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Respiratory diseases remain a major health concern worldwide because they
subject patients to considerable financial and psychosocial burdens and result in a
high rate of morbidity and mortality. Although significant progress has been made
in understanding the underlying pathologic mechanisms of severe respiratory
diseases, most therapies are supportive, aiming to mitigate symptoms and slow
down their progressive course but cannot improve lung function or reverse tissue
remodeling. Mesenchymal stromal cells (MSCs) are at the forefront of the
regenerative medicine field due to their unique biomedical potential in
promoting immunomodulation, anti-inflammatory, anti-apoptotic and
antimicrobial activities, and tissue repair in various experimental models.
However, despite several years of preclinical research on MSCs, therapeutic
outcomes have fallen far short in early-stage clinical trials for respiratory
diseases. This limited efficacy has been associated with several factors, such as
reduced MSC homing, survival, and infusion in the late course of lung disease.
Accordingly, genetic engineering and preconditioning methods have emerged as
functional enhancement strategies to potentiate the therapeutic actions of MSCs
and thus achieve better clinical outcomes. This narrative review describes various
strategies that have been investigated in the experimental setting to functionally
potentiate the therapeutic properties of MSCs for respiratory diseases. These
include changes in culture conditions, exposure of MSCs to inflammatory
environments, pharmacological agents or other substances, and genetic
manipulation for enhanced and sustained expression of genes of interest.
Future directions and challenges in efficiently translating MSC research into
clinical practice are discussed.
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1 Introduction

Respiratory diseases are primarily caused by genetic and environmental factors and/or social
behaviors that lead to lung inflammation, injury, and remodeling, resulting in progressive
deterioration of lung function and, ultimately, in respiratory failure (Aghasafari et al., 2019).
These diseases are major health concerns worldwide because they result in a high rate of

OPEN ACCESS

EDITED BY

Cassiano Felippe Gonçalves-de-
Albuquerque,
Rio de Janeiro State Federal University,
Brazil

REVIEWED BY

Dean Philip John Kavanagh,
University of Birmingham,
United Kingdom
Renata Szydlak,
Jagiellonian University Medical College,
Poland

*CORRESPONDENCE

Miquéias Lopes-Pacheco,
mlopes0811@gmail.com

Patricia R. M. Rocco,
prmrocco@gmail.com

SPECIALTY SECTION

This article was submitted to Respiratory
Pharmacology, a section of the journal
Frontiers in Pharmacology

RECEIVED 20 October 2022
ACCEPTED 06 March 2023
PUBLISHED 16 March 2023

CITATION

Lopes-Pacheco M and Rocco PRM
(2023), Functional enhancement
strategies to potentiate the therapeutic
properties of mesenchymal stromal cells
for respiratory diseases.
Front. Pharmacol. 14:1067422.
doi: 10.3389/fphar.2023.1067422

COPYRIGHT

© 2023 Lopes-Pacheco and Rocco. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 16 March 2023
DOI 10.3389/fphar.2023.1067422

https://www.frontiersin.org/articles/10.3389/fphar.2023.1067422/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1067422/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1067422/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1067422/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1067422/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1067422&domain=pdf&date_stamp=2023-03-16
mailto:mlopes0811@gmail.com
mailto:mlopes0811@gmail.com
mailto:prmrocco@gmail.com
mailto:prmrocco@gmail.com
https://doi.org/10.3389/fphar.2023.1067422
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1067422


morbidity and disability, and subject patients to substantial financial
and psychosocial burdens (Rehman et al., 2020; Soriano et al., 2020).
Moreover, chronic obstructive pulmonary disease (COPD) and lower
respiratory infections are two of the five leading causes of death
worldwide, claiming over 6 million lives in 2019 according to data
from the World Health Organization (World Health Organization,
2020). Despite remarkable progress in better understanding the
pathologic mechanisms underlying severe respiratory diseases, the
currently available therapies aim to alleviate symptoms and/or delay
their natural progressive course but are unable to reverse morphologic
and functional abnormalities already established in the lungs.

Mesenchymal stromal cells (MSCs) have been considered a
versatile source for cell-based therapies and are at the forefront
of the field of regenerative medicine. Based on the minimum criteria
stablished by the International Society of Cellular Therapy (ISCT),
human MSCs are multipotent progenitor cells that spontaneously
adhere to plastic under standard culture conditions; express CD73,
CD90, and CD105 cell-surface epitopes and lack CD14 (or CD11b),
CD34, CD45, and human leukocytic antigen (HLA)-DR; and are
able to differentiate in vitro into adipocytes, chondrocytes, and
osteoblasts using differentiation protocols (Horwitz et al., 2005;
Dominici et al., 2006). MSCs are present in virtually all tissues,
but the most common sources used are bone marrow (BM), adipose
tissue (AD), and umbilical cord (UC).

Over the past decade, an increasing body of literature has
demonstrated the potential of MSCs in promoting therapeutic
actions in various experimental models, such as acute respiratory
distress syndrome (ARDS) (Németh et al., 2009; Krasnodembskaya
et al., 2012; Silva et al., 2018; Lopes-Pacheco et al., 2020), allergic
asthma (Goodwin et al., 2011; Lathrop et al., 2014; Malaquias et al.,
2018; Castro et al., 2020), COPD/emphysema (Ingenito et al., 2012;
Antunes et al., 2014; Poggio et al., 2018; Antunes et al., 2021),
idiopathic pulmonary fibrosis (Cargnoni et al., 2012; Cahill et al.,
2016; Moroncini et al., 2018), and silicosis (Lopes-Pacheco et al.,
2013; Phinney et al., 2015; Lopes-Pacheco et al., 2016; Zhang et al.,
2018a). Key therapeutic actions of MSCs include
immunomodulation by inhibiting proliferation, maturation, and
differentiation of immune cells (de Castro et al., 2019); anti-
inflammatory, anti-apoptotic, and antimicrobial activities by
secreting paracrine/endocrine mediators (chemokines, cytokines,
growth factors, peptides, hormones, lipid mediators, mRNAs, and
microRNAs) (Lopes-Pacheco et al., 2020; Lopes-Pacheco et al., 2016;
da Silva et al., 2021) or by intercellular contact via ligand-receptor
recognition and extracellular vesicles (EVs) (Abreu et al., 2021); and
wound repair by secreting regenerative factors and transfer of
organelles, such as mitochondria (Paliwal et al., 2018; de
Carvalho et al., 2021).

The promising therapeutic actions of MSCs in experimental
models of respiratory diseases have prompted their assessment in
clinical investigations. Although MSC administration was well
tolerated and demonstrated a good safety profile, the potential
efficacy of MSCs was nevertheless limited (Weiss et al., 2013;
Morales et al., 2015; McIntyre et al., 2018; Matthay et al., 2019;
Aguiar et al., 2020). Such limited therapeutic effects have been
attributed to several factors, including in vitro senescence, low
number of MSCs infused, functional quiescence or low survival
rate of MSCs after the infusion, poor engraftment, and MSC
administration in the advanced stage of lung disease.

Accordingly, various strategies have been proposed to preserve
the stemness of MSCs as well as to functionally potentiate their
therapeutic actions. These strategies consist of physical,
chemical, and biological methods to condition cells before
infusion, and they are based on the biological phenomenon of
hormesis, i.e., brief exposure to low doses of an agent known to be
harmful at higher doses may lead to beneficial effects (Calabrese
et al., 2007). Alternatively, the therapeutic properties of MSCs
can be genetically manipulated by overexpressing genes related to
cell homing, survival, and immunomodulatory pathways,
regardless of exogenous stimuli. In this narrative review, we
describe several strategies that are under investigation in the
experimental setting for the functional potentiation of the
therapeutic properties of MSCs for respiratory diseases.
Challenges and future directions are also discussed to
efficiently translate MSC-based therapy into the clinical scenario.

2 Strategies to potentiate the
therapeutic properties of MSCs

Various strategies have been investigated over the past decade to
modulate the plasticity of MSCs and thus increase their survival,
homing, and therapeutic properties according to the targeted
diseases. These strategies include alterations in culture conditions
(O2 or CO2 concentration, heat shock, nutrient deprivation, and
others), exposure to inflammatory environments (cytokines/
chemokines, growth factors, combinations thereof, or biologically
relevant samples), pre-treatment with pharmacological or other
chemical molecules, and genetic engineering to manipulate the
expression levels of genes of interest (Figure 1).

2.1 MSC preconditioning by altering culture
conditions

The oxygen availability in MSC niches is significantly variable:
1%–7% in BM, 10%–15% in AD, and ≤5% in the female
reproductive tract and birth-related tissues, such as placenta, UC,
and Wharton’s jelly (WJ) (Amiri et al., 2015). However, MSCs are
usually cultured at a normal atmospheric concentration of oxygen
(21%O2), which may increase their susceptibility to oxidative stress-
induced cellular damage (Boregowda et al., 2012; Amiri et al., 2015;
Bétous et al., 2017).When cultured under hypoxia, MSCs exhibited a
higher proliferation rate and formed a greater number of colonies
compared with those cultured under normoxia (Lennon et al., 2001;
Fehrer et al., 2007; Choi et al., 2014; Kwon et al., 2017). Furthermore,
hypoxic conditions increased MSC stemness and migration (Das
et al., 2012; Saller et al., 2012) and increased the expression of growth
factors, such as vascular endothelial growth factor (VEGF),
fibroblast growth factor (FGF)-2, and hepatocyte growth factor
(HGF) (Choi et al., 2014; Lan et al., 2015; Gorin et al., 2016;
Almeria et al., 2019), but reduced the expression of senescence-
related β-galactosidase and pro-apoptotic markers (Fehrer et al.,
2007; Kwon et al., 2017), as well as lower telomerase shortening rates
(Lavrentieva et al., 2010).

Hypoxia-inducible factor (HIF)-1α, a master transcription
factor, is stabilized in MSCs under hypoxic conditions (Hu et al.,
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2008; Li et al., 2017), which promotes a metabolic switch from
oxidative phosphorylation to glycolysis and, consequently, decreases
generation of reactive oxygen species (ROS) (Estrada et al., 2012;
Sart et al., 2014a; Gonzalez-King et al., 2017; Contreras-Lopez et al.,
2020). This alteration triggers activation of protein kinase C (PKC),
which, in turn, activates nuclear factor kappa B (NF-κB) signaling
and upregulates anti-oxidant and anti-apoptotic molecules, such as
superoxide dismutase (SOD) and FGF-2 (Otani, 2004; Hu et al.,
2008; Afzal et al., 2010). Hypoxia-preconditioned MSCs also
demonstrated increased expression of chemokine receptors
CXCR4, CXCR7, and CX3CR1, which are associated with the
trafficking and homing of infused MSCs to the target organ
(Haque et al., 2013). BM-, AD- and UC-MSCs under hypoxia
demonstrated enhanced survival by upregulating Bag-1, Bcl-2,
and Bcl-XL via phosphorylation of AKT (Hu et al., 2008; Bader
et al., 2015) and by inhibiting oxidative stress-mediated apoptosis
via inactivation of caspase-3/-7 activity and lactate dehydrogenase
(LDH) release (Bader et al., 2015; Han et al., 2016a). Moreover, the
composition of protein and RNA cargo packaged in MSC-derived
EVs was substantially modified by hypoxic preconditioning
(Gonzalez-King et al., 2017; Yuan et al., 2019; Koch et al., 2022).
EVs from hypoxia-preconditioned BM-MSCs demonstrated
increased concentration of miR-21, which can regulate cell
survival by inhibiting apoptosis and stimulating proliferation
(Cui et al., 2018).

