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Alzheimer’s disease (AD) is a complex neurological disorder characterized by
accumulation of amyloid plaques and neurofibrillary tangles. Long term
investigation of AD pathogenesis suggests that β-site amyloid precursor
protein [APP] cleaving enzyme 1 (BACE1) and γ-secretase enzymes promote
the amyloidogenic pathway and produce toxic Aβ peptides that are
predisposed to aggregate in the brain. Hence, the targeted inhibition of
BACE1/γ-secretase expression and function is a promising approach for AD
therapy. Several reports have suggested that the opioid family of G-protein
coupled receptors modulate the etiology of AD progression. It has also been
found that changes in the signaling pathways of opioid receptors increased the
expression of BACE1 and γ-secretase, and is strongly correlated with abnormal
production of Aβ and pathogenesis of AD. Thus, the opioid receptor family is a
promising candidate for targeted drug development to treat AD. In this review, we
outline the involvement and mechanisms of opioid receptor signaling modulation
in Alzheimer’s Disease progression.
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Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder that is responsible for nearly
60 to 80 percent of cases of dementia worldwide. Although the cause is still undetermined, it
likely includes a combination of genetic, environmental, and lifestyle factors. Dementia has
been listed as the fifth largest cause of death across the globe by the World Health
Organization. A current total of 50 million people with dementia globally was estimated
by AD International and is projected to increase to 152 million by 2050. The number of AD
patients in the USA, which is presently 5 million, is estimated to increase to 16 million by
2050, further increasing the personal and socioeconomic burden of this disease. Every
3 seconds a patient develops dementia and the current estimate of treatment costs of
dementia is currently $1 trillion USD, which is projected to double by the year 2030. In the
majority of sporadic cases of AD, age plays a major role, and with an aging population
worldwide, cases of AD are set to rise dramatically over the coming decades (Alzheimer’s
Association, 2013; Reynolds, 2019).

AD is a multifactorial progressive neurodegenerative disease characterized by memory
and neuronal loss, difficulties in speaking, problem solving, and other cognitive skills,
along with changes in mood and behavior, which interfere with the person’s daily
performance (Ballard et al., 2011). The neuropathological hallmarks of AD include
extracellular accumulation of amyloid β (Aβ) protein and intracellular accumulation of
neurofibrillary tangles induced by hyper-phosphorylated Tau protein. Aβ proteins are
37–43 amino acid containing peptides that are produced from amyloid precursor protein
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(APP) through sequential cleavage by β-site amyloid precursor
protein [APP]-cleaving enzyme 1 (BACE1) and γ-secretase. Of the
two cleavage products, Aβ40 and Aβ42, AD pathogenesis
correlates with the production and accumulation of Aβ42,
which aggregates to form β-amyloid plaques (Figure 1)
(Reynolds, 2019). Aβ42 peptides are thought to be prone to
aggregation and toxicity due to their longer length (Canter
et al., 2016). No disease-modifying therapies have been
approved for the treatment of AD and available treatments are
for symptommanagement with limited disease-modifying efficacy.
There are many putative susceptibility risk genes for AD that have
been reported, such as Apolipoprotein E (ApoE) (Corder et al.,
1993), Glycogen Synthase Kinase 3-β (GSK3β) (Kwok et al., 2008;
Hernández et al., 2009), Dual-Specificity Tyrosine-Regulated
Kinase 1A (DYRK1A) (Kimura et al., 2007), Tau (Myers et al.,
2005; Caffrey and Wade-Martins, 2007), Translocase of Outer
Mitochondrial Membrane 40 Homolog (TOMM40) (Chiba-Falek
et al., 2018), and Phosphatidylinositol Binding Clathrin Assembly
Protein (PICALM) (Mercorio et al., 2018). Apart from these listed
genetics risk factors, the APOE*ε4 allele has been shown to be
responsible for Aβ accumulation and is considered the strongest
confirmed genetic risk factor for early and late onset AD, while the
ε2 allele is considered protective. (Corder et al., 1993; Strittmatter
et al., 1993; Morris et al., 2011).

