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Inflammatory bowel disease (IBD) is a chronic disease that is characterized by
intestinal inflammation. Epithelial damage and loss of intestinal barrier function are
believed to be the hallmark pathologies of the disease. In IBD, the resident and
infiltrating immune cells consumemuch oxygen, rendering the inflamed intestinal
mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope
with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is
tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through
inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies
have shown that PHD-targeting is beneficial to the treatment of IBD. In this
Review, we summarize the current understanding of the role of HIF and PHDs in
IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD
treatment.
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1 Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the
gastrointestinal tract (Zhang and Li, 2014). The major types of IBD are Crohn’s disease
(CD) and ulcerative colitis (UC). IBD is debilitating and associated with the development of a
number of complications. It affects millions of people worldwide with higher incidence in
developed countries (Loftus, 2004). The pathology of IBD is complex and may involve a
combination of genetic, environmental factors and immunological abnormalities (Kaser
et al., 2010; Ananthakrishnan et al., 2018). The core pathology of IBD is believed to be the
disruption of epithelial barrier that separates the intestinal lumen from the mucosal immune
system. The impairment of intestinal barrier leads to exposure of mucosal immune cells to
microorganisms and antigens, which causes inflammation and ruins the integrity of the
intestinal barrier, resulting in progressive and cyclical inflammation as well as a long-term
damage to the intestine (Brown and Taylor, 2018). Currently, antibiotics, anti-inflammatory
agents and surgery are employed in the treatment of IBD. The effectiveness of these
treatments is variable and usually unsatisfactory. There is an unmet medical need for
this disease.

Compared with other tissues, intestine is hypoxic and intestinal inflammation
exacerbates the lack of oxygen (Taylor and Colgan, 2017). Mucosal hypoxia is an
integral component of IBD. The intestine is highly dependent on the adaptive pathways
activated by hypoxia. Studies have revealed that hypoxia-inducible factor (HIF) protects
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intestinal barrier and elicits anti-inflammatory responses. Protein
stability of HIF is tightly regulated by prolyl hydroxylases (PHDs).
Induction of expression of HIF through inhibition of PHDs has been
shown beneficial to IBD treatment (Manresa and Taylor, 2017; Van
Welden et al., 2017a). Herein, we review the current understanding
of the impacts of HIF and PHDs on IBD and discuss the therapeutic
potential of targeting PHD-HIF axis for the treatment of this disease.

2 IBD and hypoxia

Hypoxia is a feature of the intestinal mucosa. Under normal
conditions, there is a steep oxygen gradient from the anaerobic
lumen to the oxygen-rich submucosa in the gastrointestinal tract
(Taylor and Colgan, 2007). The oxygen contents in the small
intestinal wall and the villus tip are about 8% and 3%,
respectively. The oxygen content in gut lumen is less than 2%,
whereas the arteries in the submucosa have an oxygen level around
80%–100% (He et al., 1999; Fisher et al., 2013; Zeitouni et al., 2016).

Due to increased cell metabolism and decreased supply of
oxygen, the inflamed regions are usually short of oxygen (Fraisl
et al., 2009; Eltzschig and Carmeliet, 2011; Bartels et al., 2013;
Eltzschig et al., 2014). During inflammation, the resident
immune cells such as macrophages and dendritic cells are
activated. These activated immune cells produce proinflammatory
cytokines and chemokines, which induces differentiation of T cells
and recruits inflammatory cells from blood to mucosa. The
infiltrated immune cells and intestinal epithelial cells in the
inflamed regions consume a large amount of oxygen (Campbell
et al., 2014). In the meantime, the microthrombosis in inflamed

tissues may cause decreased oxygen supply from the bloodstream
(Hatoum et al., 2003). The increased oxygen consumption and
decreased oxygen supply result in lack of oxygen in the inflamed
mucosa. Multiple IBD models have demonstrated that the inflamed
intestinal mucosa is short of oxygen and hypoxia is a common
feature in the inflamed mucosa in IBD (Taylor and Colgan, 2017).

