kowal et al., 2014;
Villarroya-Beltri et al., 2016). These exosomes can be detected in
diverse bodily fluids, such as breast milk, saliva, blood, urine
(Pisitkun et al., 2004; Caby et al., 2005; Admyre et al., 2007;
Palanisamy et al., 2010). Simultaneously, numerous studies
suggest that a broad range of cell types, including
cardiomyocytes, immune cells, progenitor cells, fibroblasts, and
stem cells can generate exosomes (Zitvogel et al., 1998; Doyle
and Wang, 2019).

MVs were first described by Peter Wolf in 1967 and are
generated by the outward budding of plasma membrane (Wolf,
1967), and they are also the result of dynamic interaction between
redistribution of phosphatidylserine (PS) and the remodeling of
cytoskeletal proteins (Zwaal and Schroit, 1997; Leventis and
Grinstein, 2010); proteins and phospholipids are distributed very
heterogeneously and form microdomains within the membrane.
Aminophospholipid translocases tightly control this asymmetric
distribution of PS on plasma membranes. Moreover, flippase is a
translocase that translocates PS from the outer leaflet to the inner
leaflet of themembrane, while floppase transfers phospholipids from
the inner to the outer leaflet of the plasma membrane (Zwaal and
Schroit, 1997; Hugel et al., 2005). Immediately afterwards, actin-
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myosin interactions promote cytoskeleton contraction, aid cell
membranes’ budding, and ultimately form MVs (McConnell
et al., 2009; Muralidharan-Chari et al., 2009). The number of
these generated MVs relies on the physiological state and
microenvironment of the donor cells while consumed MVs
depends on the physiological state and microenvironment of the
recipient cells (Zaborowski et al., 2015).

These EVs can enter the recipient cells via fusing with cellular
membranes; on the other hand, it also enters the recipient cells via
different endocytic pathways, including phagocytosis clathrin-
mediated endocytosis, caveolae, or lipid raft-mediated endocytosis
(Feng et al., 2010; Tian et al., 2014; Costa Verdera et al., 2017; Hou
and Chen, 2021). Moreover, classical intercellular adhesion
molecules also mediate the binding of EVs to the target cells
(Zhao et al., 2015); specifically, on the one hand, TIM family
members (TIM1, TIM4) PS transmembrane receptors are used
by target cells for exosomes entry (Miyanishi et al., 2007), on the
other hand, exosomes derived from B cells containing a 2,3-linked
dialkylated glycoprotein can be captured by lymph node and spleen
CD169+ macrophages (Saunderson et al., 2014). At the same time,
macrophages uptake exosome via C-type lectins expressed in
macrophages and galectin-5 exposed to exosome (Barres et al.,

2010). Meanwhile, multiple mechanisms have been demonstrated
to be associated with regulating the biogenesis of EVs, especially the
endosomal sorting complex required for transport (ESCRT) or non-
ESCRT mechanisms (Assil et al., 2015). ESCRT consists of four core
subunits (ESCRT-0; ESCRT-I; ESCRT-II; ESCRT-III), where
ESCRT-0 mediates substrate recognition and sorting, ESCRT-I
and ESCRT-II are critical for mediating endosomal membrane
inward budding, and ESCRT-III is responsible for shearing the
neck of the budding body, thereby orchestrating the formation of an
inward budding vesicle of MVBs (Hurley and Hanson, 2010;
Hanson and Cashikar, 2012; Tarasov et al., 2021). Considering
the biological complexity of EVs and is susceptible to the
environment, there are yet no established criteria to distinguish
different types of EVs, which limits the development of related
studies (Amosse et al., 2017) (Figure 1).

4 Composition and physiological
function of extracellular vesicles

Initially, EVs were considered waste products released by cells.
Later studies, however, demonstrated that EVs mediate the

FIGURE 1
Biogenesis and delivery of extracellular vesicles. Exosomes: Inward budding of the early endosomal membrane forms early endosomes and then
matures into late endosomes and evolves into MVBs. Then, some MVBs fuse with lysosomes while other MVBs fuses with the plasma membrane to
release exosomes (van Niel et al., 2018); Macrovesicles: Actin-myosin interactions promote cytoskeleton contraction, aid cell membranes’ budding, and
ultimately form macrovesicles (McConnell et al., 2009); Apoptosis Bodies: The cytosolic membrane is wrinkled and invaginated, dividing and
wrapping the cytoplasm, containing DNA material and organelles, forming Apoptosis Bodies (Liu J et al., 2018).

Frontiers in Pharmacology frontiersin.org04

Cheng et al. 10.3389/fphar.2023.1067992

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1067992


transmission of intercellular molecular biological information and
play a crucial role in intercellular communication (Hessvik and
Llorente, 2018; Harmati et al., 2021). Besides, EVs can transport
bioactive cargoes, including RNA, DNA, proteins, and lipids (Chen
F et al., 2020). Indeed, it both retains many of the biological
properties of their parental cells and regulates recipient cells’
physiological or pathological processes (Xing et al., 2021). Of the
three types of EVs, exosomes are derived from MVBs, which
budding inward from a raft-like domain and, therefore, have a
slightly different lipid content than the cell membrane. Exosomes
are rich in cholesterol, sphingomyelin, glycerophosphocholine, and
phosphatidylcholine (Laulagnier et al., 2004; Raposo and Stoorvogel,
2013; Janas et al., 2015), and membrane surface markers such as
integrins, Flotillin 1, CD63, CD81, Alix, TSG101, and cell adhesion
molecules (CAMs) (Lotvall et al., 2014). Due to its small size,
protective lipid bilayer, and surface receptors, exosome can
mediate long-distance, inter-tissue systemic crosstalk (Mathieu
et al., 2019; Pelissier Vatter et al., 2021).

The lipid composition and markers of MVs depend mainly on
the composition of their cell membrane and also show particular
antigens concerning the membrane composition of the original cell.
For example, T cell MVs carry CD4 or T cell receptors (Choudhuri
et al., 2014). Monocyte-derived MVs show CD14, while CD31,
CD34, CD51, CD62E, CD144 and CD146 expressed on
endothelium-derived MVs (Koga et al., 2005). Microvesicular
cholesterol and hyperphosphatidylserine expose a lipid
composition different from that of exosomes. Addition, the shape
and density of MVs are irregular as well as the surface does not have
any tetrapeptide (Muralidharan-Chari et al., 2010; Choudhuri et al.,
2014). These vesicles consist of a lipid bilayer and have mRNAs,
miRNAs, biologically active lipids, metabolites, and protein in which
surface phospholipid bilayer (Ratajczak and Ratajczak, 2020), it also
expresses the number of transmembrane proteins, such as integrins
and selectins as in the parental cell membrane (Bobrie et al., 2011;
Raposo and Stoorvogel, 2013). However, MVs contain a large
number of cytoplasmic and plasma membrane proteins, such as
cytoskeletal proteins, heat shock proteins, and protein tetrapeptides
that accumulate on the surface of the plasma membrane, which is
100-fold more concentrated in MVs than in cell lysates (Escola et al.,
1998; Zoller, 2009; Di Vizio et al., 2012; Morello et al., 2013), and
contribute significantly to intercellular communication (Cocucci
et al., 2009). On the other hand, the function of MVs depends
on the cell types from which they originate (Muralidharan-Chari
et al., 2010). For example, immune cell-derived MVs are involved in
inflammatory responses, while endothelial cell-derived MVs are
related to blood vessels (Morel et al., 2004). In addition to this,
the procoagulant properties of MVs were reported for the first time
in 1946 by Chargaff and West and later confirmed by Wolf in 1967,
who described them as “platelet dust” (Wolf, 1967; Morel et al.,
2004).