ApoE a lipid binding protein, is synthesized by astrocytes in the
central nervous system (CNS) and synthesized cholesterol is
transported to neurons through ApoE receptors. ApoE is
polymorphic with three major alleles, namely, APOE*ε2,
APOE*ε3, and APOE*ε4. People with two APOE*ε4 alleles are at
a 15 times higher risk of AD as compared to APOE*ε3 carriers, and
APOE*ε2 allele carriers have protection against AD. Notably, the
APOE*ε3 is considered to be the most common allele and is believed
to play a neutral role in the disease - neither decreasing nor
increasing risk.

ApoE proteins influence with varying ability Aβ clearance from
the brain, with ApoE2 being the most effective and ApoE4 the least
effective (Liu et al., 2013). The APOE*ε4 allele is consistently linked
to abnormal Aβ aggregation and predicts longitudinal Aβ
accumulation in plaque-free elderly individuals without dementia.
Conversely, APOE*ε2 carriers are protected against longitudinal Aβ
accumulation (Lim et al., 2017). Unfortunately, it is evident that
women are more prone to develop AD and other dementias than
men. The female population with dementia is higher thanmales, and
of the total 5.6 million AD patients, nearly 3.5 million are women
and 2.1 million are men. In support of this, several studies reported
that the APOE*ε4 genotype is more strongly associated with
dementia in women as compared to men (Farrer et al., 1997).
Together, these studies highlight the central role of the secretases
and ApoE systems in regulating AD pathogenesis, and suggest that
new approaches to therapeutically target these systems could be
effective in modifying disease pathogenesis of AD.

Introduction to the opioid receptor
family

In the early 1990s, three important opioid receptor family
members were identified and cloned after decades of
investigation, namely, the μ (mu-opioid receptor-MOR), κ
(kappa-opioid receptor-KOR), and δ (delta-opioid receptor-DOR)
opioid receptors. In 1994, another opioid receptor was discovered,
the nociceptin/orphanin FQ receptor (NOP), also called the opioid
receptor-like orphan receptor (ORL) (Xia, 2015; Vaidya et al., 2018).
The opioid receptor family modulates important physiological
processes, including analgesia, stress response, immune response,
and neuroendocrine function. The roles, locations, and functions of
the opioid receptor family members are summarized in Table 1. The
expression of opioid receptors and peptides are found in regions
vulnerable to AD pathology in the CNS, including regions of the
brain like the hippocampus and cortex, which are important for
cognition and are affected heavily by AD. The opioid receptors play
important roles in synaptic activation, learning and memory.
Administration of opioid antagonists has been found to
significantly improve the memory performance of rats (Gallagher,
1985). These antagonists and similar drugs discussed here are
summarized in Table 2. However, later studies have failed to
support the efficacy of the non-selective antagonists naloxone or
naltrexone in improving AD symptoms (Sunderland et al., 1986).
Despite this, there is a strong overlap in the distribution of opioid
receptors and amyloid plaque location in AD patients, leading the
field to postulate a role of these three opioid receptors in the
pathology of AD. Opioid receptor knockout mouse studies

FIGURE 1
Amyloid synthesis cascade pathway. BACE1 cleaves APP to
produce Aβ peptide. This peptide accumulates both intracellularly and
extracellularly into tangles/plaques, which in turn cause inflammation,
toxicity, and cell death. Figure created using www.
biorender.com.
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further demonstrated a potential regulatory role in AD due to the
distinct and opposing roles of opioid receptors in modulating
different animal behaviors important in AD, such as locomotion,
anxiety, depressive behavior, or alcohol intake (Kieffer and
Gavériaux-Ruff, 2002).

Opioid receptors are members of a superfamily of
7 transmembrane spanning (7TM) G protein-coupled receptors
(GPCRs). So far, almost 370 non-olfactory GPCRs have been
identified, out of which nearly 90% are present in the brain,
playing crucial roles in mood, cognition, pain, appetite, and
synaptic transmission (Vassilatis et al., 2003). Opioid receptors
are also found in the nervous system, lungs, heart, liver, and the
gastrointestinal and reproductive tracts (Jutkiewicz, 2018). GPCRs
are involved in multiple neurotransmitter systems that are
associated with AD; glutamatergic, serotonergic, adrenergic and
peptidergic pathways in particular are dysregulated in this
neurodegenerative disorder and are impacted by opioid receptor
activity (Thathiah and De Strooper, 2011). Targeting these systems
might protect against disease progression by modulating the
formation of Aβ plaques or aberrant signaling following plaque

formation (Thathiah and De Strooper, 2011). Activation of opioid
receptors occurs by endogenous peptides as well as opioid drugs
such as morphine, which are administered exogenously. These are
not only effective analgesics, but also cause side effects such as
addiction and are categorized as drugs of abuse, providing a note of
caution in exploiting this receptor family (Satoh et al., 2000a).