3 Hypoxia inducible factor (HIF) α and
prolyl hydroxylase (PHD)

In the intestine, the adaptation of the cells to the lack of oxygen is
regulated by HIF. HIF is a basic helix-loop-helix-PAS domain
transcription factor that is composed of an alpha subunit (HIF-
1α, -2α and -3α) and a constitutively expressed beta subunit (known
as HIF-1β) (Wang et al., 1995). HIFα binds HIF-1β to form an active
transcription factor. The transcription factor recruits co-factors
p300 and CBP and the complex binds hypoxia responsive
elements (HRE) within or near target genes to initiate
transcription of the genes that are involved in cell survival,
angiogenesis and metabolism (Figure 1) (Schofield and Ratcliffe,
2004; Chowdhury et al., 2008; Ortiz-Barahona et al., 2010;
Biddlestone et al., 2015; Taylor and Scholz, 2022; Wicks and
Semenza, 2022).

Stability of HIFα is controlled by PHDs. In the presence of
oxygen, PHDs hydroxylate the highly conserved proline residues of
HIFα. The hydroxylated HIFα is then recognized by the von Hippel-
Lindau (pVHL) protein, an E3 ubiquitin ligase, and is ubiquitinated
for degradation (Maxwell et al., 1999; Ivan et al., 2001) (Figure 1).
PHDs are dioxygenases that use O2 and 2-oxoglutarate (2-OG) as

FIGURE 1
The PHD-HIF oxygen-sensing system. In well oxygenated cells (schematic on the right side), PHDs hydroxylate HIFα on specific proline residues
using O2 and 2-OG as co-substrates. The E3 ubiquitin ligase pVHL recognizes the hydroxylated HIFα and mediates HIFα ubiquitination and proteasomal
degradation. In hypoxic cells (left side), the PHDs’ prolyl hydroxylase activity is inhibited, leading to HIFα accumulation. HIFα then dimerizes with HIF-1β
and recruits CBP and p300 co-factors. The complex binds to hypoxia response element (HRE) within or near target genes to activate transcription of
these genes. Abbreviations used: HIF, hypoxia-inducible factor; PHD, prolyl hydroxylase; Ub, ubiquitin; pVHL, the von Hippel-Lindau protein; 2-OG, 2-
oxoglutarate.
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co-substrates and Fe2+ and ascorbic acid as co-factors. The PHD
family has three members: PHD1 (EglN2), PHD2 (EglN1) and
PHD3 (EglN3). PHD1, PHD2 and PHD3 share conserved
C-terminal regions that are responsible for the prolyl hydroxylase
activity. However, these enzymes have great differences at N
terminus (Epstein et al., 2001). Each protein has its tissue- and
cell-specific expression pattern as well as particular cellular
distribution (Metzen et al., 2003).

Oxygen is the most important factor that controls prolyl
hydroxylation catalyzed by PHDs. In hypoxia, the PHDs’
enzymatic activities are inhibited, leading to accumulation of
HIFα and subsequent expression of HIFα target genes. The
affinity of PHDs to oxygen is relatively low and this makes
PHDs sensing oxygen in a physiologically relevant concentration
range (Kaelin and Ratcliffe, 2008). Recent studies indicate that the
PHDs oxygen KM values are close to 100 μmol/L (Koivunen et al.,
2006; Ehrismann et al., 2007), which are higher than tissue oxygen
concentrations (10–30 μmol/L). The oxygen content in cells is
smaller than the apparent KM for oxygen, allowing that the
enzymatic activities of PHDs are strictly controlled by oxygen
content over the entire physiologic range (Kaelin and Ratcliffe,
2008). This characteristic makes PHDs good oxygen sensors in
tissues. The PHDs and HIFα are the core of the oxygen-sensing
machinery in metazoans.