Most respiratory diseases cause gas exchange impairment,
therefore in vitro hypoxic preconditioning may adapt MSCs
against stress due to an ischemic environment in vivo and
increase their survival rate (Table 1). Compared with MSCs
under normoxia, hypoxia-preconditioned BM-MSCs
demonstrated increased expression of cytoprotective and
regenerative factors, leading to greater reduction of interleukin
(IL)-1β and IL-6 levels, airway constriction, lung edema, and
fibrosis in experimental bleomycin-induced lung fibrosis (Lan
et al., 2015). Hypoxia-preconditioned BM-MSCs were also
effective at reducing ROS production, apoptosis of lung
parenchymal cells and lung fibrosis in experimental radiation-
induced lung injury (Li et al., 2017). Therapeutic effects of
preconditioning with hypoxia were associated with increased
survival of infused BM-MSCs in lung tissue, and upregulation of
HIF-1α and AKT as well as SOD and HGF (Lan et al., 2015; Li et al.,
2017). In experimental ischemia/reperfusion-induced lung injury,
hypoxia-preconditioned BM-MSCs rapidly migrated toward injured
lung tissue and reduced cell apoptosis and inflammatory responses
related to ROS generation by upregulating glutathione,
prostaglandin (PG)E2, IL-10 and Bcl-2, and downregulating p38/
mitogen-associated protein kinase (MAPK) and the NF-κB signaling
pathway (Liu et al., 2017). Moreover, BM-MSCs co-cultured with
BM-derived lineage-positive blood cells under hypoxia have been
shown to promote proliferation and polarization of macrophages to

FIGURE 1
Comprehensive overview showing the production of preconditioned MSCs for pre-clinical and clinical use. Initially, the most therapeutically
effective MSC source should be identified for the target disease. After harvesting, cells should be properly characterized and expanded to maximize the
number of batches to be frozen. Preconditioning strategy should be selected to functionally potentiate MSC therapeutic properties. These strategies
include alteration in culture conditions (O2 or CO2 concentration, heat shock, nutrient deprivation, and others), exposure to inflammatory
conditions (cytokines/chemokines, growth factors, combinations thereof, or biologically relevant samples), pre-treatment with drugs or other
substances, and genetic engineering to manipulate expression levels of the gene of interest. The therapeutic abilities of these cells should be validated in
relevant experimental models for the subsequent assessment in clinical studies. To enhance the therapeutic outcomes, there are several MSC
administration conditions that need to be optimized, including the identification of the optimal dose, administration route, frequency and intervals, and
co-application with other therapies if necessary.
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TABLE 1 In vivo preclinical studies assessing the efficacy of MSC preconditioning by altering the culture conditions.

Preconditioning stimulus MSC
source

Model/disease Delivery
route

Regimen Key findings Reference

Hypoxia (1.5% O2) BM C57BL/6 mice, bleomycin-
induced lung fibrosis

i.t. 5 × 105 cells, 3 days after
injury

↑ HIF-1α, Bcl-2, catalase,
HO-1, and VEGF mRNA
levels, MSC viability, lung
function

Lan et al.
(2015)

↓ lung edema and fibrosis,
IL-1β, and IL-6 mRNA
levels

Hypoxia (2.5% O2) BM C57BL/6 mice, radiation-
induced lung injury

i.v. 2 × 106 cells, 2 h after
injury

↑ MSC viability and
retention in lung tissue,
glutathione, and SOD levels

Li et al. (2017)

↓ lung injury and fibrosis,
apoptosis rate, IFN-γ, and
TGF-β levels

Hypoxia (1% O2) BM Sprague-Dawley rats, ischemia/
reperfusion-induced lung
injury

i.v. 2.5 × 105 cells, 10 min
before the onset of
ischemia

↑ glutathione, PGE2, and
IL-10 levels

Liu et al. (2017)

↓ lung injury, edema and
airway pressure, cell
infiltration, MPO activity,
IL-1β, MIP-2, and TNF-α
levels, apoptosis rate

Hyperoxia (95% O2) BM Sprague-Dawley rats,
hyperoxia-induced
bronchopulmonary dysplasia

i.p. CM from 1.5 × 106 cells ↑ stanniocalcin-1 levels Waszak et al.
(2012)

↓ pulmonary arterial
hypertension, lung
structural abnormalities

Heat shock (42°C for 1 h) UC C57BL/6 mice, LPS-induced
pulmonary ARDS

i.n. 1 × 104 cells, 4 h after
injury

↑ Hsp70 levels Lv et al. (2021)

↓ lung injury and edema,
apoptosis rate, BALF cell
counts, IL-1β, IL-6, TNF-α,
and NLRP3 levels

96 h serum-free cell culture AD Sprague-Dawley rats, CLP-
induced polymicrobial sepsis

i.p. 1.2 × 106 cells, 30 min,
6 h, and 18 h after injury

↑ survival rate, 18-h systolic
blood pressure, oxygen
saturation, glutathione
peroxidase, and HO-1
mRNA levels

Chang et al.
(2012)

↓ 72-h AST and creatinine
levels, TNF-α, MMP-9, NF-
κB, and ICAM-1 mRNA
levels

Hypoxia (1% O2) followed by 12 h
serum-free cell culture

AD Sprague-Dawley rats, CLP-
induced polymicrobial sepsis

i.p. 1.2 × 106 cells, 30 min,
6 h, and 24 h after injury

↑ glutathione peroxidase
and HO-1 levels

Chen et al.
(2014)

↓ circulating T cell
populations, white blood
cell counts, IL-6 levels, lung
injury

Culture on lung ECM Lung Sprague-Dawley rats,
ventilator-induced lung injury

i.v. 4 × 106 cells/kg, 30 min
after injury

↓ lung elastance, BALF
protein concentration,
neutrophil and total cell
counts, TNF-α, and
CXCL2 levels

Nonaka et al.
(2020)

3D culture BM C57BL/6 mice, bleomycin-
induced lung fibrosis

i.n. 10 μg EVs from MSCs,
24 h after final bleomycin
challenge

↑ lung fibrosis Kusuma et al.
(2022)

↓ EV protein content, IDO
levels, and macrophage
phagocytosis activity

AD, adipose tissue; ARDS, acute respiratory distress syndrome; AST, aspartate aminotransferase; BALF, bronchoalveolar lavage fluid; BM, bone marrow; CLP, cecal ligation and puncture; CM,

conditioned media; EV, extracellular vesicle; HIF, hypoxia-inducible factor; HO, heme oxygenase; Hsp; heat shock protein; ICAM, intercellular adhesion molecule; IDO, indoleamine 2,3-

dioxygenase; IFN, interferon; IL, interleukin; i.n., intranasal; i.p., intraperitoneal; i.t., intratracheal; i.v., intravenous; LPS, lipopolysaccharide; MIP, macrophage inflammatory protein; MMP,

metalloproteinase; MPO, myeloperoxidase; MSC, mesenchymal stromal cell; NF-κB, nuclear factor κB, PGE, prostaglandin E; SOD, superoxide dismutase; TGF, transforming growth factor;

TNF, tumor necrosis factor; UC, umbilical cord; VEGF, vascular endothelial growth factor.
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the M2 anti-inflammatory profile (Takizawa et al., 2017). BM-MSCs
have also been shown to be resistant to a higher oxygen
concentration (95% O2). Administration of conditioned media
from hyperoxia-preconditioned BM-MSCs reduced pulmonary
hypertension and lung structural abnormalities in a model of
hyperoxia-induced neonatal lung injury (Waszak et al., 2012).
Such effects were associated with an increase in stannoclacin-1
expression, which has anti-apoptotic actions (Waszak et al.,
2012). On the other hand, hypercapnia is another pathologic
condition that occurs frequently in chronic respiratory diseases.
BM-MSCs cultured in 15% CO2 exhibited mitochondrial
dysfunction and were unable to promote repair of human
primary endothelial or small airway epithelial cells when co-
cultured (Fergie et al., 2019), indicating that hypercapnic
conditions may significantly hinder the therapeutic properties
of MSCs.

Other strategies that have been investigated to precondition
MSCs include heat shock and nutrient deprivation. Compared with
normothermic conditions, exposure of BM-MSCs to a higher
temperature (38.5°C) induced translocation of heat shock factor 1
(HSF-1) into the nucleus and increased cycloxygenase-2 (Cox-2)
expression, which might enhance the immunogenic potential of
MSCs (McClain-Caldwell et al., 2018). Heat shock-preconditioned
BM-MSCs also induced greater production of IL-10 by co-cultured
macrophages (McClain-Caldwell et al., 2018). Furthermore, BM-
MSCs under hyperthermia (42°C for 60 min) demonstrated
increased expression of heat shock protein (Hsp)27, Hsp70, and
Hsp90 (Moloney et al., 2012). These Hsps contribute to cell survival
by triggering the phosphoinositide 3-kinase (PI3K)/AKT,
extracellular signal-regulated kinases (ERKs), and NF-κB
signaling pathways, which upregulate expression of various anti-
oxidants, anti-apoptotic and regenerative factors, such as VEGF,
FGF-2, HGF, and insulin-like growth factor (IGF)-1 (Sart et al.,
2014b). In experimental lipopolysaccharide (LPS)-induced ARDS,
heat shock-preconditioned UC-MSCs reduced lung edema,
inflammatory cell counts, and levels of inflammation-associated
mediators (IL-1β, IL-6, tumor necrosis factor [TNF]-α) (Lv et al.,
2021). Such effects were associated with increased Hsp70 levels and
inhibition of NLRP3 inflammasome activation in alveolar
macrophages (Lv et al., 2021).

MSCs can be induced into a quiescent state by serum depletion,
which reduces nucleotide and protein synthesis and other ATP-
consuming functions, thus facilitating their survival in ischemic
environments (Moya et al., 2017; Ferro et al., 2019). BM-MSC
quiescence has been shown to maintain cell viability and
function for up 14 days in vitro as well as enhance their survival
after infusion in mice for up 7 days (Moya et al., 2017). BM-MSC
preconditioning with serum depletion inhibits the mammalian
target of rapamycin (mTOR), a master regulator of protein
translation and proliferation, and stimulates autophagy to protect
MSCs against deleterious ischemic conditions. When the autophagic
process was pharmacologically inhibited, there was a significant
decrease in the survival rate of BM-MSCs under ischemic conditions
in vitro (Moya et al., 2017). In another study, BM-MSCs were
maintained under serum-depleted culture for up 75 days. MSCs
transiently altered their morphology and behavior during serum
depletion, but maintained their stemness and survived in a quiescent
state (Ferro et al., 2019). Preconditioning with serum depletion was

found to induce Janus kinase/signal transducer and activator of
transcription (Jak/STAT) anti-apoptotic activity, and BM-MSCs
used lipid β-oxidation as an alternative energy source (Ferro
et al., 2019). On the other hand, AD-MSCs underwent apoptosis
by serum depletion, but were shown to increase levels of anti-
oxidant factors (glutathione peroxidase and HO-1) and reduce levels
of inflammation-related mediators (IL-1β, MIP-1α, and TNF-α),
yielding attenuated lung and heart injury and an improved survival
rate in experimental cecal ligation and puncture (CLP)-induced
sepsis (Chang et al., 2012; Chen et al., 2014).

Although MSCs are often maintained in two-dimensional (2D)
monolayer cultures, three-dimensional (3D) culture systems have
emerged as an interesting approach, because they may more closely
replicate the original physiologic properties of cells and thus
enhance their stemness (McKee and Chaudhry, 2017; Deng et al.,
2020). The differentiation potential and immunomodulatory
properties of MSCs can be influenced not only by soluble
bioactive factors and intercellular contact but also by the
presence of extracellular matrix (ECM) components, because
these elements can control cellular behavior during homeostasis
and disease progression (Deng et al., 2020; Raman et al., 2022).
Among the supporting materials for 3D cultures (also known as
spheroids), hydrogels have been the most commonly used in recent
investigations (Murua et al., 2008; McKee and Chaudhry, 2017).
Hydrogel encapsulation was able to enhance the viability and
proliferation rate of MSCs (Ansari et al., 2017), and
chondrogenic (Dvořáková et al., 2014) and osteogenic (Steinmetz
et al., 2015) differentiation, as well as promote neovascularization
(Chen et al., 2015a) and wound repair (Rustad et al., 2012). AD-
MSC spheroids have also been found to have greater levels of
pluripotency markers (i.e., CXCR4, Nanog, Sox2, and Oct4),
suggesting an increase in MSC stemness in the 3D configuration
(Cheng et al., 2013).