There are many notable similarities in the primary structures
of MOR, DOR and KOR along with their function and
mechanisms of intracellular signaling (SKARPHEDINSSON
and THOREN, 1988). Adding further complexity, both
homomeric and heteromeric complex formation between
opioid receptors and non-opioid receptors can lead to
modification of the response to a particular opioid ligand
(Satoh et al., 2000; Wei and Loh, 2002; Pasternak, 2004;
Ananthan, 2008). A pharmacological response generated by
action of opioid ligands might be due to interaction with
different opioid receptor complexes. On the other hand,
synthetic opioid peptides and alkaloids are very selective for
MOR, DOR, and KOR, and have been explored largely for
defining pharmacological properties of isolated opioid

TABLE 1 Opioid group receptor subtypes, function & location in brain.

Receptor
subtypes

Function Location Mechanism of
action

References

δ (delta) analgesia; memory; anxiety and mood;
modulation of hormone and neurotransmitter
release

Hippocampus, spinal cord, dorsal root
ganglia, periphery, hypothalamus, brain stem

Gα i/o Mafi et al. (2021), Tanguturi
et al. (2022)

μ (mu) Supraspinal and spinal analgesia; respiratory
depression

Cortex, limbic system, brain stem, periphery,
reward circuitry (ventral tegmental area,
striatum)

Gα i/o

endocrine activity; sedation; slowed
gastrointestinal transit

Nam et al. (2021)

hormone modulation and release of
neurotransmitter

κ (kappa) Supraspinal and spinal analgesia; motor
control; stress response; mood;
psychotomimetic effects

Periphery, dorsal root ganglion, spinal cord,
reward circuitry (striatum), amygdala

Gα i/o Al-Hasani and Bruchas
(2011), Stefanucci et al.
(2023)

TABLE 2 Opioid agonist and antagonist drugs.

Agonists Antagonists

Morphine Pathan and Williams (2012) Naloxone Stefanucci et al. (2022)

Alfentanil Naltrexone Comer et al. (2006)

Codeine Yazdy et al. (2015) Nalmefene Krieter et al. (2019)

Dextromethorphan Chen et al. (2005) Naltrindole Granier et al. (2012)

Dextropropoxyphene Barkin et al. (2006)

Fentanyl Moussawi et al. (2020); Lim et al. (2022)

Methadone Strain et al. (1999)

Pethidine O’Connor et al. (2000); Listos et al. (2019)

SNC80 Metcalf et al. (2012); Sakamoto et al. (2021)

DPDPE Stefanucci et al. (2017)

DADLE Förster et al. (2007)
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receptors. This means that potential unexplored complexities of
opioid receptor function could impact their activity in AD.

GPCRs serve as versatile targets from the perspective of drug
discovery. Various drugs which target GPCRs can act either as
agonists or as antagonists for the signaling of G protein. A
conformational change is promoted after binding of agonist to a
GPCR resulting in the activation of receptor-associated
heterotrimeric G proteins and further downstream signaling
pathways. However, a small family of multifunctional GPCR
regulatory or adaptor proteins known as the β-arrestins, which
have an almost universal role in facilitating traditional GPCR
desensitization, are also capable of initiating distinct, independent
signaling events (DeWire et al., 2007). In AD pathogenesis, GPCRs
are found to be associated with various stages of APP proteolysis,
which includes modulation of APP processing by the α-, β- and γ-
secretases and regulating degradation of Aβ and Aβ-mediated
toxicity (Thathiah and De Strooper, 2011; Wisely et al., 2014).
Studies have shown that GPCRs can bind to β-secretase and γ-
secretase, which are key enzymes in the hydrolytic processing of
APP (Liu X. et al., 2013; Nelson and Sheng, 2013; Thathiah et al.,
2013). Unfortunately, the signaling mechanisms, which mediate
these effects have not been completely explored and the
regulation of the γ-secretase complex by GPCRs as hypothesized
remains unexplained.