Although all PHD isoforms hydroxylate HIF-1α and HIF-2α,
they have differential selectivity in relation to the hydroxylation of
them (Appelhoff et al., 2004). PHD2 has a greater influence on the
expression of HIF-1α than that of HIF-2α, while PHD1 and
PHD3 have a greater effect on the expression of HIF-2α
(Appelhoff et al., 2004). Of the PHD family members,
PHD2 appears to be the primary HIFα prolyl hydroxylase and
the key oxygen sensor (Berra et al., 2003; Minamishima et al., 2008;
Takeda et al., 2008). The PHD2 and PHD3 genes have HRE in their
promoter regions and their transcription can be modulated by
oxygen contents (Metzen et al., 2005; Pescador et al., 2005).
Under hypoxia, expression of PHD2 and PHD3 genes is activated
and the increased PHD2 and PHD3 proteins are believed to decrease
the HIF response to chronic hypoxia, which may limit HIFα protein
levels under hypoxia. Although the enzymatic activities of
PHD2 and PHD3 are inhibited in hypoxic conditions, their
presence may cause immediately the degradation of HIFα once
the oxygen levels increase, thereby forming a negative feedback
regulation (Stiehl et al., 2006). Interestingly, the expression of PHD1
gene is not regulated by such a feedback mechanism (Marxsen et al.,
2004).

4 Role of HIFα in IBD

4.1 HIFα in intestinal epithelial barrier

The intestine epithelial cells play an important role in defensing
against microorganisms in the intestinal tract. In intestine epithelial
cells, HIF-1α and HIF-2α are demonstrated to be critical in keeping
barrier function and wound healing capacity (Karhausen et al., 2004;
Ramakrishnan and Shah, 2016). The intestinal barriers are dynamic
in nature. They are maintained mostly by mucus layer, intercellular
tight junction (TJ) and adherens junction (AJ). Many investigations

have demonstrated that HIFs have a barrier-protective function in
the intestine (Furuta et al., 2001; Synnestvedt et al., 2002; Eltzschig
et al., 2003). Both HIF-1α and HIF-2α are found expressed in human
and mice intestine epithelial cells (Giatromanolaki et al., 2003;
Glover et al., 2013; Xue et al., 2013). The involvement of HIF-1α
and HIF-2α in the protection of intestinal epithelial barrier is well
investigated and the results indicate that they are key regulators.

Studies of active inflammation in mouse models of IBD have
shown the intestinal epithelial cell to be a primary target for hypoxia
(Karhausen et al., 2004). Strong evidence has demonstrated that
HIF-1α plays a crucial role in the maintenance of intestinal barrier,
and it is widely regarded as a protective factor (Figure 2), making it a
potential therapeutic target for IBD (Colgan and Taylor, 2010). A
major line of defense to the gut microorganisms and other
pathogens is the production of mucus (Hansson, 2020). The
mucus is the first barrier that gut microbes and pathogens meet.
The intestine goblet cells are a kind of epithelial cells that produce
and secrete mucus. Several mucins such as mucin-3 and muc5ac are
the major glycoproteins in mucus and expression of these mucins
are regulated by HIF-1α (Louis et al., 2006; Young et al., 2007). In
addition to themucus layer, TJ forms the core mechanism regulating
the integrity of intestinal barrier. Claudin-1 is a major tight
junctional protein, and its expression is directly regulated by
HIF-1 (Saeedi et al., 2015). Inactivation of HIF-1 resulted in a
defect in the formation of tight barriers, which was redeemed by the
expression of claudin-1.

Stabilization of HIF through inhibition of PHDs promoted
intestinal fibroblast-mediated collagen gel contraction, an
important step in the wound-healing process (Ngo et al., 2006).
It was demonstrated that pharmacological activation of HIF
increased contraction of collagen gels seeded with mouse
embryonic fibroblast NIH-3T3 cells (Robinson et al., 2008).
Further studies using human CCD-18CO intestinal fibroblast
cells were performed. When seeded in collagen gels, the cells
showed a significant increase contraction when treated with PHD
inhibitors, and this contraction correlated directly with increases in
HIF stabilization (Keely et al., 2009). Mechanistically, HIF-1
induced expression of fibroblast integrin beta one and controlled
fibroblast contraction during intestinal wound healing. HIF may
also promote intestinal epithelial healing through induction of α-
integrin (Goggins et al., 2021). It was shown that HIF-1α induced
expression of integrins α6 and α2 to promote intestinal epithelial
migration and proliferation, which played an important role in
epithelial restitution. These results indicated that PHDs inhibitor
stabilized HIF-1α and accelerated intestinal mucosal healing by
inducing epithelial integrin expression.