Compared with 2D monolayer cultures, MSC spheroids further
produced anti-inflammatory and regenerative mediators, including
PGE2, VEGF, and FGF-2 (Bhang et al., 2011; Ceccaldi et al., 2012;
Follin et al., 2016). MSC spheroids also stabilized HIF-1α and
upregulated levels of anti-apoptotic markers (e.g., Bcl-XL)
(Bartosh et al., 2010; Bhang et al., 2011). By using dynamic
methods with spinner flasks and a rotating bioreactor, BM-MSC
spheroids upregulated IL-24 levels, and their conditioned medium
was able to impair the viability of prostate cancer cells (Frith et al.,
2010). BM-MSCs were cultured in alginate-based hydrogels with
different stiffnesses and then exposed to TNF-α. BM-MSCs
preconditioned in the softer hydrogel demonstrated increased
clustering of TNF receptors, which led to greater NF-κB
activation and downstream responses by exposure to TNF-α
(Wong et al., 2020). In a recent study, lung derived MSCs were
cultured on lung ECM to biophysically precondition cells in a
microenvironment that resembles lung tissue. Administration of
preconditioned MSCs led to improved lung elastance and reduced
levels of TNF-α and CXCL2 in the bronchoalveolar lavage fluid
(BALF) of experimental ventilator-induced lung injury (Nonaka
et al., 2020). However, another study reported that 3D culture
conditions may hinder certain therapeutic properties of MSCs
(Kusuma et al., 2022). Compared with EVs obtained from 2D
MSC cultures, BM-MSC spheroid-derived EVs demonstrated
reduced anti-inflammatory and anti-fibrotic actions in
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TABLE 2 In vivo preclinical studies assessing the efficacy of MSC preconditioning in inflammatory conditions.

Preconditioning
stimulus

MSC
source

Model/disease Delivery
route

Regimen Key findings Reference

Poly I:C (TLR3 agonist) UC C57BL/6 mice, CLP-
induced polymicrobial
sepsis

i.v. 1 × 106 cells, 1 h after
injury

↑ MSC Cox-2, IDO, IL-6, and IL-8
mRNA levels, animal survival rate

Zhao et al.
(2014a)

↓ miR-143 levels, bacterial load, serum
CCL5, IL-6, KC, and TNF-α levels

LPS (TLR4 agonist) BM Sprague-Dawley rats, E.
coli-induced sepsis

i.v. 1 × 106 cells, 16 h
after injury

↑ LL-37 and hepcidin mRNA levels, mice
survival rate

Saeedi et al.
(2019)

↓ bacterial load, circulating lymphocyte
counts

Pam3CSK4 (TLR2 agonist) BM Mice, ovalbumin-induced
allergic asthma

i.v. 5 × 105 cells, on the
same day as
ovalbumin challenge

↓ serum IgG levels, BALF IL-4 and IL-5
levels, lung eosinophil counts, muc5ac
expression, and airway resistance

Yu and Chiang
(2018)

Flagellin (TLR5 agonist) AD BALB/c mice, LPS-induced
extrapulmonary ARDS

i.v. CM from cells, once
for 2 days before
injury

↑ macrophage polarization into
M2 profile, IL-10 levels

Li et al. (2020)

↓ IL-1, IL-6, and TNF-α mRNA levels,
lung proteinaceous exudate, BALF
neutrophil, macrophage and total cell
counts, lung injury

IFN-γ UC Sprague-Dawley rats, E.
coli-induced pulmonary
ARDS

i.v. EVs from 3.5–4 × 107

cells, 30 min after
injury

↑ rat survival rate, macrophage
phagocytosis activity, lung eNOS
expression

Varkouhi et al.
(2019)

↓ bacterial load, alveolar-arterial oxygen
gradient, BALF proteinaceous exudate
and TNF-α levels, lung injury

IFN-γ, IL-1β, or IL-12 BM C57BL/6 mice, pulmonary
ARDS induced by P.
aeruginosa or S. aureus

retro-orbital
sinus

1 × 106 cells, 24 h
after injury

↑ LL-37 levels Sutton et al.
(2016)

↓ bacterial load

IL-1β UC C57BL/6 mice, CLP-
induced polymicrobial
sepsis

i.v. 1 × 106 cells or
30 μg EVs, 4 h after
injury

↑ mice survival rate, IL-10 levels,
macrophage polarization into M2 profile

Song et al.
(2017)

↓ bacterial load, liver, lung and kidney
injury, ALT, AST, creatinine, IL-6 and
TNF-α levels

TGF-β1 UC Sprague-Dawley rats, LPS-
induced extrapulmonary
ARDS

i.v. 5 × 105 cells, 1 h after
injury

↓ lung edema, BALF proteinaceous
exudate

Li et al. (2016)

IL-1β/IFN-γ/TNF-α BM Sprague-Dawley rats,
ventilator-induced lung
injury

i.v. 1 × 107 cells, 6 h after
injury

↑ cell viability, PO2, static lung
compliance, KGF levels

Horie et al.
(2020a)

↓ IL-8 and NF-κB expression, LDH
release, lung injury and edema, IL-6
levels

Serum and BALF from
asthmatic mice

BM C57BL/6 mice, HMD-
induced allergic asthma

i.t. 1 × 105 cells, 24 h
after last HDM
challenge

↑ MSC apoptosis, IDO-1, IFN-γ, IL-
1RN, IL-10, TSG-6, and TGF-β mRNA
expression, macrophage polarization
into M2 profile

Abreu et al.
(2019a)

↓ IL-4, IL-13, and eotaxin levels, BALF
lymphocyte, macrophage, neutrophil
and total cell counts, lung collagen fiber
content, static lung elastance

Serum from ARDS mice BM C57BL/6 mice, LPS-
induced pulmonary and
extrapulmonary ARDS

i.v. 1 × 105 cells or EVs,
24 h after injury

MSCs were more effective than EVs
regardless of preconditioning with
serum

Silva et al.
(2019a)

Serum from injured
treated pigs

BM Yorkshire pigs, smoke
inhalation/burn-induced
ARDS

i.v. ~6 × 105 cells/kg,
30 min after injury

Strong PGE2-depdendent
immunomodulatory responses

Xu et al.
(2019)

(Continued on following page)
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experimental bleomycin-induced lung fibrosis. Reduced
macrophage phagocytosis activity was also observed after in vitro
incubation with BM-MSC spheroid-derived EVs. Proteomic
profiling revealed a significant reduction in the protein content of
MSC spheroid-derived EVs and in their global ontology using
functional enrichment analysis (Kusuma et al., 2022).

These studies demonstrate that changes in culture conditions
potentially have an impact on the therapeutic properties of MSCs.
Further studies should be performed to elucidate the potential effects
of these preconditioned methods for different respiratory diseases.
Moreover, the utility of 3D culture using different supporting
materials as a preconditioning method for MSC-based therapies
should be further investigated.

2.2 MSC preconditioning in an inflammatory
environment

There has been increasing interest in preconditioning MSCs in
an inflammatory environment by using cytokines/chemokines,
growth factors released under pro-inflammatory conditions, or
biologically relevant samples from patients, such as BALF and
serum (Table 2). Experimental evidence has indicated that MSCs
are able to detect the environmental inflammatory signals through
their damage- and pathogen-associated surface receptors and tailor
their responses according to these stimuli (Waterman et al., 2010; de
Castro et al., 2019; Islam et al., 2019). For instance, stimulation of
Toll-like receptor (TLR)3 and TLR4 induced generation of
regulatory T cells (Treg) in a cell contact-dependent manner
(Rashedi et al., 2017). Nevertheless, stimulation of TLR3 and
TLR4 led to subsequent activation of different downstream
signaling pathways, and MSCs were thus polarized into two
different profiles with significantly distinct responses (Waterman
et al., 2010). Activation of TLR3 with polyinosinic:polycytidylic acid
(poly I:C) led to an anti-inflammatoryMSC profile with activation of
the Notch signaling pathway and inhibition of TH1/TH17 cell

expansion (Rashedi et al., 2017) as well as production of
indoleamine 2,3-dioxygenase (IDO), IL-1RN, IL-4, and PGE2
(Waterman et al., 2010; Zhao et al., 2014a; Kim et al., 2018).
Poly I:C-preconditioned UC-MSCs also inhibited miR-143
expression and increased production of Cox-2 and macrophage
anti-inflammatory activity in experimental CLP-induced sepsis
(Zhao et al., 2014a). On the other hand, exposure of MSCs to
LPS (a TLR4 agonist) induced a pro-inflammatory MSC profile with
upregulation of IL-6, IL-8, and transforming growth factor (TGF)-β
(Waterman et al., 2010). Under inflammatory conditions,
preconditioning with LPS was found to improve BM-MSC
survival (Gupta et al., 2018; Saeedi et al., 2019). Furthermore,
when BM-MSCs were harvested from TLR4-deficient mice, they
demonstrated impaired survival under in vitro inflammatory
conditions and were therapeutically inefficient after infusion in
an animal model of Escherichia coli-induced ARDS (Gupta et al.,
2018).

The microenvironmental conditions of a disease may have a
different impact on MSC TLR activation in vivo, and MSCs express
various TLRs in addition to TLR3 and TLR4 (de Castro et al., 2019).
Activation of TLR2 inhibited chemotaxis of BM-MSCs and
mitigated MSC-mediated expansion of the Treg population
in vitro (Lei et al., 2011). In experimental ovalbumin-induced
allergic asthma, activation of BM-MSC TLR2 by the agonist
Pam3CSK4 led to a reduction in levels of BALF TH2 cytokines
(IL-4 and IL-5) and eosinophil counts in lungs, resulting in
attenuation of airway resistance in response to incremental doses
of methacholine (Yu and Chiang, 2018). Furthermore, activation of
UC-MSC TLR5 by flagellin promoted increased expression of
CCL24, IL-10, and TGF-β, whereas expression of CCL5 and IP-
10 was reduced (Li et al., 2015). Preconditioning with flagellin
enhanced the therapeutic actions of AD-MSCs, resulting in a
decrease in lung exudate, cell infiltration, and levels of
inflammation-associated mediators (IL-1, IL-6, monocyte
chemoattractant protein [MCP]-1 and TNF-α) in experimental
LPS-induced ARDS (Li et al., 2020). Conditioned media from

TABLE 2 (Continued) In vivo preclinical studies assessing the efficacy of MSC preconditioning in inflammatory conditions.

Preconditioning
stimulus

MSC
source

Model/disease Delivery
route

Regimen Key findings Reference

↑ IL-1RN, IL-4, IL-6, IL-10, and IL-13
levels

↓ TNF-α levels

Serum from ARDS
patients

BM C57BL/6 mice, LPS-
induced extrapulmonary
ARDS

i.v. 5 × 105 cells,
concomitant to
injury

↑ IL-10 levels Bustos et al.
(2013)

↓ serum IL-1β, IL-6, TNF-α levels, BALF
G-CSF, IL-2, and IL-6 levels,
lymphocyte, macrophage and neutrophil
cell counts, lung edema

BALF from ARDS
patients

BM C57BL/6 mice, LPS-
induced pulmonary ARDS

i.n. 2.5 × 105 cells or EVs,
4 h after injury

↑ macrophage polarization into
M2 profile

Morrison et al.
(2017)

↓ BALF neutrophil and total cell counts,
TNF-α levels, proteinaceous exudate

AD, adipose tissue; ARDS, acute respiratory distress syndrome; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BALF, bronchoalveolar lavage fluid; BM, bone marrow; CLP,

cecal ligation and puncture; Cox-2, cyclooxygenase-2; eNOS, endothelial nitric oxide synthase; EV, extracellular vesicle; G-CSF, granulocyte colony stimulating factor; IDO, indoleamine 2,3-

dioxygenase; IFN, interferon; IL, interleukin; i.n., intranasal; i.t., intratracheal; i.v., intravenous; KC, keratinocyte chemoattractant; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; MSC,

mesenchymal stromal cell; TGF, transforming growth factor; TLR, Toll-like receptor; TNF, tumor necrosis factor; TSG-6, TNF-stimulated gene 6; UC, umbilical cord.
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flagellin-preconditioned MSCs also induced macrophages to
polarize into an M2 anti-inflammatory profile (Li et al., 2020).