In recent years, there have been concerns regarding the
relationship between EVs and diseases, with numerous studies
focusing on cancer (Prieto-Vila et al., 2021), Parkinson’s (D’Anca
et al., 2019), infectious diseases (Rodrigues et al., 2018), kidney
diseases (Thongboonkerd, 2019), and cardiovascular diseases,
resulting in substantial influential outcomes. A great deal of
research in cardiovascular disease suggests that EVs play an
essential role in cardiac pathophysiology (Njock et al., 2015), and

EVs of diverse origins are necessary for maintaining cardiac function
and homeostasis via influencing and interacting with each other (Yu
and Wang, 2019). These subgroups exhibit a wide range of
functions, making them an important source of potential
biomarkers for early diagnosis, therapeutic drug delivery systems,
or vaccine production systems (Bordanaba-Florit et al., 2021).

5 Mechanism of extracellular vesicles
involved in cardiac remodeling after
myocardial infarction

Numerous studies have shown that EVs have similar biological
properties to parental cells. Interestingly, however, multiple cells
produce EVs after MI, including cardiomyocytes, immune cells,
ECs, progenitor cells, fibroblasts, and stem cells (Fujita et al., 2019;
Berezin and Berezin, 2020). The presence of pro-inflammatory
M1 macrophages (M1-MØ) and reparative M2 macrophages
(M2- MØ) as well as N1 (Ly6G+CD206-) and N2
(Ly6G+CD206+) neutrophil phenotypes in the infarcted heart
mean immune cells exhibit functions and phenotypic
heterogeneity (Ma et al., 2016; Peet et al., 2020). N1 neutrophils
are pro-inflammatory, with high expression of pro-inflammatory
markers, such as TNF-α, IL-1b, macrophage inflammatory protein
1α (CCL3), and interleukin 12a (IL-12a), while anti-inflammatory
Cd206 and interleukin 10 (IL-10) are highly expressed in
N2 neutrophils. Similarly, monocytes differentiate into pro-
inflammatory and anti-inflammatory. EVs of different origins
and subtypes also have complex and diverse roles similar to their
parental cells and play a dual role in post-infarction cardiac
remodeling. These EVs maintain a dynamic balance between
pro-and anti-inflammatory, pro-and anti-fibrotic. Thus, it is
significant to investigate the involvement of EVs in post-
infarction cardiac remodeling, providing new avenues to open up
targeted therapeutic strategies.

5.1 Mechanism of extracellular vesicles
associated with the initial inflammatory
response following myocardial infarction

5.1.1 Mechanism of extracellular vesicles
associated with the pro-inflammatory response
after myocardial infarction

After MI, the I/R injury contributes to the increased release of
various EVs from the heart, which on the one hand, increases the
expression of pro-inflammatory cytokines by promoting M1-type
polarization of macrophages, on the other hand, these EVs
generated by I/R injury stimulate the inflammatory response via
transferring miR-155-5p to macrophages activating the JAK2/
STAT1 pathway (Ge et al., 2021). Furthermore, a large number
of monocytes infiltrate the infarct zone and differentiate into pro-
inflammatory macrophages, which generated exosomes containing
pro-inflammatory miRNAs. When transported into CFs, these
exosomes promote significant expression of inflammatory
cytokines, including TNF-α, CCL2, IL-1β, and IL-6 in CFs,
thereby exacerbating the inflammatory response in the infarct
area (Wang et al., 2017). On the other hand, M1 macrophage-
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secreted exosomes can also transfer specific miR-155 to ECs,
preventing migration and proliferation, affecting angiogenesis
and repair, which in turn exert a pro-inflammatory effect (Liu Y
et al., 2020).

Beyond that point, as one of the most critical members of the
immune cell family, neutrophils play an essential role in this phase.
It is well known that neutrophils are professional phagocytes that
help to clear necrotic cells. However, recent studies have shown that
excessive neutrophil accumulation or delayed clearance of
neutrophils is detrimental and can act by secreting EVs (van der
Pol et al., 2016). Depending on the production mechanism,
neutrophil-derived EVs can be classified into two subtypes:
neutrophil-derived MVs (NDMVs) and neutrophil-derived trails
(NDTRs). Pro-inflammatory miRNAs are highly expressed in the
NDTRs, which are found in tissues where neutrophils migrate while
inducing pro-inflammatory macrophage polarization and
exacerbating the inflammatory response and cardiac injury (Ma,
2021; Youn et al., 2021). On the other hand, NDMVs can evoke an
acute inflammatory response by stimulating ECs to produce
inflammatory mediators, including MCP-1 and IL-6 and tissue
factor as well as increase microvascular endothelial permeability
(Mesri and Altieri, 1999; Ajikumar et al., 2019). Numerous factors
influence the increase of neutrophils. Generally, myocardial injury
mobilizes neutrophils rapidly from the spleen to the peripheral
blood, where they engage in transcriptional activation prior to
reaching the damaged area. AMI triggers the transient release of
cardiomyocyte-and endothelium-derived EVs. Ly6C + monocytes
infiltrating the infarcted heart are stimulated to release chemokines
and inflammatory cytokines by these vesicles, exacerbating the local
inflammatory response (Loyer et al., 2018). Further studies
demonstrated that endothelial cell-derived EVs mediated
neutrophil mobilization from the spleen via EC-EV-VCAM-
1 after AMI and induced transcriptional activation of blood
neutrophils to facilitate miRNA-126-mRNA targeting (Akbar
et al., 2022). At the same time, ABs are produced when a
substantial number of cells appear apoptotic in infarct zones.
However, these ABs do not contribute to the release of
intracellular contents and trigger an inflammatory response due
to their intact membrane structure, while a large number of necrotic
cell contents are secreted into the extracellular area to trigger a
dangerous related pattern and trigger a severe inflammatory
reaction (Anversa et al., 1998).

Besides this, the current clinical treatment of MI is mainly
through percutaneous coronary intervention (PCI). Available
studies demonstrate that post-PCI vascular inflammation involves
complex interactions between multiple cell types, these cells release
proinflammatory cytokines while recruiting monocytes and
neutrophils for transendothelial migration to surrounding tissues
(Tucker et al., 2021), and EVs, as an important medium of
intercellular communication, may play an important role in this
process (S et al., 2013). On the other hand, Neutrophils mediate
platelet aggregation and thrombus formation, while activating
endothelial cells, macrophages and T lymphocytes to release
inflammatory cytokines and promote an inflammatory cascade
response (Vaidya et al., 2021). However, whether these immune
cells release EVs in the process and whether these EVs play a role
remains to be explored. Given the current context, future research
directions regarding EVs in the regulation of microvascular

inflammation after PCI may focus on several directions. Firstly,
EVs can be used as potential biomarkers to assess the degree of
vascular inflammation; secondly, they may be critical mediators of
intercellular communication, broadening the understanding of
pathological mechanisms associated with the microvascular
inflammation after PCI; thirdly, EVs can be used as drug carriers
or targets to alleviate microvascular inflammation after PCI.