In addition to direct regulation of the intestinal barrier, HIF-1α
mediates several indirect mechanisms to maintain the barrier
integrity. The expression of intestinal trefoil factor 3, a barrier
protective protein, is regulated directly by HIF-1α (Furuta et al.,
2001). Trefoil factor 3 plays an important role in repairing epithelial
surfaces. Expression of CD39 and CD73, two important membrane-
bound proteins, are regulated by HIF-1α. CD39 is associated with
the conversion of ATP/ADP to AMP, and CD73 is involved in the
degradation of AMP to adenosine (Allard et al., 2017). The CD39-
and CD73-mediated degradation of ATP is critical for restoring the
barrier (Synnestvedt et al., 2002). There are anti-microbial peptides
in mucus layer. Beta-defensin-1, an anti-microbial peptide that is
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secreted by intestine epithelial cells into the mucus layer, protects
against commensal overgrowth and pathogen infiltration. HIF-1α
plays a critical role in the induction of production of β-defensin-1 in
intestinal epithelial cells (Kelly et al., 2013). The epithelial HIF-1
may also preserve the intestinal barrier function through the
induction of expression of other barrier-protective genes such as
CD55 (Louis et al., 2005) and netrin-1 (Rosenberger et al., 2009), and
the enhancement of extracellular adenosine signaling while
inhibiting the expression of adenosine transporters and the genes
related to epithelial cell death such as FADD (Hindryckx et al.,
2010).

In mouse model studies, the deletion of HIF-1α in intestine
epithelial cells demonstrated a major defect in the integrity of
mucosal barrier. Deletion of HIF-1α in mice intestine epithelial
cells showed that the absence of HIF-1α caused more severe 2,4,6-
trinitrobenzene sulfonic acid (TNBS)-induced colitis, while the
constitutive HIF-1α activation was protective (Karhausen et al.,
2004). The mice lacking HIF-1α in intestine epithelial cells were
more sensitive to bacterial toxin with amore severe colitis phenotype
as compared to the control mice (Hirota et al., 2010). Together, these
data suggest that epithelial HIF-1 plays a critical role in intestinal
barrier protection.

HIF-2α also plays an important role in keeping homeostasis of
the intestinal barrier. It regulates cell metabolism and proliferation
that are required for repair of intestine epithelial injury, which is
essential for highly regenerative intestinal epithelium (van der Flier
and Clevers, 2009). It was reported that HIF-2α promoted the
expression of creatine kinases (CKs) including CKB (brain type)
and CKM (muscle type), the enzymes that are critical for rapid ATP

production in intestine epithelial cells (Glover et al., 2013). The
authors showed that CKs were localized to the apical intestinal
epithelial cell AJ, where they were important for the AJ assembly and
epithelium integrity. In a radiation-induced model of intestinal
injury in mice, activation of HIF-2α was found protective by
increasing crypt regeneration in vascular endothelial growth
factor (VEGF)- and angiogenesis-dependent manners (Taniguchi
et al., 2014). It should be noted that, in some studies, HIF-2α was
found to have detrimental effects in animal models of bowel
inflammation (Xue et al., 2013; Solanki et al., 2019). The role of
HIF-2α in IBD remains unclear and further studies are warranted.

In hypoxia, cells shift mitochondrial respiration to glycolysis.
The hypoxia-induced HIF-1α plays an important role in this
metabolic switch through inducing the expression of glucose
transporters and glycolytic enzymes (Seagroves et al., 2001;
Kierans and Taylor, 2021), and through suppressing
mitochondrial oxidative phosphorylation (Kim et al., 2006;
Papandreou et al., 2006). The HIF-1α-promoted glycolysis
may enhance the production and release of lactate, leading to
acidification of the extracellular microenvironment (Pavlova
et al., 2022), which may impact the metabolism of gut
microbial communities (Taylor et al., 2022). A recent report
demonstrated that the intestinal HIF-2α also positively regulated
gut lactate by controlling the expression of intestinal LDHA,
which shaped the gut microbiome (Wu et al., 2021). It was shown
that treatment with lactate-producing Saccharomyces cerevisiae
modulated gut microbiota and attenuated dextran sulfate sodium
(DSS)-induced colitis in mice (Sun et al., 2021). Thus, activation
of HIF through inhibition of PHDs may regulate intestinal