Under normal physiologic conditions, MSCs exhibit very low
expression of major histocompatibility complex (MHC) type I,
whereas type II is present intracellularly but absent on the cell
surface (Le Blanc et al., 2003). Upon interferon (IFN)-γ stimulation,
MHC class II and costimulatory factor (CD40, CD80, and CD86)
can traffic to the cell surface, but MSCs are still able to escape
recognition by alloreactive T cells and displayed enhanced
immunomodulatory activities (Le Blanc et al., 2003; Ankrum
et al., 2014; De Witte et al., 2016). Proteomic analysis revealed
that preconditioning with IFN-γ altered BM-MSC expression of
over 200 proteins, of which 169 were upregulated and 41 were
downregulated (Guan et al., 2017). Exposure of MSCs to IFN-γ led
to upregulation of IDO (De Witte et al., 2016; Wang et al., 2016;
Guan et al., 2017), several immunomodulatory mediators (CCL2,
HGF, PGE2, and TFG-β) (DeWitte et al., 2016), adhesion molecules
(ICAM-1 and VCAM-1) (Wang et al., 2016; Guan et al., 2017) and
chemokines (CXCL9, CXCL10, CXCL11) (Wang et al., 2016), and
promoted inhibition of NK cell activation (Noone et al., 2013) and
immunosuppressive effects on T lymphocytes (Krampera et al.,
2006). When IFN-γ blocking antibody was used, BM-MSC-
induced immunosuppression was abrogated (Krampera et al.,
2006). The protective effect of BM-MSCs against ovalbumin-
induced allergic asthma was also abrogated when cells were
infused in IFN-γ null mice (Goodwin et al., 2011). In another
study, preconditioning with IFN-γ inhibited mTOR signaling by
early phosphorylation of STAT1 and STAT3, increasing the ability
of BM-MSCs to suppress T cell proliferation (Vigo et al., 2017). IFN-
γ-preconditioned BM-MSCs were also effective at inhibiting T cell
proliferation and subsequent secretion of TH1 cytokines by
upregulating programmed cell death-1 ligands (PDL-1),
regardless of IDO upregulation (Chinnadurai et al., 2014).
Furthermore, when co-cultured with activated lymphocytes, IFN-
γ-preconditionedMSCs reduced TH17 cell counts and production of
IFN-γ and TNF-α (Wang et al., 2016). Although preconditioning
with IFN-γ also led to increased expression of MHC type I, it
significantly reduced the susceptibility of UC-MSCs to NK
cytotoxicity by reducing the cell surface expression of NKG2D
(Noone et al., 2013). In experimental E. coli-induced ARDS, EVs
from both naive and IFN-γ-preconditioned UC-MSCs were
similarly able to reduce mortality and improve bacterial killing
and phagocytosis (Varkouhi et al., 2019). However, EVs from
IFN-γ-preconditioned UC-MSCs were more effective at reducing
alveolar protein leak, TNF-α levels, and alveolar-arterial oxygen
gradient but enhanced production of endothelial nitric oxide
synthase (eNOS) (Varkouhi et al., 2019).

In addition to IFN-γ, TNF-α, IL-1β, and IL-17 have been
identified as key inflammatory cytokines to enhance the
therapeutic properties of MSCs before infusion. Preconditioning
with TNF-α promoted upregulation of several immunomodulatory
factors in MSCs, including IDO, HGF, PGE2, and TNF-α-stimulated
gene 6 (TSG-6), although to a lesser extent in comparison with MSC
preconditioning with IFN-γ (English et al., 2007; Prasanna et al.,
2010; De Witte et al., 2016). Nevertheless, preconditioning with
TNF-α had superior effects on migration of BM- and UC-MSCs and
secretion of IL-8 in comparison with preconditioning with IFN-γ
(Hemeda et al., 2010). In experimental CLP-induced sepsis, infusion

of BM-MSCs exposed to TNF-α neutralizing antibody or harvested
from TNF-R1 knockout mice was unable to protect against the
deleterious effects of sepsis (Németh et al., 2009). Conditioned
media from TNF-α-preconditioned BM-MSCs induced Cox-2/
PGE2 signaling activation and led to inhibition of B-cell IgE
production and histamine release, thus alleviating allergic
symptoms (Su et al., 2015). On the other hand, global
transcriptome profiling of IL-1β-preconditioned BM-MSCs
revealed upregulation of several genes related to NF-κB signaling
and its downstream responses, namely, cell survival, migration,
cytokine production, angiogenesis, and immune responses
(Carrero et al., 2012). IL-1β-preconditioned UC-MSCs
demonstrated higher migration to inflammatory foci and led to
increased percentages of Treg and TH2 cells and decreased TH1 and
TH17 cell counts in mesenteric lymph nodes and spleen (Fan et al.,
2012). BM-MSCs preconditioned with IL-1β, IL-12, or IFN-γ also
demonstrated increased secretion of the antimicrobial peptide LL-
37, thus significantly reducing the rate of growth of Pseudomonas
aeruginosa, Staphylococcus aureus, and Streptococcus pneumonia
(Sutton et al., 2016). Furthermore, preconditioning with IL-1β
was reported to potentiate gingival derived-MSC
immunomodulatory and wound repair properties by upregulating
expression of TGF-β and matrix metalloproteinases (MMPs)
(Magne et al., 2020). In another study, IL-1β-preconditioned UC-
MSCs produced EVs with high levels of miR-146a, which resulted in
M2 polarization when transferred to BM-derived macrophages
in vitro (Song et al., 2017). Administration of IL-1β-
preconditioned UC-MSCs led to decreased serum levels of IL-6,
TNF-α, alanine aminotransferase and aspartate aminotransferase,
and liver, lung, and kidney injury and increased bacterial clearance
and survival in experimental CLP-induced sepsis (Song et al., 2017).

Differentiation and proliferation of MSCs have been modulated
by preconditioning with IL-17 in a dose-dependent manner (Huang
et al., 2009; Sivanathan et al., 2015). These effects were associated
with the generation of ROS from stimulation of TNF receptor-
associated factor 6 (TRAF-6) and the Act-1 adaptor that activated
the MEK/ERK signaling pathway (Huang et al., 2009). MSC
preconditioning with IL-17 also promoted greater osteogenic
differentiation and MSC migration by increasing expression of
CXCL6, MMP1, and MMP13 (Huang et al., 2009; Noh, 2012;
Sivanathan et al., 2015) and inhibited adipogenic differentiation
by upregulating IL-6 and IL-8 upon differentiation (Shin et al.,
2009). The immunosuppressive potential of BM-MSCs was
enhanced by preconditioning with IL-17, leading to inhibition of
effector T cell proliferation and decreased secretion of TH1 cytokines
(IFN-γ, IL-2, and TNF-α) and promoted Treg cell expansion
(Sivanathan et al., 2015; Sivanathan et al., 2017). Furthermore,
IL-17-preconditioned BM-MSCs demonstrated expression of
MHC class I, II and costimulatory molecules comparable with
that of naive MSCs, indicating they maintained a
hypoimmunogenic profile (Sivanathan et al., 2017).

Growth factors have also been considered as preconditioning
factors to enhance the therapeutic properties of MSCs. In this
context, preconditioning with TGF-β promoted BM-MSC
mobilization and migration during bone remodeling and
facilitated peripheral tissue healing via the non-canonical Smad-
independent signaling pathway (Dubon et al., 2018). TGF-β-
preconditioned UC-MSCs demonstrated an extended period of
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survival in the lungs of experimental LPS-induced ARDS, and
reduced lung edema and BALF neutrophil counts (Li et al.,
2016). Furthermore, preconditioning with FGF-2 enhanced the
angiogenic properties of dental pulp-derived MSCs by increasing
expression of HGF and VEGF more efficiently than hypoxia
preconditioning (Gorin et al., 2016). In addition to a single
cytokine or growth factor, preconditioning with a cocktail of
inflammatory mediators has been investigated. For instance, IFN-
γ and TNF-α were found to work synergistically in enhancing the
immunomodulatory properties of MSCs. MSC preconditioning with
both cytokines led to inhibition of complement activation by
increasing the production of factor H in a time- and dose-
dependent manner (Tu et al., 2010). IFN-γ and TNF-α promoted
chromatin remodeling closer to the transcriptional start site for
IDO1, which remained altered even during cryopreservation
(Gonzalez et al., 2016). After thawing, previously preconditioned
BM-MSCs demonstrated quick accumulation of high levels of
IDO1 mRNA upon re-exposure to these cytokines (Gonzalez
et al., 2016). BM-MSC preconditioning with IFN-γ/TNF-α
increased IDO activity, which promoted monocyte differentiation
into M2 anti-inflammatory macrophages, which, in turn, induced
suppression of T cell proliferation (François et al., 2012a). Exposure
of BM-MSCs to IFN-γ/TNF-α led to secretion of PD-1 ligands (PD-
L1 and PD-L2), which downregulated IL-2 and suppressed CD4+

T cell activation, inducing immunosuppression by irreversible
hyporesponsiveness and subsequent apoptosis (Davies et al.,
2017). In another study, inhibition of T cell proliferation by IFN-
γ/TNF-α-preconditioned BM-MSCs was associated with
upregulation of NOS2 and subsequent increase in NO generation
as well as attenuation of delayed hypersensitivity reactions (Szabó
et al., 2015).

Several other cocktails of inflammatory mediators have been
used to precondition MSCs. Compared with preconditioning with
IFN-γ/TNFα, exposure of nasal mucosa-derived MSCs to IL-1β/
IFN-γ/TNFα enhanced neutrophilia by further increasing IL-8
secretion in a mechanism mediated by activation of STAT5 and
p38/MAPK signaling (Hackel et al., 2021). On the other hand, IL-1β/
IFN-γ/TNFα-preconditioned BM-MSCs reduced structural
abnormalities and inflammation in lungs and restored
oxygenation and improved lung compliance in experimental
ventilator-induced lung injury (Horie et al., 2020a). The
enhanced epithelial wound repair was mediated in part by
keratinocyte growth factor (KGF) secretion (Horie et al., 2020a).
In another study, IL-1β/TNFα-preconditioned BM-MSCs
prolonged graft survival by stimulating lung-derived myeloid cells
to inhibit lymphocyte proliferation and promote Treg cell expansion
(Murphy et al., 2019). Immunosuppressive actions of BM-MSCs
were also remarkably increased by preconditioning with IL-17/IFN-
γ/TNF-α in an inducible NO synthase (iNOS)-induced mechanism
(Han et al., 2014). LPS and TNF-α acted synergistically and
increased arginase-1 and PGE2 secretion by preconditioned
MSCs. LPS/TNF-α-preconditioned BM-MSCs also induced
macrophage polarization in vitro to an M2 profile and improved
osteogenesis (Croes et al., 2015; Lin et al., 2017). IL-1β/IL-6/IL-23-
preconditioned AD- and BM-MSCs displayed no changes in
morphology, immunophenotype, and costimulatory factors, with
an exception for upregulation of CD45. Furthermore, MSC
immunomodulatory activity was well preserved with increased

IL-10 secretion and decreased IL-4 after preconditioning with IL-
1β/IL-6/IL-23 (Pourgholaminejad et al., 2016).