5.1.2 Mechanism of extracellular vesicles
associated with the anti-inflammatory response
following myocardial infarction

Macrophages are functionally and subtypically polarized into
the classically activated M1 phenotype and the alternatively
activated M2 phenotype. Despite its simplicity, this classification
is still more accepted at this stage. M2 phenotype macrophages can
mediate inflammation resolution by secreting anti-inflammatory
mediators during days 3–5 following MI. Furthermore, it has been
shown that the co-culture of the MSCs and macrophages can
contribute to sustained high expression of CD206 and IL-10 and
low expression of interleukin 12 (IL-12) and TNF-α on the surface of
macrophages, resulting in a shift of macrophages towards the
M2 phenotype (Chiossone et al., 2016). It has also been shown
that mesenchymal stroma-derived exosomes promote macrophage
polarization toward the M2 phenotype, which may attenuate the
inflammatory cascade response and enhance subsequent repair
activity, thereby limiting the infarct size. The mechanism is
primarily associated with a large number of miR-182 transported
in these exosomes, which regulate the phenotypic transition of
macrophages via the TLR4/NF-κB pathway (Zhao J. et al., 2019).
These studies suggest that exosomes of different cellular origins that
interact with macrophages may be one of the mechanisms by which
the myocardium is protected.

NDMVs are involved in the anti-inflammatory response as well
as the pro-inflammatory response. These EVs have been
demonstrated to have a significant anti-inflammatory effect on
interacting cells, mainly by reducing the production of activated
cytokines, including IL-1β, TNF-α, IL-6, IL-10, and IL-12 (Byrne
and Reen, 2002; Eken et al., 2008; Ren et al., 2008; Eken et al., 2010;
Alvarez-Jimenez et al., 2018). Apart from this, neutrophils exert
their anti-inflammatory action by secreting EVs, such as NDMVs
containing anti-inflammatory miRNAs in foci of inflammation
(Youn et al., 2021). At the same time, the administration of
neutrophil-derived EVs carrying membrane-linked protein A1
(AnxA1) inhibited inflammation. Overexpression of
AnxA1 activated the STAT3 signaling pathway to inhibit
neutrophil infiltration during myocardial I/R injury (Dalli et al.,
2008; Zhao C. et al., 2019). On the other hand, it has been shown that
leukocyte-derived MVs (LMVs) impede the leukocyte inflammatory
responses to lipopolysaccharide and stimulate anti-inflammatory
cytokine transforming growth factor β1 (TGF-β1) secretion (Gasser
and Schifferli, 2004). Specifically, membrane-linked protein 1 (an
anti-inflammatory protein) expressed on the surface of these
particles exerts this effect (Dalli et al., 2008). In vitro, the
particles are taken up by B cells and monocytes, thereby
modulating their activation to an anti-inflammatory
phenotype. Such phenomenon mediates the immune cells’
anti-inflammatory response in the early phase of acute
infarction (Koppler et al., 2006).
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Regulatory T (Treg) cells from the thymus or peripheral
lymphoid organs are a subtype of T-cells (Richards et al., 2015).
Inflammatory cell infiltration and macrophage polarization can be
improved through paracrine action and direct contact. It inhibits
cardiomyocytic apoptosis and is considered a potential target for
reducing the inflammatory response to myocardial I/R injury.
Recent studies have indicated that miRNA-181a is associated
with immune regulation in cardiovascular disease. Furthermore,
Wei et al. showed that miRNA-181a overexpression significantly
suppressed inflammatory responses and increased Treg cell ratios by
targeting the critical inflammatory transcription factor c-Fos.
Additionally, miRNA-181a also attenuated the activation of
dendritic cells (DCs) stimulated by oxidized low-density
lipoprotein (ox-LDL). It is evident that miRNA-181a delivered by
MSC-derived exosomes (MSC-Exos) combines the
immunosuppressive effect of miRNA-181a with the cellular
targeting ability of MSC-Exos and ultimately exerts a more
substantial therapeutic effect on myocardial I/R injury (Wei
et al., 2019).

Bone marrowmesenchymal stem cell (BMMSC) transplantation
is considered potential therapeutic approach for MI; however, the
body’s immune response can contribute to significant early death of
transplant cells (Karantalis et al., 2014). Increasing evidence points
specifically to the BMMSC-derived exosomes have
immunomodulatory, anti-inflammatory effects and can be used
as an alternative to stem cell transplantation (Moghaddam et al.,
2019). The NF-κB pathway acts as a coordinator in inflammation
and inhibiting the NF-κB pathway prevents ventricular remodeling
and cardiac rupture in mice with acute myocardial infarction
(Pramanik et al., 2018). EVs of BMMSCs can regulate the
inflammatory microenvironment via regulating the BCL6/MD2/
NF-κB signaling pathway, thereby delivering miR-302d-3p and
attenuating the inflammatory response during cardiac remodeling
after AMI (Liu et al., 2022). At the same time, it has also been shown
that FNDC5 pretreated BMMSCs can secrete more exosomes that
reduce the secretion of pro-inflammatory cytokines by macrophages
while increasing the secretion of anti-inflammatory cytokines.
MSCs-Exo and FNDC5-MSCs-Exo lessen the infiltration of
inflammatory cells in ischemic heart tissue and improve the
secretion of pro-inflammatory cytokines, thereby improving the
inflammatory response in the heart early after myocardial
infarction (Ning et al., 2021).

In addition, adipose mesenchymal stem cell-derived exosomes
(ADMSC-Exos) exert anti-inflammatory effects by promoting
macrophage M2 polarization and activating the S1P/SK1/
S1PR1 signaling pathway to improve the inflammatory response
in MI (Deng et al., 2019). Adipose stromal cells (ADSCs) can reduce
MI severity (Kim et al., 2017), and ADSCs derived exosomes
overexpression miR-126 have previously been shown to reduce
inflammatory cytokines secreted by damaged cardiomyocytes
(Luo et al., 2017). Furthermore, exosomes from miR-93-5p
overexpressing ADSCs further targete TLR4 to downregulate the
expression of inflammatory cytokines such as IL-6, IL-1β, and TNF-
α in hypoxia-treated cardiomyocytes, thereby reducing autophagy-
related proteins (LC3II and Atg7) expression and inflammation-
related proteins (TLR4 and NF-κB p65) in cardiac tissue and
ultimately alleviated inflammatory response (Liu D et al., 2018;
Pan W et al., 2019).