FIGURE 2
Protective role of HIF in intestinal epithelial barrier. Activation of HIF-1 in the intestine epithelial cells induces a barrier-protective pathway by
increasing the expression of barrier-protective proteins such asmucus, trefoil factor 3, CD39, CD73 and β-defensin-1 and TJ protein claudin-1. Activation
of HIF-2 promotes the expression of CK and VEGF that promotes AJ and angiogenesis, respectively. Abbreviations: AJ, adhesion junction; CK, creatine
kinase; TJ, tight junction; VEGF, vascular endothelial growth factor.
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barrier function through the induction of lactate and the
modulation of gut microbiota.

4.2 HIFα in innate and adaptive immunity

Hypoxia influences immunity through induction of expression
of HIFα (Dvornikova et al., 2023). HIF-1α was shown to promote
neutrophil survival and enhance glycolysis (Cramer et al., 2003;
Walmsley et al., 2005) (Figure 3). The macrophages rely on
glycolysis to produce ATP, which is also regulated by HIF-1α
(Cramer et al., 2003). The mice macrophages lacking HIF-1α
cannot produce sufficient ATP, which may disserve the capability
of survivability, motility, invasiveness and bacterial killing of these
cells (Cramer et al., 2003). In dentric cells activation of HIF-1α
promotes production of interferon, IL-22 and IL-10 and induces cell
differentiation as well as cell migration (Köhler et al., 2012; Naldini
et al., 2012; Wobben et al., 2013). In DSS colitis model, the mice that
HIF-1α was specifically knocked out in dentric cells were more
sensitive to DSS treatment as compared to the control mice (Flück
et al., 2016). This was related to disrupted development of regulatory
T cells (Tregs), which was caused by decreased formation of dentric
cell-induced C–C chemokine receptor type 9, a marker of gut-
homing T-cells, and by decreased expression of aldehyde
dehydrogenase 1a2, an enzyme involved in Tregs induction. HIF-
2α is also involved in the regulation of macrophages and natural
killer (NK) cells. Fang et al. demonstrated that HIF-2α induced the
expression of cell surface receptors and tumor-promoting cytokines
in human and murine macrophages as HIF-1α did in hypoxia (Fang
et al., 2009). Zhang et al. showed that HIF-2α limited NK cell

cytotoxicity (Zhang et al., 2016), which indicates that HIF-2α may
have an anti-inflammatory role.

HIFs are also implicated in the regulation of adaptive immune
cells, including T cells and B cells. It was shown that the T cell-
specific HIF-1α knockout mice had more severe gut inflammation
with increased amounts of TH1 and TH17 cells when treated with
DSS, implying that HIF-1α favors the differentiation of Tregs
(Higashiyama et al., 2012). A recent report demonstrated that
stabilization of HIF-1α enhanced the production of IL-10 and IL-
22 from lamina propria CD4+ T-cells with reduction of
inflammatory lesions in DSS-induced mice colitis (Kim et al.,
2021). The Tregs without HIF-1α could not control T cell-
mediated colitis (Clambey et al., 2012). Different from HIF-1α,
overactivation of HIF-2α was shown to have deleterious role in the
control of Tregs function (Yamamoto et al., 2019; Ajouaou et al.,
2022). The findings are different from a publication by Hsu et al.
(2020) in which deletion of HIF2α, but not HIF1α, was found to
affect Tregs function negatively. Of note, concomitant deletion of
both HIF-1α and HIF-2α restored the suppressive activity of Tregs
(Hsu et al., 2020). These studies indicate that the role of HIF-2α is
ambiguous. In B cells, HIF-1α regulates the expression of alkaline
pH-activated two-pore domain K+ channel K2P5.1, which is
required to affect B-cell proliferation, survival, or production of
cytokines (Shin et al., 2014). HIF-1α acts as a transcription factor
controlling the formation of IL-10 in B cells (Meng et al., 2018).
Specific deletion of pVHL in B cells stabilized HIFα, leading to
decreased proliferation and increased death of B cells, and impaired
formation of high-affinity IgG (Cho et al., 2016).