The opioid receptors are involved in learning and memory and
are dysregulated in specific regions of the AD brain (Mathieu-Kia
et al., 2001). Recent studies suggest that these GPCRs and one of
their ligands, enkephalin, are involved in modulation of β-secretase
and subsequent Aβ generation (Thathiah and De Strooper, 2011).

The role of opioid receptors in
modulating Alzheimer’s disease

Opioid receptors have a modulatory effect on the regulation of
neurotransmitters such as acetylcholine, norepinephrine, GABA,
glutamate, and serotonin, which have been implicated in the
pathogenesis of AD. A close relationship exists between Aβ
generation and the opioid system, as dysfunction of the opioid
receptors causes retardation of endocytosis and degradation of the
BACE1 enzyme; this enzyme is required for generating monomeric
forms of Aβ, including Aβ42, which further aggregates into bioactive
conformational species and is responsible for initiation of toxicity in
AD (Hampel et al., 2020). This directly suggests that dysfunctional
opioid receptors can contribute to AD pathology. It has also been
reported that alteration in the signaling pathway of opioid receptors
is strongly correlated with abnormal production of Aβ and
pathogenesis of AD (Sunderland et al., 1986).

No approved disease-modifying therapies are available for AD
and the few agents available for symptomatic treatment are less
effective. Various efforts have taken place for prevention or
elimination of beta-amyloid plaques, including targeting the
BACE1 and γ-secretase enzymes, but unfortunately none of these
strategies have been clinically successful. This suggests that new
approaches to inhibiting the production of Aβ in the first place may
be needed (Scheltens et al., 2016).

Studies have reported that indirectly modulating the function of
enzymes via modulating GPCRs could serve as a novel strategy for

reducing the production of Aβ peptide with less side effects. Among
GPCRs that influence amyloidogenesis, the DOR has been shown to
play an important role in the trafficking and function of BACE1, γ-
secretase, and the production of Aβ peptide. Studies have reported
that DOR levels in certain specific regions of AD brains were
elevated compared with non-AD brains. These notable areas
included the frontal cortex, caudate, and hippocampus (Hiller
et al., 1987; Mathieu-Kia et al., 2001). It has been suggested that
the DOR along with the β2 adrenergic receptor (β2AR) leads to
promotion of cleavage of the APP C-terminal fragment mediated by
γ-secretase, once it is generated by β-secretase (Ni et al., 2006a). The
DOR has shown a strong modulatory role in AD by showing its
effect on secretase activity after stimulation with its agonist for
30 min, which enhanced BACE1 and γ-secretase activities to 143%
and 156% respectively. This was reported using a fluorogenic
substrate assay using a HEK293T cell line overexpressed with
DOR, while the activity of α-secretase was unaltered (Teng et al.,
2010). Research on postmortem brains of AD patients has shown
that MOR, DOR, and KOR are differentially altered in distinct brain
areas (Mathieu-Kia et al., 2001c). DOR binding is decreased in the
amygdala and ventral putamen, and MOR binding is decreased in
the hippocampus and subiculum (Mathieu-Kia et al., 2001) of
postmortem brain samples from patients with AD. The levels of
leu-enkephalin and dynorphin A (the endogenous opioid peptides
for DOR and KOR, respectively) were increased in the frontal cortex
of patients with AD in this same study. Elevation of the opioid
precursors pre-proenkephalin and met-enkephalin was found to
contribute to the cognitive and behavioral decline in a transgenic
mouse model of AD, suggesting the involvement of DOR in AD
pathology (Meilandt et al., 2008a). Early studies on possible
treatment of AD using the non-selective opioid antagonists
naloxone and naltrexone did not find them to be efficacious.
However, more recent studies focusing on specific subtypes of
opioid receptor have revealed that the DOR in particular plays a
significant role in AD pathology (Teng et al., 2010; Liu et al., 2013).