At the same time, further work in this field of research
contributes to paramount observations or considerations to pre-
clinical research using tissue engineering or matrices carrying
multifunctional MSC-EVs as an alternative therapeutic approach
with associated anti-inflammatory or fibrotic benefits. EVs from
porcine cardiac adipose tissue-derived MSC (cATMSC) combined
with biocompatible cardiac scaffolds are capable of effective delivery
in post-infarct myocardial tissue, decreasing expression of
inflammatory TNF-α, increasing expression of IL-1ra, blocking
IL-1α/β inflammatory effects and inducing anti-inflammatory IL-
10 expression, which in turn attenuates the local inflammatory
response in the myocardium. Meanwhile, the reduction of
inflammatory mediators modulates the expression and activity of
TGF-β, metallopeptidases, and other pro-fibrotic mediators, thereby
reducing collagen synthesis and deposition and myocardial
vascularization and fibrosis (Monguio-Tortajada et al., 2021;
Monguio-Tortajada et al., 2022). Yet producing effective
formulations of EVs and meeting the requirements for
standardized clinical-grade biomanufacturing and regulatory,
large-scale, GMP-compliant issues for EV production and clinical
application remain a huge challenge (Courageux et al., 2022; Soler-
Botija et al., 2022).

5.2 Mechanism of extracellular vesicles
involved in scar repair after myocardial
infarction

5.2.1 Mechanism of extracellular vesicles involved
in promoting scar repair

CFs are the primary effector cells in the scar repair phase of
myocardial fibrosis, which transdifferentiate to MFBs in response to
different stimuli, secrete collagen, and are the primary source of
ECM. The scar repair phase involves several processes such as pro-
angiogenesis and pro-differentiation of CFs into MFBs. CircUbe3a
from M2 macrophage-derived exosomes promotes the proliferation
or migration of CFs, and transdifferentiation via the miR-138-5p/
RhoC axis, thereby mediating post-infarction myocardial fibrotic
repair (Wang Y. et al., 2021). On the other hand, EVs generated from
cardiosphere-derived cells (CDC-EVs) can polarize M1-MØ to a
proangiogenic phenotype dependent on upward regulation of
arginase to contribute to scar repair (Mentkowski et al., 2020).
Moreover, several studies suggested that the expansion and
activation of CD4+ T-cells in the heart associated with post-
infarction remodeling. Exosomes generated from activated CD4+

T-cells carrying miR-142-3p, which mediates local MFBs activation
through the miR-142-3p-WNT signaling cascade, secreting TGF-β,
and regulating the APC-GSK-β-linked protein signaling cascade to
confer a profibrotic effect. Aggravates post-ischemic myocardial
fibrosis (Cai et al., 2020). Though EVs affect the post-infarction
microenvironment by transporting miRNAs, cardiovascular risk
factors, including sex, age, genetics, smoking, overweight, and
obesity, affect apoptosis and activation of the mother cells of
EVs, which in turn affect the physicochemical properties of these
vesicles. Thus, most miRNAs are transported by cell-free and EV-
free.

Cardiomyocyte-derived exosomes facilitate the formation of
myocardial fibrosis via cardiomyocyte-fibroblast interactions.
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Previous study demonstrated that cardiomyocyte-derived exosomes
enriched with miR-208a can promote the proliferation and
differentiation of fibroblast toward MFBs (Yang et al., 2018). The
molecular analysis then showed that miR-208a blocked the
expression of Dyrk (bispecific tyrosine phosphorylation kinase),
thereby upregulating fibrotic gene expression via the nuclear
translocation of NFAT. Additionally, miR-217 was enriched in
exosomes derived from cardiomyocyte and enhanced fibroblast
activity by targeting the PTEN signaling cascade under pressure
overload (Nie et al., 2018). At the same time, WNT3a in exosomes
containing WNT protein can effectively trigger WNT/β-catenin
signaling. In the presence of TGF-β, WNT3a can effectively
enhance the pro-fibrotic response of human CFs (Dzialo et al.,
2019). In addition, human umbilical cord mesenchymal stem cell-
derived exosomes (hUCMSC-Exos) can promote CFs into FMBs
and secrete collagen into inflammatory environment, thereby
promoting cardiac fibrotic scar repair (Shi et al., 2019).

During the fibrotic repair phase of post-myocardial infarction,
the precursors of ECs such as late endothelial progenitor cells
(EPCs) can repair the heart through paracrine mechanisms.
Several studies have demonstrated that human endothelial
histocyte-derived exosomes enhance the proliferation and
angiogenesis of CFs in vitro (Ke et al., 2017). In addition, cardiac
mesenchymal stem cells (C-MSCs), a novel subpopulation of MSCs
derived from cardiac tissue, have been shown to play an
irreplaceable role in cardiac regeneration. Notch signaling is
thought to contribute to cardiac repair after myocardial injury.
EVs derived from Notch1 overexpressed C-MSCs are essential in
promoting angiogenesis and cardiac fibroblast proliferation,
preventing cell death, and facilitating myocardial fibrosis repair
(Xuan et al., 2020).

Furthermore, in a MI model, it has been demonstrated that ABs
released by transplanted MSCs can enhance angiogenesis and
improve recovery of cardiac function by regulating
macroautophagy/autophagy in recipient ECs. BMMSCs undergo
extensive apoptosis immediately after transplantation and release
ABs phagocytosed by recipient ECs. Then, these ABs activate
lysosomal function and promote the expression of TFEB
(transcription factor EB), the master gene for lysosomal
biogenesis and autophagy in ECs. Notably, TFEB is involved in
the expression of autophagy-related genes in ECs and boosts
angiogenesis and recovery of cardiac function after MI (Liu H
et al., 2020). It has been shown that myocardial endocytic target
and silence CDIP1(cell death involved p53 target 1) gene via
exosomal miRNA-21-5p, thereby downregulating activated
caspase-3, which in turn inhibits apoptosis of ECs under
ischemic and hypoxic conditions and facilitates post-MI
angiogenesis and regeneration, which in turn involved in post-
infarction scar repair (Liao et al., 2021).

5.2.2 Mechanism of extracellular vesicles involved
in the anti-scar repair

Scar repair is essential for maintaining cardiac structure in the
early stage of MI, which involves angiogenesis and MFBs activation.
Fibrotic scar repair is a double-edged sword, inadequate repair can
contribute to cardiac rupture, and excessive and sustained fibrotic
repair can lead to ventricular systolic-diastolic dysfunction and
ultimately left heart failure (Ma et al., 2013; Ma et al., 2017).

Harmonizing the dynamic balance of pro-and anti-fibrosis is
crucial for post-infarction cardiac remodeling.