Intestinal microenvironment acidosis also influences immune
cells. Studies have shown that lactate acidosis induced by HIF-1α

FIGURE 3
Roles of HIF-1α in immune cells. HIF-1α promotes survivability and motility of macrophage, stimulates production of interferon, IL-22 and IL-10 by
dentric cells, favors differentiation of Treg cells and decreases proliferation and increases death of B cells.

Frontiers in Pharmacology frontiersin.org05

Lun et al. 10.3389/fphar.2023.1045997

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1045997


exerted immunomodulatory pleiotropic effects that modulate the
inflammatory response (Manosalva et al., 2022). Long-term
exposure to lactate results in strong anti-inflammatory effects in
monocytes (Ratter et al., 2018). The anti-inflammatory effect by
lactate was also observed in macrophage (Yang et al., 2020) andmast
cells (Caslin et al., 2019). Lactate-driven macrophage polarization in
the inflammatory microenvironment alleviates intestinal
inflammation (Zhou et al., 2022). Past studies showed that lactate
suppressed the innate immunity (Hoque et al., 2014) and lactate
treatment protected mice against TNBS-induced colitis (Iraporda
et al., 2016). Extracellular acidosis suppresses T cell-mediated
immunity (Certo et al., 2021).

5 Role of PHDs in IBD

Studies have indicated that the three PHD family members have
different roles in IBD (Watts andWalmsley, 2019; Dvornikova et al.,
2023). In a DSS-induced colitis animal model, the intestinal
inflammation was diminished in Phd1-deficient (Phd1_/_) but
unaltered in Phd2-deficient (Phd2+/_) and Phd3-deficient (Phd3_/_

) mice, suggesting that loss of Phd1, but not Phd2 or Phd3, is
protective against DSS-induced colitis (Tambuwala et al., 2010;
Kennel et al., 2022). We found that deletion of PHD2 in mice
intestinal epithelial cells did not lead to spontaneous enteritis or
colitis, nor did it confer upon mice higher susceptibility to DSS-
induced colitis (Xie et al., 2018). While the mice with depletion of
PHD3 in intestinal epithelial cells developed spontaneous colitis and
were more sensitive to DSS treatment than the wild-type littermate
controls, suggesting that PHD3 is protective against colitis (Chen
et al., 2015). Interestingly, PHD3 was found to protect the intestinal
epithelial barrier through stabilizing the TJ protein occludin (Chen
et al., 2015) and the transcription factor ATOH1 (Xu et al., 2020), in
a hydroxylase-independent manner. These results suggest that the
PHD isoforms have different roles in IBD and they may function in
different mechanisms.

Expression of PHD family members in inflamed intestinal
tissues was determined. PHD1 levels were increased with disease
severity in intestinal tissues from patients with IBD and in colonic
tissues from mice with colitis (Tambuwala et al., 2010). Similarly,
both mRNA and protein levels of PHD1 were found upregulated in
inflamed biopsies from both UC and CD patients, while expression
of PHD2 in colonic mucosa was not altered in IBD and expression of
PHD3 was increased in inflamed biopsies from UC patients only at
the mRNA level (Van Welden S, et al., 2013). These findings are
consistent with the results that deletion of PHD1 is protective. A
recent study demonstrated that PHD1 was downregulated in the
mucosa in UC patients with active inflammatory disease, which
might skew the hypoxic response toward enhanced protective HIF-
1α stabilization in the inflamed mucosa of UC patients (Brown et al.,
2020). In another study using the chemical-induced colitis mice
model, expression of PHD1 and PHD2 was increased with the
progression of the disease, while the expression of PHD3 remained
unchanged (Bakshi et al., 2019). Examination of biopsies from UC
patients indicated that PHD3 protein levels in inflamed mucosa
were decreased with disease severity, which was consistent with the
finding that PHD3 was protective against colitis in mice (Chen et al.,
2015).