To more closely replicate lung inflammatory milieu, BALF and
serum from animal models or patients with inflammatory lung
conditions have been used as surrogates in MSC preconditioning.
Exposure of MSCs to BALF from patients with cystic fibrosis (CF)
infected with Aspergillus sp. induced rapid MSC apoptosis partly
related to the presence of fungal-produced gliotoxin, which led to
mitochondrial dysfunction (Abreu et al., 2020). RNA analysis
revealed differential expression of transcripts involved in IFN
signaling, antimicrobial activity, and cell death by MSCs exposed
to CF BALF positive versus negative to Aspergillus infection (Abreu
et al., 2020). BM-MSCs were also induced to undergo apoptosis by
exposure to either BALF or serum from experimental house dust
mite (HDM)-induced allergic asthma, and this process increased
expression of immunomodulatory mediators (IDO-1, IFN-γ, IL-
1RN, IL-10, TSG-6, and TGF-β) (Abreu et al., 2019a). Serum was
more effective than BALF in preconditioning BM-MSCs and led to a
significant reduction in lung inflammatory cell counts and levels of
TH2 cytokines (IL-4 and IL-13) and eotaxin, and lung function
improved in a murine model of HDM-induced allergic asthma
(Abreu et al., 2019a).

BM-MSCs were preconditioned with serum from experimental
LPS-induced ARDS and their EVs were harvested. Regardless of
preconditioning with serum, MSCs and EVs were able to reduce
levels of inflammation-related mediators (IL-6, keratinocyte
chemoattractant [KC], TGF-β, TNF-α), alveolar collapse, and
BALF inflammatory cell counts (Silva et al., 2019a). Nevertheless,
MSCs were more effective than EVs in reducing lung edema and
fibrosis, resulting in improved lung function in both experimental
pulmonary and extrapulmonary ARDS (Silva et al., 2019a). A
significant immunomodulatory response in a PGE2-dependent
mechanism was observed when BM-MSCs were reconditioned
with serum from porcine smoke inhalation/burn-induced ARDS
treated with MSCs (Xu et al., 2019). BM-MSCs were also
preconditioned with serum from patients with moderate to
severe ARDS, which contained high levels of IL-6, IL-8, and IL-
10 (Bustos et al., 2013). After preconditioning with serum, BM-
MSCs demonstrated enhanced expression of IL-1RN and IL-10
in vitro and significantly reduced BALF inflammatory cell counts,
lung injury, and vascular permeability in experimental LPS-induced
ARDS (Bustos et al., 2013).

BALF from either patients with ARDS or health controls (HC)
demonstrated no cytotoxicity toMSCs, but they clearlymodulatedMSC
expression of various pro- and anti-inflammatorymediators (Enes et al.,
2021). IL-1β inHC andARDS BALFwas predictive ofMSC production
of certain pro-inflammatory mediators, such as IL-6 and IL-8. MSCs
exposed to HC BALF, but not to ARDS BALF, demonstrated increased
expression of HLA class II factors, suggesting that MSCs can be
stimulated by normal lung milieu to cooperate in immune
surveillance (Enes et al., 2021). Another study demonstrated that
preconditioning with ARDS BALF promoted anti-inflammatory
actions of BM-MSCs and in vitro macrophage phagocytosis activity
(Morrison et al., 2017). Nevertheless, conditioned media from ARDS
BALF-preconditioned BM-MSCs were less effective in promoting
monocyte polarization to an anti-inflammatory profile than
conditioned media from CF BALF-preconditioned MSCs (Abreu
et al., 2019b).
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These studies demonstrate that disease environmental
conditions have a major impact on MSC survival and
immunomodulatory activities, and the microenvironments in
certain diseases (or sub-phenotypes) may be more suited to
facilitating MSC activation and promoting optimal MSC
therapeutic actions.

2.3 MSC preconditioning with
pharmacological agents or other substances

In preclinical research, MSCs have been preconditioned with a
range of drugs or other chemical agents not only to enhance their

therapeutic properties and homing but also to improve their survival
rate and resistance against any harmful stimuli they may encounter
(Table 3). For instance, exposure of MSCs to sub-lethal doses of
H2O2 (≤50 µM) was shown to increase their resistance against a
lethal concentration of this chemical agent (Sart et al., 2014b). BM-
MSCs exposed to low doses of H2O2 exhibited increased expression
of CXCR4 and migration-mediated stromal cell-derived factor
(SDF)-1α (Li et al., 2009). H2O2-preconditioned BM-MSCs were
also protected against apoptosis induced by a higher concentration
of H2O2 (500 µM) due to activation of the ERK pathway, which
upregulated anti-apoptotic factors such as Bcl-2 and Bcl-XL (Li et al.,
2009; Sart et al., 2014b). In AD-MSCs, long-term exposure to a low
dose (10 µM) of H2O2 led to increased survival by upregulating

TABLE 3 In vivo preclinical studies assessing the efficacy of MSC preconditioning with pharmacological agents or other substances.

Preconditioning
stimulus

MSC
source

Model/Disease Delivery
route

Regimen Key findings Reference

H2O2 UC C57BL/6 mice,
bleomycin-induced
lung fibrosis

i.t. 2 × 105 cells, 7 days
after injury

↑ normal alveolar space Mahmoudi
et al. (2020)

↓ lung fibrosis, TGF-β1 and α-SMA
expression, MPO activity

Pyrogallol UC Sprague-Dawley rats,
LPS-induced
pulmonary ARDS

i.v. 1 × 107 cells, 2 h
before LPS
challenge

↑ Bcl-2 expression, Nrf2 and HO-1 levels Zhang et al.
(2022)

↓ lung injury, apoptosis rate and Bax
expression, MPO activity, IL-6, IL-8,
MCP-1, and TNF-α levels

ATRA BM C57BL/6 mice, elastase-
induced emphysema

i.v. 2 × 105 cells, 21 days
after injury

↑ lung static elastance, MSC retention Takeda et al.
(2018)

↓ alveolar hyperinflation

Pioglitazone AD C57BL/6 mice, cigarette
smoke-induced
emphysema

i.t. 1 × 105 cells,
6 months after
injury

↑ lung epithelial cell proliferation, FGF-2,
HGF, and VEGF levels

Hong et al.
(2016)

↓ alveolar hyperinflation, caspase-3/-
7 activity

Oncostatin M BM C57BL/6 mice,
bleomycin-induced
lung fibrosis

i.t. 2 × 105 cells, 3 days
after injury

↑ HGF mRNA levels, wound closure, lung
function

Lan et al.
(2017)

↓ fibronectin, collagen I, IL-1β and IL-6
mRNA levels, lung edema and fibrosis,
BALF neutrophil and total cell counts

N-Acetylcysteine Embryonic BALB/c, bleomycin-
induced lung fibrosis

i.v. 2 × 105 cells, 24 h
after injury

↑ mice survival rate Wang et al.
(2013a)

↓ lung injury and fibrosis, BALF
macrophage, neutrophil and lymphocyte
counts, IL-1β, IL-6, and TNF-α levels

EPA BM C57BL/6 mice, HMD-
induced allergic asthma

i.t. 1 × 105 cells, 24 h
after last HDM
challenge

↑RvD1, PGE2, IL-10, and TGF-β levels,
lung function

Abreu et al.
(2018)

↓ BALF IL-4, IL-13, and VEGF levels,
eosinophil, macrophage, lymphocyte and
neutrophil cell counts, alveolar collapse,
airway resistance, lung fibrosis, and
mucus-producing cell counts

EPA AD C57BL/6 mice, CLP-
induced polymicrobial
sepsis

i.v. 1 × 105 cells, 24 h
after injury

↑ RvD1, PGE2, IL-10, and TGF-β levels,
mice survival rate, lung function, VEGF
levels

Silva et al.
(2019b)

↓ sepsis severity score, lung inflammation,
fibrosis and edema, alveolar collapse, IL-
1β and KC levels, distal organ injury

AD, adipose tissue; ARDS, acute respiratory distress syndrome; ATRA, all-trans retinoic acid; BALF, bronchoalveolar lavage fluid; BM, bone marrow; CLP, cecal ligation and puncture; EPA,

eicosapentaenoic acid; HGF, hepatocyte growth factor; HO, heme oxygenase; IL, interleukin; i.t., intratracheal; i.v., intravenous; KC, keratinocyte chemoattractant; LPS, lipopolysaccharide;

MCP, monocyte chemoattractant protein; MPO, myeloperoxidase; MSC, mesenchymal stromal cell; Nrf2; nuclear factor-erythroid 2-related factor 2; RvD, resolvin D; SMA, smooth muscle

actin; TGF, transforming growth factor; TNF, tumor necrosis factor; UC, umbilical cord; VEGF, vascular endothelial growth factor.
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nuclear factor-erythroid 2-related factor 2 (Nrf2) and several anti-
oxidant mediators (catalase, glutathione peroxidase-1, heme
oxygenase (HO)-1 and SOD) but reduced intracellular ROS levels
and expression of Cox-2 and IL-1β (Garrido-Pascual et al., 2020).
Administration of H2O2-preconditioned UC-MSCs reduced lung
remodeling by attenuating expression of α-smooth muscle actin (α-
SMA) and TGF-β as well as myeloperoxidase (MPO) activity in
experimental bleomycin-induced lung fibrosis (Mahmoudi et al.,
2020). Preconditioning with pyrogallol was also able to enhance UC-
MSC therapeutic properties via activation of the Nrf2/HO-
1 signaling pathway, leading to a reduction of lung injury,
epithelial cell apoptosis, MPO activity, and levels of
inflammation-associated mediators (IL-6, IL-8, MCP-1, and TNF-
α) in experimental LPS-induced ARDS (Zhang et al., 2022).

AlthoughMSCs are subjected to the lung first-pass effect and are
thus easily trapped in pulmonary capillaries after systemic infusion
(Fischer et al., 2009), their retention in lung tissue rarely exceeds a
few days (Leblond et al., 2009; Wang et al., 2009; De Oliveira et al.,
2017; de Witte et al., 2018). As MSC engraftment is primarily
mediated by the interaction between CXCR4 and SDF-1 (Jin
et al., 2018), pharmacological modulation of these may enable
improved MSC homing to injured tissues. UC-MSC
preconditioning with low doses of valproic acid, a histone
deacetylase inhibitor, enhanced MSC recruitment to injury sites
by upregulating CXCR4 and increased MSC anti-inflammatory
responses (Marquez-Curtis et al., 2014; Lim et al., 2017).
Preconditioning with rapamycin, ethionamide, or the DNA
methyltransferase inhibitor, 5-azacytidine, was able to increase
MSC CXCR4 expression, thus improving the migration ability
of UC- and WJ-MSCs (Lee et al., 2015; Zheng et al., 2019; Lee
et al., 2020). When co-cultured with activated T cells, rapamycin- or
5-azacytidine-preconditioned MSCs demonstrated
immunosuppressive properties by upregulating Cox-2 and PGE2
(Lee et al., 2015; Wang et al., 2017). BM-MSC homing and
CXCR4 expression were also increased by resveratrol treatment
before preconditioning with SDF-1α (Hajinejad et al., 2018). In
addition to these compounds, screening of ~9000 signal-
transduction modulators was performed to identify novel
compounds able to enhance MSC surface expression of homing
ligands (Levy et al., 2015). In this context, preconditioning with Ro-
31-8425 enabled the in vivo delivery BM-MSCs to inflammatory
sites in a CD11a-dependent mechanism (Levy et al., 2015).