BMMSC-derived M1 macrophage exosomes inhibit
angiogenesis and myocardial regeneration following MI by
activating the MALAT1/miR-25-3p/CDC42 signaling pathway as
well as MEK/ERK axis, thereby impeding scar repair (Chen et al.,
2021). These EV-loaded miRNAs are significant for the pathological
process of fibrosis in addition to their involvement in the early anti-
inflammatory response to cardiac remodeling. Previous studies have
indicated that MSCs derived EVs containing miR-212-5p may
ameliorate myocardial fibrosis after MI by inhibiting the NLRC5/
VEGF/TGF-β1/SMAD signaling pathway, as evidenced by reducing
the expression of TGF-β1, collagen type I (Col I), and α-smooth
muscle actin (α-SMA) (Wu et al., 2022). At the same time, MSC-
derived extracellular vesicles (MSC-EVs) were also able to inhibit
hypoxia-mediated cardiac fibroblast activation, in turn, exerting
antifibrotic effects (Chen et al., 2014), secondly, these vesicles
could be internalized by cardiac stem cells. Treatment of CSCs
with MSC-Exo in an AMI model enhanced cell proliferation
implantation and capillary density and reduced fibrotic area
(Zhang et al., 2016). On the other hand, miR-199a-3p in
exosomes released by BMMSCs targeted to the region of cardiac
injury inhibited mTOR activation in myocardial tissue and
subsequently activated induction of autophagy. Excessive
autophagy eliminated the fibrotic fraction in the heart and
attenuated tissue damage (Fan C et al., 2022). Concurrently,
these exosomes can promote premature senescence of MFBs
in vitro and enhance microvascular regeneration under stress,
and ultimately improve cardiac function via modulating platelet-
derived growth factor receptor-β (PDGFR-β) (Chen J et al., 2020;
Wang et al., 2021a). Adipose-derived mesenchymal stem cells
secreted miR-671-containing exosomes that attenuated
myocardial fibrosis by inhibiting the TGFBR2/Smad2 signaling
pathway (Wang et al., 2021b).

Cardiovascular progenitor cells (CVPCs) derived from human
pluripotent stem cells are a promising source of myocardial repair
with EVs mediating intercellular communication. Intramyocardial
injection of HCVPC EVs into AMI mice on day 28 after MI
significantly improved cardiac function and attenuated fibrosis
while improving vascularization and cardiomyocyte survival in
the marginal zone (Wu et al., 2020). In addition, it has been
shown that ISX-9 is a small molecule with prosurvival,
antioxidant, and regenerative properties, and that induction of
CPCs by ISX-9 is an attractive cell-based cardiac regeneration
therapy, and that these EVs contain a unique set of bioactive
miRNAs, among which miR-373 has anti-fibrotic substantial
effects. These new discoveries have important implications for
preventing post-myocardial infarction remodeling (Xuan et al.,
2019).

In preclinical studies, EVs derived from Cardiosphere-derived
cells (CDCs) facilitated myogenesis and angiogenesis, ameliorated
fibrosis, modulated immune responses, and generally improved
cardiac function (Marban, 2018). MSCs mediate their disease-
modifying biological activity by secreting paracrine factors,
including EVs. Furthermore, like CDC-EVs, MSC-EVs contain a
plethora of RNA species, like miRNAs. For instance, MSC-EVs from
bone marrow-derived MSCs are enriched in miR-22 and have anti-
fibrotic and anti-apoptotic properties in a mouse model of AMI
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(Feng et al., 2014). This demonstrates a significate role in regulating
fibrotic repair after infarction by intervening in extracellular vesicle-
loading cargos (Figure 2).

6 Therapeutic strategies for targeting
extracellular vesicles in regulating
cardiac remodeling after myocardial
infarction

6.1 Engineered extracellular vesicle-based
therapeutics

Although native EVs make great achievements in preclinical
research, realizing the precisely controllable release of these cargos
for the target regions remains a challenge (Fan Z et al., 2022).
Accordingly, to enhance the ability of EVs to load cargoes, improve
the controllability and precision of vesicular cargoes released in the
infarct region, further attenuate inflammation and maintain the
homeostasis of fibrotic scar repair following MI, researchers distill
experiences and inspirations from nano materials-based drug
delivery research and engineer modification of extracellular
vesicles, including bioengineering, chemical engineering, and
physical engineering (Man et al., 2020; Nasiri Kenari et al., 2020;
Wu et al., 2021). Targeted manipulation of the extracellular vesicles’

genes and proteins is an essential part of bioengineering, which can
direct EVs to a specific tissue or organ and increase their utilization.
For instance, EVs derived from cardiosphere-derived stem cells are
labeled by infarcted heart targeting peptide, so-called “cardiac-
homing peptide”, the vesicles recruit to the infarct area and
improve cardiac function by attenuating cardiac fibrosis, inducing
angiogenesis, and promoting cardiomyocyte proliferation
(Vandergriff et al., 2018). Meanwhile, there are also several
studies demonstrated that HEK 293 cells transfecting with
vectors encoding CTP-Lamp2b can derive exosomes with
cardiac-targeting peptide (CTP)-Lamp2b on their membrane
(CTP-Exo) (Kim et al., 2018), these vesicles can transport
curcumin directly to the heart and improve cardiac function by
regulating the PTEN/Akt/Bax signaling pathway associated with
cardiomyocyte apoptosis via upregulating miR-144-3p (Kang et al.,
2021). Furthermore, MSCs-derived exosomes modified with
ischemic myocardium-targeting peptide CSTSMLKAC (IMTP)
can specifically target ischemic myocardium, attenuating
inflammation and apoptosis, promoting angiogenesis, and
restoring cardiac function (Wang et al., 2018). On the other
hand, Tian et al. found that exosomes (Hypo-Exo) derived from
bone marrow mesenchymal stem cells (BMMSCs) under hypoxic
conditions have excellent protections against ischemic diseases. The
combination of Hypo-Exo with “CSTSMLKAC” peptide, an
ischemic myocardial targeting peptide, significantly reduced

FIGURE 2
Schematic representation of the role of extracellular vesicles in post-infarction cardiac remodeling. EVs have similar biological properties to parental
cells, in the early inflammatory phase post-infarction, immune cells such as pro-inflammatory M1-MØ and neutrophils, secret exosomes containing pro-
inflammatory miRNAs. Interaction with myocardial fibroblasts and endothelial cells exacerbates the inflammatory response in the infarcted area (Xiong
et al., 2021). Subsequently, anti-inflammatory M2-MØ and immune cell-derived exosomes such as neutrophils dominate, interacting with
mesenchymal stem cells as well as cardiomyocytes to exert anti-inflammatory effects (Wu et al., 2019).
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TABLE 1 Specific application and mechanism of miRNAs carried by EVs in post-infarction cardiac remodeling.