Studies have reported that agonist-induced activation of DOR
has been shown to increase BACE1 and γ-secretase activity in vitro
in cells and in vivo in an AD mouse model leading to increased
production of Aβ peptide (Figure 2) (Ni et al., 2006; Teng et al.,
2010). Mechanistic studies revealed that DOR forms a complex with
β- and γ-secretases and that the DOR mediates co-endocytic sorting
of this complex into late endosomal/lysosomal (LEL) compartments,
in which the generation of Aβ takes place. DOR antagonism using
naltrindole substantially reversed AD pathology caused by APP/
Presenilin overexpression in mice, including memory deficits,
reactive glia formation, Aβ production, and BACE1/γ-secretase
activity in the brain (Teng et al., 2010). Similarly, it has been
observed in vivo in an AD mouse model that DOR knockdown
resulted in reduced accumulation of Aβ40 in the hippocampus.
However, there was no effect on the more hydrophobic (and more
toxic) Aβ42 (Teng et al., 2010). No effect was observed with
administration of MOR antagonist on the generation of Aβ or
amyloid plaque formation, and MOR antagonist was not able to
reverse the learning and memory deficiency of the ADmouse model
(Teng et al., 2010), although another group reported improved
spatial memory retention in this transgenic AD mouse model
with MOR antagonist treatment (Meilandt et al., 2008).
Importantly, neither activation of DOR in vitro nor blockage of
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DOR in vivo affected the processing of Notch, N-cadherin, or APLP-
1 by either BACE1 or γ-secretase, thus providing direct evidence that
antagonism of DOR specifically blocks the amyloidogenic pathway
and efficaciously prevents AD progression in mice (Teng et al.,
2010). However, DOR antagonists have not yet been explored as
therapeutic agents for AD in humans.

In contrast to the above work, a recent study reported very
different roles of DOR and MOR in the regulation and activity of
BACE1 expression, highlighting the possible neuroprotective role of
DOR against AD injury. Activation of DOR with its specific agonist
UFP-512 substantially decreased BACE1 expression and its activity
in a highly differentiated rat PC-12 cell line with imitated AD injury,
whereas DOR antagonism with naltrindole reversed the UFP-512
effects while causing an enhancement of BACE1 expression and
activity along with Aβ42 production under physiological conditions
(Antonino et al., 2022). Knocking-down DOR in vivo increased
BACE1 protein expression and its activity for APP processing,
leading to a significant increase in Aβ42 production (Antonino
et al., 2022). A different study found an association between opioid
abuse and combined neuroinflammation and hyperphosphorylated
tau in patients, which may confirm a pro-AD role for MOR
activation (Anthony et al., 2010). Considering the opposite roles
of MOR and DOR in activating BACE1 expression, there is a
possibility to come up with a novel strategy against AD by
differentially targeting DOR and MOR (Xu et al., 2020). Overall,
these contrasting results of the studies reported above highlight the
complexity of opioid activity in AD and highlights the need for
further study to work out these differences.

In a genetic meta-analysis of AD patient cohorts, Sarajarvi and
others found that a heterozygous DOR-Phe27Cys mutation
increased the risk of AD, especially in late-stage AD patient
postmortem brain samples in which there was a significant
upregulation of BACE1 and γ-secretase activities (Sarajarvi et al.,
2015). This is an important finding since approximately 25% of AD
patients are heterozygous for the DOR-Phe27Cys variation and
could potentially be used in patient selection and stratification
for clinical studies using DOR antagonists as novel AD
therapeutics. These observations clearly suggest that antagonism
of DOR could be a novel therapeutic approach for the treatment of
AD (Sarajärvi et al., 2015). In contrast to antagonism of DOR,
agonist activation of MOR has also been reported to have salutary

activity against AD through several mechanisms (Cui et al., 2011;
Wang et al., 2015a; Dhull and Kumar, 2018). These studies suggest
that selective antagonists of DOR and mixed DOR-antagonist/
MOR-agonists could potentially emerge as a new therapeutic
strategy against AD with fewer side effects (Figure 2).