Desferrioxamine and 2,4-dinitrophenol, two hypoxia-mimetic
agents, were able to enhance MSC homing and immunomodulatory
actions (Najafi and Sharifi, 2013; Khan et al., 2016). BM-MSCs
preconditioned with 2,4-dinitrophenol exhibited increased
expression of genes related to cell adhesion and angiogenesis
(Khan et al., 2016); preconditioning of BM-MSCs with low doses
of desferrioxamine led to stabilization of HIF-1α by preventing its
hydroxylation, decreased mitochondrial activity and apoptosis, and
upregulation of glycolysis-related genes (Fujisawa et al., 2018).
Short-term exposure of BM-MSCs to the volatile anesthetic
isoflurane also increased expression of HIF-1α, CXCR4, and
SDF-1 (Sun et al., 2015). On the other hand, exposure of BM-
MSCs to curcumin, a natural dietary product, and subsequent
hypoxia improved cell survival and promoted mitochondria
fusion (Wang et al., 2020). Preconditioning with curcumin/
hypoxia suppressed BM-MSC apoptosis by mitigating

cytochrome c release from the mitochondria and caspase-3
cleavage (Wang et al., 2020). Moreover, curcumin/hypoxia-
preconditioned BM-MSCs accelerated wound repair in vivo
(Wang et al., 2020). Although these preconditioning strategies led
to more MSCs moving into and remaining in certain injured tissues
longer, their efficacy for respiratory diseases has yet to be assessed.

All-trans retinoic acid (ATRA) regulates transcription of genes
related to apoptosis, differentiation, and immune responses.When BM-
MSCs were preconditioned with ATRA, there was increased expression
of Cox-2, CXCR4, CCR2, HIF-1, angiopoietin (Ang)-2, and Ang-4,
which was abrogated by Cox-2 inhibition (Pourgholaminejad et al.,
2016). BM-MSCs preconditioned with ATRA also demonstrated
enhanced potential of wound repair in vivo (Pourgholaminejad
et al., 2016). In this context, preconditioning with ATRA promoted
in vitro activation of BM-MSC p70S6 kinase-1 and led to significant
improvements in lung structure (mean linear intercepts and alveolar
surface area) and function (static lung compliance) after infusion of
ATRA-preconditioned MSCs in experimental elastase-induced
emphysema (Takeda et al., 2018). AD-MSCs preconditioned with
pioglitazone, an antidiabetic drug that binds to peroxisome
proliferator-activated receptor (PPAR)-γ, also enhanced lung tissue
repair and upregulated VEGF in vitro (Hong et al., 2016). In
experimental emphysema induced by cigarette smoke,
administration of pioglitazone-preconditioned AD-MSCs led to
mitigation of lung structure abnormalities measured by mean linear
intercepts and increased expression of several growth factors (FGF-2,
HGF, and VEGF) (Hong et al., 2016).

Screening of a library containing over 1400 bioactive
compounds approved by the US Food and Drug Administration
identified tetrandrine, a calcium channel inhibitor, as a potential hit
for MSC preconditioning. In vitro exposure of BM-MSCs to
tetrandrine increased expression of PGE2 by the NF-κB/Cox-
2 signaling pathway and attenuated TNF-α secretion by LPS-
activated macrophages (Yang et al., 2016). Furthermore,
preconditioning with oncostatin M was effective in promoting
BM-MSC migration and increasing HGF expression (Lan et al.,
2017). BM-MSCs preconditioned with oncostatin M improved lung
function and reduced lung edema, inflammatory cell counts, and
fibrosis in bleomycin-induced lung fibrosis and reduced mRNA
expression of fibronectin and type I collagen in co-cultured
fibroblasts (Lan et al., 2017). The anti-oxidant ability of MSCs
preconditioned with the mucolytic agent N-acetylcysteine
improved in vitro, leading to increased cellular glutathione levels
and attenuated ROS generation (Wang et al., 2013a). In
experimental bleomycin-induced lung fibrosis, MSCs
preconditioned with N-acetylcysteine reduced lung inflammation
and fibrosis, BALF inflammatory cell counts, and levels of
inflammation-associated mediators (IL-1β, IL-6, and TNF-α),
which resulted in a significant improvement in the survival rate
(Wang et al., 2013a).

The omega-3 fatty acid eicosapentaenoic acid (EPA) is another
agent that can improve the therapeutic properties of MSCs.
Preconditioning with EPA increased the formation of lipid bodies
in vitro and secretion of resolvin-D1, PGE2, IL-10, and TGF-β by
AD- and BM-MSCs without affecting cell viability (Abreu et al.,
2018; Silva et al., 2019b). BM-MSCs preconditioned with EPA
decreased BALF inflammatory cell counts, levels of
TH2 cytokines (IL-4 and IL-13), lung fibrosis, and the presence
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TABLE 4 In vivo preclinical studies assessing the efficacy of genetically engineered MSCs.

Gene
manipulated

MSC
source

Model/Disease Delivery
route

Regimen Key findings Reference

CXCR4 BM Sprague-Dawley rats, LPS-
induced extrapulmonary ARDS

i.v. 1 × 106 cells, 1 h
after injury

↑ MSC migration and homing in
lung tissue, IL-10 levels

Yang et al. (2015)

↓ BALF neutrophil counts, IL-6 and
TNF-α levels, lung injury and edema

EP2 BM C57BL/6 mice, LPS-induced
pulmonary ARDS

i.v. 5 × 105 cells, 4 h
after injury

↑MSC retention in lung tissue, IL-10
levels, mice survival rate

Han et al. (2016b)

↓ lung injury and edema, IL-1β and
TNF-α levels

ROR2 BM C57BL/6 mice, LPS-induced
pulmonary ARDS

i.t. 5 × 105 cells, 4 h
after injury

↑MSC retention in lung tissue, KGF
and IL-10 levels

Cai et al. (2016)

↓ lung injury and fibrosis, BALF
proteinaceous exudate, IL-1β and IL-
6 levels

HO-1 BM FVB/n mice, hypoxia-induced
pulmonary arterial hypertension

i.v. 5 weeks after
injury

↑ IL-10 levels Liang et al. (2011)

↓ right ventricular systolic pressure,
lung vascular remodeling, CCL2 and
IL-6 levels

HO-1 BM Wistar rats, LPS-induced
pulmonary ARDS

i.v. 1 × 106 cells, 2 h
after injury

↑ animal survival rate, HGF, KGF,
and IL-10 levels, MSC retention in
lung tissue

Chen et al. (2019)

↓ lung injury and edema, BALF
neutrophil and total cell counts, IL-
1β and TNF-α levels, TLR4, MyD88,
and TRIP levels

Nrf2 Amniotic
membrane

C57BL/6 mice, LPS-induced
pulmonary ARDS

i.v. 1 × 106 cells, 4 h
after injury

↑ IL-10 levels, MSC retention in lung
tissue

Zhang et al. (2018b)

↓ lung injury, edema and fibrosis,
epithelial cell apoptosis, IL-1β and
IL-6 levels

SOD BM Non-obese diabetic/severe
combined immunodeficiency
mice, radiation-induced lung
injury

i.v. 1 × 106 cells, 4 h
after injury

↑ animal survival rate, IL-10 levels Chen et al. (2017a)

↓ lung injury, edema and fibrosis,
epithelial cell apoptosis, IL-1β, IL-6,
TNF-α, TGF-β, and MDA levels

IL-10 BM C57BL/6 mice, LPS-induced
pulmonary ARDS

i.t. 1 × 106 cells, 4 h
after injury

↑ animal survival rate Wang et al. (2018a)

↓ BALF proteinaceous exudate and
TNF levels

IL-10 UC Sprague-Dawley rats, E. coli-
induced pulmonary ARDS

i.v. 1 × 107 cells, 1 h
after injury

↑ animal survival rate, static lung
compliance, macrophage
phagocytosis activity

Jerkic et al. (2019)

↓ BALF proteinaceous exudate,
bacterial load, IL-6, MCP-1, and
TNF-α levels, lung injury

IL-10 and/or HGF BM C57BL/6 mice, HCl-induced lung
injury

i.t. and i.v. 1 × 106 cells,
5 min after
injury

↓ lung inflammation and injury, IL-
6, TNF-α, IL-1β, MCP-1,
fibronectin, and fibrinogen levels

Islam et al. (2019)

IL-1RL1 AD BALB/c mice, LPS-induced
pulmonary ARDS

i.v. 1 × 106 cells, 6 h
after injury

↑ IL-10 mRNA levels Martínez-González
et al. (2013)

↓ IL-33, TLR4, IL-1β, and IFN-γ
mRNA levels, BALF neutrophil
counts and proteinaceous exudate,
lung injury

Del-1 BM C57BL/6 mice, LPS-induced
extrapulmonary ARDS

i.v. 5 × 106 cells, 1 h
after injury

Zhao et al. (2014b)

(Continued on following page)
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of mucus-producing cells, and improved lung function in
experimental HDM-induced allergic asthma (Abreu et al., 2018).
Administration of MSCs preconditioned with EPA also promoted
polarization of lung macrophages to an M2 anti-inflammatory
profile (Abreu et al., 2018). In experimental CLP-induced sepsis,
preconditioning of AD-MSCs with EPA led to a reduction of lung
inflammation, edema and alveolar collapse, and levels of IL-1β, KC,
and TGF-β, and increased VEGF levels and improved lung function
(Silva et al., 2019b). Moreover, administration of AD-MSCs
preconditioned with EPA reduced tissue injury not only in lungs
but also in distal organs, thus resulting in a decrease in sepsis severity
score and improvement in the survival rate (Silva et al., 2019b).

Overall, MSC preconditioning with drugs and other substances
is an interesting approach and has been demonstrated to enhance
MSC homing and immunomodulatory actions. However, there are
still limited data on MSC preconditioning with each drug for
respiratory diseases, and further studies are warranted.

2.4 Potentiation of MSC therapeutic
properties by genetic engineering

Genetic engineering has been used extensively in experimental
research not only to enhance the beneficial effects of therapies but

TABLE 4 (Continued) In vivo preclinical studies assessing the efficacy of genetically engineered MSCs.

Gene
manipulated

MSC
source

Model/Disease Delivery
route

Regimen Key findings Reference

↓ lung injury and edema, neutrophil
counts, IL-6 and TNF-α levels, MPO
activity

ACE2 UC C57BL/6 mice, bleomycin-
induced lung fibrosis

↓ lung injury and fibrosis, IL-1, IL-6,
IFN-γ, TNF-α, and TGF-β levels

Min et al. (2015)

ACE2 BM C57BL/6 mice, LPS-induced
pulmonary ARDS

i.v. 5 × 105 cells, 4 h
after injury

↑ MSC retention in lung tissue,
BALF IL-10 levels

He et al. (2015)

↓ lung injury, vascular permeability,
angiotensin II expression, BALF
neutrophil and total cell counts, IL-
1β, IL-6, and iNOS levels

Ang-1 BM C57BL/6 mice, LPS-induced
pulmonary ARDS

i.v. 2.5 × 105 cells,
30 min after
injury

↓ BALF neutrophil and total cell
counts, IFN-γ, TNF-α, and IL-1β
levels, IgM and albumin levels

Mei et al. (2007)

Ang-1 BM C57BL/6 mice, LPS-induced
pulmonary ARDS

i.v. 2 h after injury ↓ BALF neutrophil and total cell
counts, TNF-α levels, lung injury
and edema, MPO activity

Xu et al. (2008)

VEGF BM C57BL/6 mice, elastase-induced
emphysema

i.v. 14 days after
injury

↑ lung function, Nrf2, HO-1, SOD
mRNA levels

Chen et al. (2015b)

↓ lung hyperinflation

FGF-2 BM C57BL/6 mice, LPS-induced
extrapulmonary ARDS

i.v. 5 × 106 cells, 1 h
after injury

↓ lung injury, edema and neutrophil
count, BALF proteinaceous exudate,
IL-6 and TNF-α levels, MPO activity

Zhao et al. (2015)

KGF BM C57BL/6 mice, LPS-induced
pulmonary ARDS

i.v. 5 × 105 cells, 2 h
after injury

↑ MSC retention in lung tissue,
animal survival rate

Chen et al. (2013)

↓ lung edema, BALF neutrophil
counts, IL-1β and TNF-α levels,
MPO activity, severity score