Stages Species Origin Experimental model Mechanism References

Pro-
inflammation

miR-155 M1 MØ - Exos C57BL/6 J male mice TNF-α↑ Wang et al., 2017; Liu S et al.
(2020)

MI model IL-1β↑

CCL2↑

miR-328-3p CMs-Exos BALB/C nude mice Activate Caspase facilitate apoptosis Huang P et al. (2021)

MI model

miR-146a ADSCs-Exos SD male rat EGR1↓ Pan W et al. (2019)

MI model

miR-375 MØ -Exos C57BL/6J male mice Stimulate M1 MØ polarization Garikipati et al. (2017)

MI model

Anti-
inflammatory

miR-25-3p MSC-Exos BALB/c male mice Disinhibit the expression of SOCS3 Peng et al. (2020)

I/R injury model

miR-126 ADSC- Exos SD male rat IL-1β↓ Luo et al. (2017)

MI model IL-6↓

TNF-α↓

miR-19a hUCMSC-Exos SD male rat IL-1β↓ Huang P et al. (2020)

AMI model IL-18↓

JNK3/caspase-3↓

miR-181a MSC-Exos C57BL/6 male mice Increase Tregs polarization Wei et al. (2019)

I/R injury

miR-181b CDCs-Exos WKY female rat NF-κB ↓ de Couto et al. (2017)

I/R injury Polarize MØ to an M2 phenotype

miR-23a-3p hUCMSC-Exos C57BL/6J male mice Inhibit ferroptosis Song et al. (2021)

AMI

miR-22 MSC-Exos C57BL/6J male mice Reduce apoptosis Feng et al. (2014)

MI model

miR-182 MSC-Exos C57BL/6 mice Polarize MØ to an M2 phenotype Zhao et al. (2019b)

I/R injury

miR-93-5p ADSC-Exos SD male rat TLR4/NF-kB ↓ Liu J et al. (2018)

AMI model

miR-129-5p BMSCs-Exos C57BL/6J male mice Inflammatory cytokines↓ Wang et al. (2022)

MI model

miR-24-3p UMSC-Exos — NF-kB ↓ Zhu et al. (2022)

Polarize MØ to an M2 phenotype

miR-
200b-3p

MSCs-EVs C57BL/6J male mice BCL2L11↓ Wan et al. (2022)

MI model

miR-223 hUCMSCs-EVs SD male rat TNF-α↓ Yang et al. (2022)

MI model IL-6↓

IL- 1β↓

miR-1271-5p M2 MØ -Exos C57BL/6J male mice SOX6↓ Long et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Specific application and mechanism of miRNAs carried by EVs in post-infarction cardiac remodeling.

Stages Species Origin Experimental model Mechanism References

AMI model

miR-
302d-3p

MSC-EVs C57BL/6J male mice TNF-α↓ Liu et al. (2022)

AMI model IL-6↓

Pro-fibrosis miR-142-3p CD4+T cell C57BL/6J male mice MI
model

Activate myofibroblast Cai et al. (2020)

Exosome

miR-218-5p EPC-Exos SD rat Promote CFs proliferation Ke et al. (2021)

MI model

miR-363-3p EPC-Exos SD rat Promote CFs proliferation Ke et al. (2021)

MI model

miR-494-3p DC-Exos C57BL/6J male mice MI
model

Promote angiogenesis Liu Y et al. (2021)

miR-146a ADSC-Exos SD male rat EGR1↓ Pan J et al. (2019)

MI model

miR-92a CMs-Exos C57BL/6J male mice MI
model

α-SMA↑ periostin↑ Wang X et al. (2020)

miR-142-3p CD4+

T-cellT-cell
C57BL/6J male mice MI
model

β-catenin↑ Cai et al. (2020)

Exosome Col1a1↑

Col3a1↑

α-SMA↑

Anti-fibrosis miR-155 M1 MØ - Exos C57BL/6J male mice MI
model

Inhibit the proliferation of CFs Wang et al. (2017)

miR-126 ADSC-Exos SD male rat Inhibit the tissue fibrosis Luo et al. (2017)

MI model

miR-22 MSC-Exos C57BL/6J male mice Reduce fibrotic area Feng et al. (2014)

MI model

miR-1246 EPC-Exos SD male rat Change of Fibroblasts to Endothelial Cells Huang Y et al. (2021)

MI model

miR-1290 EPC-Exos SD male rat Changes of Fibroblasts to Endothelial Cells Huang J et al. (2021)

MI model

miR-19a/19b BMMSC-Exos SD male rat Reduce fibrotic area Wang S et al. (2020)

MI model

miR-29b-3p BMSCs-Exos SD male rat Inhibit the proliferation, migration, and
differentiation of CFs

Zheng et al. (2022)

MI model

miR-
106a–363

iCMs-EVs SCID mice Repressing Notch3 Jung et al. (2021)

MI model

miR-4732-3p MSC-EVs Nude rats Inhibit MFBs differentiation and the production of
extracellular matrix

Sanchez-Sanchez et al. (2021)

MI model

miR-212-5p MSC- EVs C57BL/6J male mice COl I↓ Wu et al. (2022)

MI model α-SMA↓

miR-223 hUCMSCs-EVs SD male rat COl I↓ Yang et al. (2022)

(Continued on following page)
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apoptosis after MI via targeting Exo in ischemic heart regions,
suggesting that IMT-Exo could be a novel drug carrier to enhance
the specificity of drug delivery in ischemic diseases (Zhu et al., 2018).
These findings demonstrated that the delivery of various cargoes in
cardiac-targeted peptide-modified exosomes may be a promising
strategy for MI treatment.

Alginate hydrogel possesses favorable biocompatibility and has
been widely applied in tissue engineering and cellular engineering
(Ruvinov and Cohen, 2016). Researchers have constructed an
injectable conductive hydrogel to bind exosomes derived from
human umbilical cord mesenchymal stem cells and injecting the
hydrogel into injured rat hearts effectively prolongs the retention
time of exosomes in the ischemic myocardium (Zou et al., 2021).
Dendritic cell-derived exosomes (DEX) can activate Treg cells
(Sakaguchi, 2004), and contribute to an early shift of macrophage
subsets from an inflammatory M1 phenotype towards a reparative
M2 phenotype after MI, thereby improving the immune
microenvironment in the infarct area and offering the possibility
of improving post-infarcted cardiac function. However, they have a
short retention time and the therapeutic effects are transient.
Accordingly, Researchers have developed a new drug delivery
system that contains a sodium alginate hydrogel that
continuously releases DEX, an approach that significantly
increases therapeutic efficacy (Zhang et al., 2021). In addition,
some investigators have also found that by combining the
advantages of natural EVs and novel nanomaterials, engineered
vesicles with biofilm/synthetic material chimeras were successfully
constructed to enhance further the targeting and loading of natural
vesicles with therapeutic molecules. Jin et al. found that engineered
vesicles can effectively load microRNA-21 or curcumin for targeted
delivery to achieve precise release of therapeutic molecules in
macrophages, modulate the phenotypic transformation of
macrophages, and effectively control inflammation levels
(Andaloussi et al., 2013) (Table 1).

6.2 Drug pretreatment of extracellular
vesicles to enhance its therapeutic effect

In addition to the engineered modification of EVs, several types
of research focus on the drug regulation of EVs and make several
significant findings.