Several biochemical and pharmacological studies using MOR
and DOR ligands gave an early indication of physical and functional
interactions between the two receptors (Starke et al., 1990). The
MOR and DOR are present in pain modulating regions of the CNS
on overlapping populations of neurons. It has also been shown that
both MOR and DOR are present within the same functionally
distinct heterodimeric or hetero-oligomeric complexes (George
et al., 2000; Gomes et al., 2000; Levac et al., 2002; Fan et al.,
2005). The physiological and pharmacological significance of
MOR/DOR interactions have been substantiated by recent studies
using opioid receptor gene knockout animals (Kieffer, 1999). Both
MOR and DOR have an intermodulatory effect suggesting that
ligands having a mixed interaction profile at both the receptors or at
specific dimer pairs could serve as a novel therapeutic approach for
the treatment of AD.

The KOR plays an important role in cognitive and learning
functions and may also be involved in modulating AD pathology.
The KOR (k1 and k2 variants) is among the most abundant brain
opioid receptors. In the human brain, KOR has a wide and distinct
distribution in the neocortex, striatum, thalamus, amygdala, and
hippocampus (Simonin et al., 1995; Hiller and Fan, 1996) and is
implicated in the pathophysiology of depression, anxiety, and
alcoholism (McLaughlin et al., 2003; Tejeda et al., 2012). KOR
activation was associated with stress-related dysmnesia, and these
receptors could regulate glutamate neurotransmission and affect
synaptic plasticity underlying memory formation. An early study
showed evidence of increased kappa binding sites of AD brains at
autopsy, indicating that KOR may also be involved in AD and other
disorders, such as epilepsy and Tourette’s syndrome (Loacker et al.,
2007; Cai and Ratka, 2012).

AD is a complex disease affected by both environmental and
genetic factors (Xu et al., 2013). Epigenetics has emerged as an
intermediate between environmental and genetic factors which
could impact AD (Cai and Ratka, 2012). As an important
component of epigenetics, genes with significantly changed DNA
methylation have been found in AD patients (Van den Hove et al.,

FIGURE 2
Interaction of the DOR with Alzheimer’s pathology. DOR is activated by DOR agonist, which in turn activates BACE1 and γ-secretase activity. This
produces Aβ42 protein aggregates, producing at least in part Alzheimer’s disease pathology. This process can be reversed by DOR antagonist treatment.
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2014). Targeting epigenetic DNAmethylation could be a therapeutic
target for neurodegenerative disease such as Huntington’s disease
and AD (Chang et al., 2014). Studies conducted on methylation of
opioid receptor genes found that promoter DNA methylation may
be dysregulated and thus may play a role in disease pathology (Sun
et al., 2015). Several studies found that increased methylation levels
of the four opioid receptor genes OPRM1, OPRL1, OPRK1 and
OPRD1 indicate the epigenetic involvement of the opioid system in
AD patients compared with healthy subjects (Xu et al., 2018). The
above findings also suggest that opioid receptor genes could be used
as potential methylation biomarkers for the diagnosis of AD (Ji et al.,
2015a; Sun et al., 2015). A higher level of DNA methylation in the
KOR (OPRK1) promoter CpG site was observed in patients with AD
as compared to controls and this high methylation of OPRK1 could
contribute to the risk of AD through its downregulation of gene
expression (Ji et al., 2015).

Lastly, mechanistic/mammalian target of rapamycin (mTOR)
has a very important role in neuronal plasticity, learning and
memory and has a close association with many
neurodevelopmental and neuropsychiatric disorders (Costa-
Mattioli and Monteggia, 2013). Studies have reported that MOR
activation attenuated Aβ oligomer-induced neurotoxicity through
mTOR signaling. It may provide new insight into the pathological
process and useful strategy for therapeutic interventions against Aβ
neurotoxicity by targeting this mTOR/MOR relationship (Wang
et al., 2015).

Future perspective

The studies above emphasize the importance of opioid receptors
in AD modulation; however, the area needs to be explored further
for better understanding. AD is a complex neurological disorder and
currently there are no approved disease modifying therapies
available. Efforts are underway to eliminate β-amyloid plaques
through inhibiting two notable enzymes such as BACE1 and the
γ-secretase enzyme. Nevertheless, these approaches have not yet

achieved clinical success. Studies have recommended that indirect
modulation of the function of these enzymes via opioid receptors be
pursued to achieve reduction in Aβ pathology and identify lead
compounds for further development as candidate AD therapeutics.
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