HGF BM C57BL/6 mice, radiation-induced
lung injury

i.v. 1 × 106 cells, 6 h
after injury

↓ lung injury and fibrosis, epithelial
cell apoptosis, albumin and IgM
levels, serum TNF-α and ICAM-1
levels, TGF-β, col1α1, and
col3α1 mRNA levels

Wang et al. (2013b)

HGF UC BALB/c and C57BL/6 mice,
bronchiolitis obliterans

i.v. 1 × 106 cells, 4 h
after injury

↑ IL-10 levels Cao et al. (2016)

↓ tracheal occlusion, cell apoptosis,
IFN-γ and TGF-β levels, Treg and
Th17 cell percentage

ACE2, angiotensin-converting enzyme 2; AD, adipose tissue; Ang, angiopoietin; ARDS, acute respiratory distress syndrome; BALF, bronchoalveolar lavage fluid; BM, bone marrow; Del-1,

developmental endothelial locus-1; EP2, E-prostanoid-2; FGF, fibroblast growth factor; HGF, hepatocyte growth factor; HO, heme oxygenase; IFN, interferon; IL, interleukin; iNOS, inducible

nitric oxide synthase; i.t., intratracheal; i.v., intravenous; KGF, keratinocyte growth factor; LPS, lipopolysaccharide; MPO, myeloperoxidase; MSC, mesenchymal stromal cell; Nrf2; nuclear

factor-erythroid 2-related factor 2; ROR2, receptor tyrosine kinase-like orphan receptor 2; SOD, superoxide dismutase; TGF, transforming growth factor; TLR, Toll-like receptor; TNF, tumor

necrosis factor; UC, umbilical cord; VEGF, vascular endothelial growth factor.
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also to unravel their mechanism of action by overexpressing or
knocking down genes of interest. In MSC-based therapy, several
genes related to survival, engraftment, and immunomodulatory
actions have been targeted for enhanced and sustained expression
to potentiate the therapeutic properties of MSCs (Table 4).

Although CXCR4 and SDF-1 play a fundamental role in driving
migration of MSCs to injured sites, the surface expression of the
CXCR4 can decline due to successive replications, which can limit
MSC homing. Overexpression of CXCR4 in BM-MSCs using a
lentiviral vector was shown to enhance MSC migration in vitro
(Yang et al., 2015). In experimental LPS-induced ARDS,
administration of BM-MSCs overexpressing CXCR4 reduced lung
injury, inflammation and edema, and TNF-α levels and increased
IL-10 levels. BM-MSC homing in injured lung tissue was also
facilitated by overexpressing CXCR4 (Yang et al., 2015).
Alternatively, PGE2 can facilitate MSC migration by activating
E-prostanoid 2 (EP2) receptor, which in turn stimulates focal
adhesion kinase (FAK) and the ERK1/2 signaling pathway. When
FAK and ERK1/2 were inhibited, PGE2-mediated BM-MSC
migration was also mitigated (Lu et al., 2017). Overexpression of
EP2 enhanced retention of BM-MSCs in lungs and increased IL-10
levels, but reduced IL-1β and TNF-α levels, lung injury, edema and
endothelial permeability in experimental LPS-induced ARDS (Han
et al., 2016b). Overexpression of the receptor tyrosine kinase-like
orphan receptor 2 (ROR2) was also able to increase retention of BM-
MSCs in lung tissue after LPS challenge, leading to further reduction
in lung injury, edema and fibrosis, and IL-1β and IL-6 levels,
compared with unmodified MSCs, in experimental LPS-induced
ARDS (Cai et al., 2016).

Because MSCs can promote protection of lung tissue against
oxidative injury, overexpression of antioxidant mediators, such as
HO-1 and SOD, have been assessed to further enhance the
therapeutic properties of MSCs. BM-MSCs expressing human
HO-1 under the control of surfactant protein C promoter were
harvested from transgenic mice (Liang et al., 2011). Administration
of these MSCs in an experimental mouse model of hypoxia-induced
pulmonary arterial hypertension led to a reduction of right
ventricular hypertrophy and systolic pressure (Liang et al., 2011).
Such effects were associated with inhibition of smooth muscle cell
proliferation and decrease levels of inflammation-related mediators
(Liang et al., 2011). When LPS-injured pulmonary endothelial cells
were co-cultured with BM-MSCs overexpressing HO-1, they
showed increased Nrf2 activation and attenuated NF-κB
activation, leading to more effective recovery of SOD and
glutathione peroxidase activity, but suppressed production of
lipid peroxide, malondialdehyde (MDA), and levels of
inflammation-related mediators (IL-1β, IL-6, and TNF-α) (Chen
et al., 2018). In this co-culture system, levels of HGF and IL-10
produced by BM-MSCs overexpressing HO-1 were also higher after
pulmonary endothelial cells were exposed to LPS (Chen et al., 2018).
Compared with unmodified MSCs, administration of BM-MSCs
overexpressing HO-1 further reduced lung injury, edema,
neutrophilia, and levels of IL-1β and TNF-α, but increased levels
of HGF, KGF, and IL-10 in serum and lung tissue, and improved the
7-day survival rate in experimental LPS-induced ARDS (Chen et al.,
2019). Nrf2-overexpressingMSCs derived from amniotic membrane
were also more effective than unmodified MSCs at reducing lung
epithelial cell apoptosis, edema, injury, and fibrosis in experimental

LPS-induced ARDS (Zhang et al., 2018b). In another study, SOD-
overexpressing BM-MSCs attenuated lung epithelial cell apoptosis,
inflammatory and fibrosis, and increased IL-10 levels and 30-day
survival rate in radiation-induced lung injury (Chen et al., 2017a).

Several anti-inflammatory mediators targeted for genetic
manipulation are produced endogenously by MSCs or stimulated
by MSCs to be produced by other cells during resolution of
inflammation. For instance, IL-10 upregulation has been
documented extensively after MSC administration in
experimental models. Interestingly, serum IL-10 levels were
sustainably greater in mice infused with BM-MSCs
overexpressing IL-10 compared with direct injection of IL-10
(Wang et al., 2018a). In experimental LPS-induced ARDS, BM-
MSCs overexpressing IL-10 increased the presence of IL-10-
producing T cells and B cells in both spleen and lung, which
may protect mice against the deleterious effects of LPS challenge,
thus improving the survival rate (Wang et al., 2018a). Both
unmodified MSCs and UC-MSCs overexpressing IL-10 were able
to improve lung static compliance in experimental E. coli-induced
ARDS. However, UC-MSCs overexpressing IL-10 were more
effective than unmodified MSCs at reducing the alveolar-arterial
gradient and neutrophil infiltration in lungs, and increased the
percentage of lung macrophages and their phagocytic activity
(Jerkic et al., 2019). In another study, mice were subjected to
lung injury by instillation of HCl, and administration of
unmodified MSCs further aggravated the deleterious effects
(Islam et al., 2019). Administration of MSCs overexpressing IL-
10 otherwise reduced structural lung injury, fibrosis, and
inflammation in experimental HCl-induced lung injury (Islam
et al., 2019).

IL-1 receptor-like 1 (IL-1RL1), developmental endothelial locus-1
(Del-1), and angiotensin-converting enzyme (ACE)2 are other anti-
inflammatory mediators genetically manipulated in MSCs.
Overexpression of IL-1RL1, an antagonist receptor for IL-33,
enhanced the therapeutic properties of AD-MSCs, leading to
decreased structural lung abnormalities, IFN-γ, IL-1β, IL-33, and
TLR4 mRNA levels, and increased IL-10 levels after MSCs were
infused in experimental LPS-induced ARDS (Martínez-González
et al., 2013). BM-MSCs overexpressing Del-1, an anti-inflammatory
mediator that inhibits endothelial adhesion of leukocytes, also
promoted further therapeutic benefits in experimental LPS-induced
ARDS (Zhao et al., 2014b). Compared with unmodified MSCs, BM-
MSCs overexpressing Del-1 were more effective at mitigating lung
structural abnormalities, edema, neutrophil counts, TNF-α levels, and
MPO activity (Zhao et al., 2014b). Although human MSCs do not
express endogenous ACE2, a mediator that protects lung tissue against
injury by counteracting the effects of angiotensin II, its introduction into
UC-MSCs by lentiviral vectors further mitigated symptoms in
experimental bleomycin-induced lung fibrosis (Min et al., 2015).
UC-MSCs overexpressing ACE2 led to recovery of SOD and
glutathione levels, reduction in MDA levels as well as lung injury
and fibrosis (Min et al., 2015). In experimental LPS-induced ARDS,
BM-MSCs overexpressing ACE2 were also more effective than
unmodified MSCs, resulting in a greater reduction in lung injury,
vascular permeability, BALF neutrophil counts, IL-1β and IL-6 levels,
but increased levels of lung IL-10 and eNOS (He et al., 2015).

Other strategies that have been investigated include the
overexpression of mediators that were mechanistically identified
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as key factors in epithelial and endothelial repair. MSC
overexpression of angiopoietin (Ang)-1 or VEGF, two pro-
angiogenic factors, improved disease symptoms in animal models
(Mei et al., 2007; Xu et al., 2008; Chen et al., 2015b). Compared with
unmodified MSCs, BM-MSCs overexpressing Ang-1 reduced BALF
neutrophil and total cell counts, levels of inflammation-related
mediators (IFN-γ, IL-1β, IL-6, and TNF-α), MPO activity, and
alveolar proteinaceous exudate in experimental LPS-induced
ARDS (Mei et al., 2007; Xu et al., 2008). In experimental
elastase-induced emphysema, BM-MSCs with cis-resveratrol-
induced Hsp70 promoter-regulated VEGFA expression were
infused and demonstrated to enhance lung function and levels of
VEGF and anti-oxidant mediators (HO-1, Nrf2 and SOD), and
reduced lung structural abnormalities (Chen et al., 2015b). A subset
of placenta-derived MSCs expressing platelet-derived growth factor
(PDGF) receptor-β also demonstrated greater expression of pro-
angiogenic factors (Ang-1, Ang-2, FGF, PDGF, and VEGF) as well as
an increased proliferation rate and wound repair ability in
comparison with MSCs not expressing PDGR receptor-β (Wang
et al., 2018b). Furthermore, dental pulp-derived MSCs
overexpressing HIF-1α demonstrated enhanced angiogenic ability
by increasing the amount of the Notch ligand Jagged1 loaded into
their EVs (Gonzalez-King et al., 2017).

Compared with unmodified MSCs, administration of BM-MSCs
overexpressing FGF-2 was more effective at reducing lung injury,
edema, neutrophil counts, MPO activity, and TNF-α levels in
experimental LPS-induced ARDS (Zhao et al., 2015).
Overexpression of KGF also enhanced the therapeutic actions of
BM-MSCs in experimental LPS-induced ARDS, leading not only to
improved pulmonary vascular permeability but also mitigated pro-
inflammatory responses, which resulted in a reduction in the
severity score and mortality rate (Chen et al., 2013).
Furthermore, the therapeutic effects of MSCs were enhanced by
overexpressing HGF. When co-cultured with MSCs, dendritic cells
were converted into the regulatory profile in a mechanism
dependent on MSC-secreted HGF (Lu et al., 2019). MSCs
overexpressing HGF induced immune tolerance, thus reducing
dendritic cell aggregation in the lung tissue of experimental LPS-
induced ARDS (Lu et al., 2019). In experimental radiation-induced
lung injury, BM-MSCs overexpressing HGF decreased lung
histopathologic abnormalities, epithelial cell apoptosis, and
mRNA levels of inflammatory (ICAM, IFN-γ, IL-6, and TNF-α)
and fibrotic factors (col1α1, col3α1, and TGF-β) (Wang et al.,
2013b). Overexpression of HGF in UC-MSCs reduced tracheal
occlusion and apoptosis, IFN-γ and TGF-β mRNA levels in
allograft trachea, and the percentage of Treg cells and the ratio
TH1/TH2 in the spleen of experimental bronchiolitis obliterans (Cao
et al., 2016). HGF-overexpressing MSCs were also able to protect
lung tissue against injury by HCl instillation (Islam et al., 2019).