Numerous experimental and clinical studies demonstrate that
myocardium is protected from ischemic left ventricular remodeling
by long-term antagonisty of the purinergic GPCR P2Y12 (Roubille
et al., 2012; Nanhwan et al., 2014; Vilahur et al., 2016; Bansilal et al.,
2018). Ticagrelor is a selective and reversible P2Y12 receptor
antagonist that induces exosome release from CPCs, resulting in

the release of anti-apoptotic HSP70. Simultaneous continuous
pretreatment of cardiomyocytes with HCPC derived exosomes
exposed to low-dose of ticagrelor attenuates hypoxia-induced
apoptosis via acute phosphorylation and activation of ERK42/44,
resulting in myocardial protection effect (Casieri et al., 2020). This
research has clinical implications for enhancing the endogenous
exosomal anti-hypoxic response and prevent the heart from
ischemic injury by developing new non-invasive pharmacological
approaches. In addition, atorvastatin pretreatment has been
demonstrated to enhance the function of BMMSC-derived
exosomes in angiogenesis, cardiomyocyte protection, and long
non-coding RNA H19 (lncRNA H19) is a mediator of regulating
miR-675 expression and promoting atorvastatin pretreatment MSC-
Exo (MSCATV-Exo) effect in angiogenesis. Importantly, lncRNA
H19 and its downstream signaling pathways mediate the
cardioprotective effects of MSCATV-Exo (Huang L et al., 2020).
Other studies have shown that sulpiride/valsartan can improve
cardiac function and ameliorate myocardial fibrosis by
downregulating miR-181a in exosomes in a rodent chronic MI
model (Vaskova et al., 2020).

TCM has been practiced and developed for thousands of years.
In recent decades, considerable progress and achievements have
been made in studying the mechanism of TCM using modern
molecular biology techniques (Zhou et al., 2016). One of the
hotspots is the research on the targeting and regulation of EVs
using TCM, such as the regulation of stem cells and immune cells.
Stem cell transplantation is a promising therapeutic alternative to
facilitate myocardial repair following MI, however, its clinical
application is limited by the low preservation and survival rates
of implanted cells (Feyen et al., 2016). In recent years, new strategies
have been developed, including combined cell therapy with BMMSC
exosomes, which have been demonstrated that such strategies have
anti-apoptotic, anti-inflammatory, and pro-angiogenic effects.
Transplantation of exogenous vesicles into the ischemic heart
within 30 min of MI significantly modulates the ischemic
environment, including decreasing inflammatory IL-6 and TNF-
α, enhancing SDF-1 expression and MSC survival. Additionally,
several studies have demonstrated that combined pretreatment with
hypoxia and the herbal compound Tongxinluo can effectively
achieve better performance in facilitating cardiac repair through
increasing CXCR4 expression, which provides new insights into
stem cell therapy for cardiac rehabilitation (Xiong et al., 2022).
Furthermore, Ruan et al. suggested that Suxiao Jiuxin pills modulate
myocardial MSC-Exos, causing structural genetic chromatin
remodeling in recipient cardiomyocytes and accelerating
cardiomyocyte propagation (Ruan et al., 2018). Accordingly,
researchers rolled out several studies to enhance EVs targeting,
thus making them better delivery vehicles (Veerman et al., 2019).

TABLE 1 (Continued) Specific application and mechanism of miRNAs carried by EVs in post-infarction cardiac remodeling.

Stages Species Origin Experimental model Mechanism References

MI model COl III↓

miR-
302d-3p

MSC- EVs C57BL/6J male mice Inhibit MFBs differentiation Liu et al. (2022)

AMI model
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7 Clinical applications and regulation of
extracellular vesicles

Clinical applications of EVs are novel therapeutic modalities,
including vaccines, diagnostic criteria, and drug delivery. The
idea of using EVs as anti-tumor vaccines originated in the last
century. Basic studies suggested that DEX can promote T-cell
dependent antitumor effect, and phase I clinical trials (to
vaccinate peptide-pulses DEX for patients with cancer)
demonstrated that the feasibility and safety of inoculation of
DEX (Escudier et al., 2005; Morse et al., 2005). Immediately after,
Sophie et al. developed a second-generation DEX with enhanced
immunostimulatory properties and produced large-scale IFN-γ-
DEX vaccines while conducting phase II clinical trials
(NCT01159288) under the guidance of Institut Gustave
Roussy in France, in which DEX was administered to patients
with non-small cell lung cancer with the aim of increasing
progression-free survival (Viaud et al., 2011; Lener et al.,
2015). In respiratory diseases, preclinical studies have
established that MSC-Exos can ameliorate most of the
pathological changes caused by lung infections. And a clinical
study (NCT04602104) for treating acute respiratory distress
syndrome (ARDS) with MSC-Exos Nebulizer is currently
recruiting patients, this study explores a new approach to treat
ARDS and assesses its safety by administering human
mesenchymal stem cell exosomes (hMSC-Exos) aerosol
inhalation to patients. It has also been shown that ExoFlo™,
derived from allogeneic bone marrow mesenchymal stem cells,
can reconstitute immunity, downregulate cytokine storm and
restore oxygenation in patients with severe COVID-19,

demonstrating the promise of ExoFlo for the treatment of
COVID-19 (Sengupta et al., 2020). In renal disease, intra-
arterial and intravenous administration of MSC-Exos to
patients with grade III-IV chronic kidney disease in phase II/
III clinical trials was shown to ameliorate inflammation and renal
function. No adverse events associated with MSC-Exos
administration were observed in subjects during the 1-year
follow-up period (Nassar et al., 2016; Guo et al., 2020). In
cardiovascular system diseases, a phase II randomized clinical
trial of intravenous ischemia-tolerant MSCs (itMSCs) in patients
with non-ischemic cardiomyopathy showed that single-dose of
intravenous itMSCs was safe and well tolerated compared with
controls, increasing the patient’s 6-min walk distance while
eliciting systemic immunomodulatory effects associated with
improved LVEF (Butler et al., 2017). Examples of these
clinical trials showed the great therapeutic potential of EVs.

The complex properties of EVs make their specification and
characterization difficult. Thus, in addition to controlling the
final product by specification and characterization, the quality of
EVs must be ensured by quality control of the raw material and
regulation of the manufacturing process (Tsuchiya et al., 2022).
EV manufacturing must be performed in accordance with Good
Practice (GxP) regulations, which are a collection of quality
guidelines and regulations designed to ensure that biological/
medical products are safe, meet their intended use and follow
quality processes in manufacturing, control, storage and
distribution (Good Manufacturing, Good Laboratory, Good
Distribution, Good Clinical, Good Scientific Practice)
(Soekmadji et al., 2020). The biological activity of EV used as
a therapeutic agent must be tested in a qualified bioassay, called a

FIGURE 3
Extracellular vesicle-based therapeutics toward clinical application. The first is a basic study to identify potential EVs, followed by preclinical studies,
including small animal in vivo trials and large animal in vivo trials, as well as researches to evaluate themanufacturing process, quality control, and stability
(CMC); and finally a phase III randomized clinical trial to further evaluate its safety and efficacy.
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“potency assay" (Lener et al., 2015). EVs are subject to detailed
guidelines for the clinical application and manufacture of novel
biomedical products in the EU. In Australia, the government’s
Therapeutic Goods Administration (TGA) office provides rules
and guidelines related to the manufacture and use of therapeutic
agents often adopted in EU rules. In the United States, EV-based
therapeutics for human use are regulated by the Center for
Biologics Evaluation and Research (CBER) within the Food
and Drug Administration (FDA) (Lener et al., 2015). (Figure 3).

8 Conclusion

Post-infarction cardiac remodeling is a complex and diverse
pathological process consisting of two main phases:
inflammatory response and fibrotic scar repair. Sudden and
substantial cardiomyocyte death triggers a vigorous
inflammatory response and subsequently activated MFBs,
which secrete collagen, leading to myocardial fibrosis and
consequent scar formation. Moderate myocardial fibrosis plays
a critical protective role, maintaining the structural integrity of
the chambers and preventing cardiac rupture, while persistent
myocardial fibrosis can lead to cardiac stiffness and diastolic
dysfunction, eventually causing HF. The search for new measures
and approaches that can attenuate the post-infarction
inflammatory response as well as maintain the dynamic
balance of fibrosis repair is particularly critical. EVs of
different cellular origins play a dual role in the early post-
infarction inflammatory response and the subsequent repair of
fibrotic scars. During the early inflammatory phase, these vesicles
are involved in both pro-inflammatory and anti-inflammatory
responses, and therefore, by achieving effective control of the
release of pro-inflammatory vesicles and the delivery of their
cargoes is of great importance to contain the early adverse
persistent inflammatory response after infarction. At the same
time, these vesicles play a dual role of pro-fibrotic and anti-
fibrotic effects in the subsequent fibrotic scar repair phase, a
property that also shows the importance of maintaining the
dynamic balance of post-infarction fibrotic repair by
modulating EVs. Currently, research on targeted regulation of
EVs in cardiovascular diseases has focused on drug pretreatment
as well as engineered modifications.

Research associated with the intercellular delivery of
functional nucleic acids and proteins by EVs has
demonstrated their advantages as cargo carriers, such as low
immunogenicity, high stability and biocompatibility, long cycle
life, and ability to cross the blood-brain barrier. These properties
make EVs an important endogenous carrier for delivering
therapeutic drugs, however, the current research on
extracellular vesicle drug delivery is mainly focused on cancer
and neurological related diseases, while preclinical studies on
cardiovascular diseases are rare. The reasons for this are limited
by the isolation of endogenous vesicles, storage, mass production
techniques, low efficiency of targeted drug delivery and cellular
uptake, on the one hand, and the unknown biological distribution
of drug-loaded vesicles in the individuals treated with them, on
the other hand, which may lead to difficult challenges in
managing the use of exosomes in standardized methods

related to their isolation, quantification and outcome analysis.
Currently, EVs were isolated by Polymer precipitation,
Differential ultracentrifugation, Field-flow fractionation, and
Gradient density ultracentrifugation. These methods always
lacking in yield and purity. Distinct purification methods of
EVs exist in relation to the physical or molecular
characteristics of isolated EVs preparations and affect the
results of downstream analysis. The best separation strategy
for EVs is by applying different methods of isolation in order
to achieve a desirable recovery and purity and report in detail
about standardized approaches for isolation, this research is
particularly important, especially in the context of promising
clinical applications of EVs(Clos-Sansalvador et al., 2022).
Second, drug loading cannot disrupt the membrane structure
and content of EVs, and finding effective ways to load therapeutic
drugs into these EVs remains a great challenge. Although, the use
of EVs as drug delivery carriers is still in the developmental stage.
However, with a deeper understanding of the physiological
properties of EVs, improved isolation and drug delivery
techniques for EVs, the understanding and conclusion of
exosome-loaded drugs in other diseases (cancer, hepatitis,
Parkinson’s disease, etc.) will help develop or expand future
therapeutic approaches for post-infarction cardiac remodeling,
mitigate the inflammatory response during post-infarction
cardiac remodeling, precisely regulate the dynamic balance
between pro- and anti-fibrosis, and ultimately the transition
from basic research to clinical applications.
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Glossary

AMI acute myocardial infarction

EVs Extracellular vesicles

HF heart failure

MI myocardial infarction

I/R ischemia-reperfusion

DAMPs damage-associated molecular patterns

CFs cardiac fibroblasts

MSCs mesenchymal stem cells

CPCs cardiac progenitor cells

MVs microvesicles

ABs apoptotic bodies

RIPK3 receptor-interacting protein kinase three

RIPK1 receptor-interacting protein kinase 1

PRRs pattern recognition receptors

TNF tumor necrosis factor

IL-1β interleukin 1β
IL-6 interleukin 6

MCP-1 monocyte chemotactic protein-1

ATP adenosine triphosphate

NF-κB nuclear factor κB
ECs endothelial cells

PSCs progenitor stem cells

MFBs myofibroblasts

TGF-β transforming growth factor β
ECM extracellular matrix

ILVs intraluminal vesicles

MVBs multivesicular bodies

PS phosphatidylserine

ESCRT endosomal sorting complex required for transport

CAMs cell adhesion molecules

CCL3 macrophage inflammatory protein 1 α
IL-1b interleukin 1b

IL-12a interleukin 12a

TNF-α tumor necrosis factor

IL-10 interleukin 10

CCL-2 chemokine (C-C motif) ligand 2

NDMVs neutrophil-derived MVs

NDTRs neutrophil-derived trails

AnxA1 membrane-linked protein A1

LMVs leukocyte-derived MVs

TGF-β1 transforming growth factor β1
DCs dendritic cells

ox-LDL oxidized low-density lipoprotein

BMMSC Bone marrow mesenchymal stem cell

ADSCs adipose stromal cells

Dyrk bispecific tyrosine phosphorylation kinase

MSC-Exos MSC-derived exosomes

hUCMSC-Exos human umbilical cord mesenchymal stem cell-
derived exosomes

EPCs endothelial progenitor cells

CD31 cluster of differentiation 31

TCM traditional chinese medicine

C-MSCs cardiac mesenchymal stem cells

TFEB transcription factor EB

CDIP1 cell death involved p53 target 1

α-SMA α-smooth muscle actin

Col I collagen type I

MSC-EVs MSC-derived extracellular vesicles

PDGFR-β platelet-derived growth factor receptor-β
HPSC human pluripotent stem cell

CVPCs cardiovascular progenitor cells

CHP cardiac homing peptide

CDCs cardiosphere-derived cells

PCs progenitor cells

iCMs human iPSC-derived cardiomyocytes

IMTP ischemic myocardium-targeting peptide

AMSC-Exos adipose mesenchymal stem cell-derived exosomes

EGR1 growth response factor 1

M1-MØ M1 macrophages

M2-MØ M2 macrophages

ADSCs-Exos exosomes secreted by adipose-derived stem cells

CDCs-Exos exosomes secreted by Cardiosphere-derived cells

EPC-Exos exosomes secreted by endothelial progenitor cells

BMMSC-Exos exosomes derived from bone marrow mesenchymal
stem cells

DC-Exos dendritic cells derived exosomes

CMs-Exos cardiomyocytes-derived exosomes

UMSC-Exos umbilical cord MSC-derived exosomes

DEX dendritic cell-derived exosomes

ARDS acute respiratory distress syndrome

hMSC-Exos human mesenchymal stem cell exosomes

itMSCs ischemia-tolerant MSCs
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