Engineered MSCs that overexpress any of the aforementioned
factors have been shown to efficiently potentiate therapeutic actions
by simultaneously increasing the expression levels of the cited
protein and secreting other paracrine immunomodulatory
mediators in lung tissue. Furthermore, genetically engineered
cells were used in patients with pulmonary arterial hypertension
and some positive effects were observed in an early-stage clinical
trial (Granton et al., 2015). Nevertheless, genetic modification is
usually performed with a viral vector to achieve high transduction

efficacy. For such an approach, it can take a few months to acquire
genetically modified MSCs for harvesting in sufficient number for
infusion, which might limit their use for acute respiratory diseases.

3 Insights from early-stage clinical
investigations of MSC-based therapy

MSCs are able to avoid host immune surveillance (Le Blanc et al.,
2003; Ankrum et al., 2014; De Witte et al., 2016) and have a long-
established safety record. To the best of our knowledge, assessments
of MSC preconditioning strategies are still under investigation in
pre-clinical studies and there is no clinical trial using preconditioned
MSCs in patients with respiratory diseases. Several clinical trials are
currently investigating non-preconditioned MSC-based therapy for
respiratory diseases, in particular for COVID-19 (da Silva et al.,
2021). However, despite some positive effects, clinical benefits were
not clearly demonstrated in early-stage clinical studies of MSCs in
ARDS and COPD (Weiss et al., 2013; Matthay et al., 2019).

Sixty-two patients with moderate to severe COPD were enrolled
in a placebo-controlled, randomized phase 2 clinical trial (Weiss
et al., 2013). Although systemic infusion of BM-MSCs was well
tolerated and safe, no differences in lung function assessments and
the 6-min walking test were observed among the cohorts. However,
patients who had increased circulating C-reactive protein (CRP)
levels at study entry demonstrated a reduction in CRP levels after
treatment with BM-MSCs (Weiss et al., 2013). In a post hoc analysis
of clinical trial data, patients were stratified according to the baseline
CRP levels (Weiss et al., 2021). Surprisingly, patients with COPD
with higher baseline CRP levels (≥4 mg/L) treated with BM-MSCs
demonstrated significant improvements in forced vital capacity,
forced expiratory volume in 1 s, and the 6-min walking test at
120 days (Weiss et al., 2021). Although variable, these improvements
persisted over the 2-year observation period (Weiss et al., 2021).

Sixty patients with moderate to severe ARDS were enrolled in a
double-blind, randomized phase 2a clinical trial (Matthay et al.,
2019). Intravenous infusion of allogenic BM-MSCs did not induce
hemodynamic or respiratory side effects, and thus proved to be safe.
Although MSC efficacy could not be properly supported and this
was attributed to reduced MSC viability after thawing, patients
treated with BM-MSCs with greater viability after thawing
demonstrated a reduction in plasma Ang-2 levels after 6 h
(Matthay et al., 2019). A subsequent analysis of these data
identified a nested cohort of patients with ARDS treated with
BM-MSCs who presented a significant reduction of airspace total
protein, Ang-2, IL-6, and TNF-R1 levels within 48 h after infusion of
BM-MSCs (Wick et al., 2021).

Similar findings have been observed in clinical trials using MSCs
to treat graft-versus-host disease (GvHD). Fifty-five patients with
GvHD were enrolled in a multicenter phase 2 clinical trial. No side
effects during or immediately after MSC infusion were reported. A
sub-population demonstrated a complete response and had lower
transplantation-associated mortality 1 year after MSC infusion
compared with patients who had only partial or no response (Le
Blanc et al., 2008). A retrospective study analyzed a cohort of
37 children with GvHD treated with BM-MSCs, and a significant
increase in survival rate was reported in complete responders
compared with partial and non-responders (Ball et al., 2013).
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These findings support the hypothesis of stratifying patients
according to disease sub-phenotypes (Matthay et al., 2020; Vasquez
et al., 2021) to identify those who are most likely to benefit from
MSC therapy. In this context, some studies have applied integrated
genomic approaches or cluster analysis to define sub-phenotypes in
patients with sepsis (Davenport et al., 2016; Scicluna et al., 2017) and
ARDS (Bos et al., 2017). Patient stratification and treatment in a
personalized fashion have also been successfully performed in other
diseases, such as CF (Lopes-Pacheco, 2020; Lopes-Pacheco et al.,
2021). Moreover, determination of a panel of biomarkers that more
precisely differentiate disease sub-phenotypes may facilitate the
identification of patients who might best respond to MSC therapy.

4 Translational challenges and future
directions

Despite the significant progress in assessing MSC-based therapy
for respiratory diseases, there is a lack of consistency among the
different experimental studies, which might also play a role in the
limited success in clinical investigations. For instance, increasing
evidence has shown that MSCs from different sources retain certain
organ-specific functions and properties, including gene expression
and stability, cell-surface proteins, differentiation patterns, secreted
cytokine profile, and immunomodulatory ability (Ostanin et al.,
2011; Viero Nora et al., 2012; Elahi et al., 2016; Heo et al., 2016;
Sacchetti et al., 2016). Accordingly, such differences may have a
major impact on MSC survival and therapeutic properties (Wagner
et al., 2007; Antunes et al., 2014; Chao et al., 2014; Silva et al., 2018),
and further experimental studies should be carried out to
comparatively assess the effects of MSCs from different sources
and clarify whether cells from one source may promote greater
therapeutic responses than others for respiratory diseases.

The influence of donor intrinsic variability on the properties of
MSCs has been highlighted in recent studies. MSCs from different
donors preconditioned or not with cytokines and hypoxia exhibited
a variable degree of immunomodulatory actions (François et al.,
2012a; Amati et al., 2017; Kang et al., 2018). MSCs harvested from
donors of different ages also demonstrated distinct in vitro
differentiation potential and proliferation rates (Zaim et al., 2012;
Mehrian et al., 2020). The infusion of aged MSCs or their EVs led to
impaired immunomodulatory actions (Yu et al., 2014; Huang et al.,
2019) or even deleterious effects in disease models (Lee and Yu,
2020). Moreover, certain diseases can alter MSC niche or cell
metabolism, thus promoting a negative impact on their
therapeutic ability when they are harvested for either autologous
or allogeneic infusion (Silva et al., 2014; Antebi et al., 2018; Kim
et al., 2020; Antunes et al., 2021). To identify MSCs of potential
clinical use, a number of reference biomarkers should be validated
for donor selection and thus the number of batches of good donors
should be maximized. Nevertheless, scalability remains limited
because successive replications of MSCs and long-term culture to
acquire large quantities of cells may affect their properties (Lee et al.,
2009; Zaim et al., 2012). The development of scalable platforms, such
as bioreactors, is urgently needed to generate a higher number of
good-quality MSCs for clinical use.

Some conflicting data exist on whether the freezing/thawing
process may be detrimental to the cells. Although some studies have

indicated that both freshly thawed and continuously cultured MSCs
have similar anti-inflammatory activities (Cruz et al., 2015; Tan
et al., 2019; Horie et al., 2020b), others have suggested that freshly
thawed MSCs are less effective than continuously cultured MSCs
(François et al., 2012b; Chinnadurai et al., 2016). One report also
argued that cryopreserved MSCs may require a recovery period
before they may be infused (François et al., 2012b). Further studies
should investigate the effects of continuously cultured and freshly
thawed MSCs in disease-specific models. Meanwhile, MSC
cryopreservation and storage conditions should be optimized to
prevent reduction in their viability (Matthay et al., 2019). This is of
particular relevance for acute respiratory diseases, which occur with
rapid onset and progression and there is insufficient time for
expanding MSCs. Overall, there is a lack of standardization in
MSC manufacturing practices among different facilities and
academic centers in the United States and Europe (Trento et al.,
2018; Phinney et al., 2019). Accordingly, well-standardized and
regulated manufacturing practices need to be successfully
implemented among MSC distributors (Fernández-Santos et al.,
2022). Specific legislation should be also established for the
commercialization if cell therapy products are to become a
ready-to-use therapy.

Although most clinical investigations have been using systemic
infusions of MSCs, there is no consensus on the optimal delivery
route. Differences in the early biodistribution of MSCs were
observed after their infusion via different routes (Cardenes et al.,
2019). Systemic infusion (e.g., intravenous) ensures a broad
distribution of cells throughout the body, and local infusion (e.g.,
intratracheal or endobronchial) can deliver MSCs directly into the
pulmonary compartments. Both delivery routes might provide
specific advantages for each respiratory disease, but only a few
experimental studies have comparatively assessed different
delivery routes and therapeutic responses were equivalent (Curley
et al., 2013; Antunes et al., 2014; Alcayaga-Miranda et al., 2015;
Devaney et al., 2015). The therapeutic window and index of MSC
infusion have been also investigated. In experimental models,
further therapeutic responses were observed when MSCs were
infused soon after the initial injury (Chang et al., 2012; Hayes
et al., 2015; Horie et al., 2020b), which suggests that MSCs might
be more effective in acute inflammatory conditions. On the other
hand, MSCs were less effective in promoting repair when tissue
remodeling was already established (Lopes-Pacheco et al., 2014;
Mariñas-Pardo et al., 2014; Sabry et al., 2014; Kitoko et al., 2018).
One potential explanation for this limited tissue repair is the short
period of permanence of cells in the injured tissue, which might be
overcome, at least partially, by preconditioning methods that
enhance MSC retention (as described in previous sections) or
repeated infusions of MSCs. In this context, multiple infusions of
cells were demonstrated to maintain therapeutic benefits for a longer
period and promoted a more efficient tissue repair in various
experimental models (Lopes-Pacheco et al., 2013; Poggio et al.,
2018; Horie et al., 2020b; Castro et al., 2020).

Another important fact to be considered is the co-application
of other therapies with MSCs. Many respiratory diseases can be
caused by or predispose to infections, therefore MSCs have been
used concomitantly with antibiotics in experimental models, and
therapeutic responses were superior with combined therapy (Mei
et al., 2010; Alcayaga-Miranda et al., 2015; Sung et al., 2016;
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Horie et al., 2020b). Synergistic effects were also observed with
the combination of MSCs withN-acetylcysteine (Shin et al., 2019)
or pre-activated disaggregated platelets (Chen et al., 2017b). On
the other hand, extracorporeal membrane oxygenation (ECMO)
is a therapeutic modality frequently used in critical care illness. In
an ex vivo model, increased pressure and reduced flow through
the apparatus were observed after MSC infusion because cells
were adhering to membrane oxygenation fibers (Millar et al.,
2019; von Bahr et al., 2019). Further studies should be performed
to determine potential synergistic and interference effects of
MSCs with other therapies commonly used in patients with
respiratory diseases.

5 Outlook and conclusion

MSCs have been investigated extensively over the last decade
as a potential therapy for numerous diseases. However, despite
the promising therapeutic effects observed in experimental
models, MSC efficacy has fallen far short in most clinical trials
for respiratory diseases. Several functional enhancement
strategies have been investigated to potentiate the therapeutic
actions of MSCs and overcome the limitations associated with
reduced MSC efficacy in clinical trials. Genetic manipulation and
preconditioning methods can target different properties of
MSCs, such as homing, survival, and immunomodulatory
activities, and they may be used individually or in
combination to further enhance therapeutic outcomes.
Patients may not respond equally to MSC therapy, and their
stratification based on disease sub-phenotypes may facilitate
identification of those who might best benefit from MSC
therapy. The environmental conditions of disease can have a
major impact on the therapeutic actions of MSCs, therefore
different MSC preconditioning strategies can be used to treat
disease sub-phenotypes in a personalized medicine approach.
Although MSCs still hold immense promise due to their
multifaceted mechanisms of action and therapeutic abilities, it
has become evident that further experimental research is
required to better understand the optimal way to use MSCs
and how to translate this information into clinical trials to
achieve the greatest clinical outcomes.
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