The possible roles of PHDs in other types of cell on IBD were
also determined. VanWelden et al. (2017b) demonstrated that Phd1
deletion in endothelial and haematopoietic cells (Phd1f/fTie2:cre)
protected mice from DSS-induced colitis, whereas the response of
Phd2f/+Tie2:cre and Phd3f/fTie2:cre mice to DSS was similar to that
of their littermate controls. While, in another study using a Crohn’s
like ileitis mouse model, it was shown that haematopoietic Phd1-
deletion did not impact experimental ileitis development (De Galan
et al., 2021). It was demonstrated recently that mice lacking
PHD2 expression in Tregs displayed a proinflammatory
phenotype (Ajouaou et al., 2022). Deletion of PHD3 in
neutrophils was found to be associated with reduced bowel
inflammation in an acute mouse model of colitis (Walmsley
et al., 2011). Together, these results indicate that the role of PHD
isoforms may be cell-specific.

6 PHD inhibitors for IBD treatment

6.1 PHD inhibitors in experimental IBD

The protection of intestinal epithelial barrier by HIFα in IBD has
initiated the study of PHDs-targeting as a strategy for IBD treatment. A
few PHD inhibitors have been investigated in the treatment of gut
inflammation in pre-clinical animal models (Table 1). In 2008, two
studies demonstrated the protective effects of the PHD inhibitors
dimethyloxalyl glycine (DMOG) (Cummins et al., 2008) and FG-
4497 (Robinson et al., 2008) in experimental colitis of mice. Besides
mice chemical colitis experiments, treatment with DMOG was also
found beneficial in protection against bacterial toxin-, ischaemia and
reperfusion-, and radiation-induced intestinal injury (Hirota et al., 2010;
Hart et al., 2011; Taniguchi et al., 2014), and the protection was HIF-
dependent. DMOG is an analogue of 2-OG and it blocks the entry of the
co-substrate to the catalytic domain of PHDs, thus inhibiting PHDs’
enzymatic activity. FG-4497 blocks the active site of PHDs.

Gupta and co-workers (Gupta et al., 2014) demonstrated that,
when orally administered, the PHD inhibitor TRC160334 had
protective effects in TNBS and DSS mice colitis models. It was
shown in Hep3B cells that TRC160334 had the ability to activate
HIF-1α (Jamadarkhana et al., 2012). Jeong et al. (2015) reported that
the iron chelator rosmarinic acid methyl ester inhibited PHD
enzymatic activity and was able to ameliorate TNBS-induced
colitis in rats, and the protection was associated with increased
colonic HIF-1 activity. A recent study demonstrated that
stabilization of HIF-1α by the PHD inhibitor CG-598 mitigated
gut inflammation in DSS-induced colitis in mice (Kim et al., 2021).

AKB-4924 (also known as GB004), a predominant PHD inhibitor,
was shown to protect against TNBS-induced mice colitis (Keely et al.,
2014). This inhibitor did not have any protection of mice lackingHIF-
1α in intestinal epithelial cells, indicating that epithelial HIF-1α is the
target for AKB-4924-mediated protection. GB004 is an iron chelator
and stabilizes HIF-1α by inhibiting PHD activity (Okumura et al.,
2012). Oral administration of GB004 alleviated colonic inflammation
with minor effects on protein levels of HIFα and expression of its
target genes in extra intestinal organs, which limits the potential off-
target effects (Marks et al., 2015). These results implicate that
GB004 has preference for stabilization of HIF-1α within the gut
and the intestinal epithelium is the central site of protection

Frontiers in Pharmacology frontiersin.org06

Lun et al. 10.3389/fphar.2023.1045997

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1045997


afforded by PHD inhibitor. HIF-1 stabilization by GB004 accelerated
mice intestinal mucosal healing and reduced TNBS-induced colitis by
inducing epithelial integrin expression (Goggins et al., 2021).
GB004 exhibits protective effects directly on epithelial cells and
drives protective effects on immune cells (Taylor et al., 2021).
Administration of GB004 results in reduction in disease severity
and improvements in histologic measures.

PHD inhibitors also play a role in alleviating intestinal fibrosis. It
has been recently reported that PHD inhibition downregulates the
expression of TGF-β1 in intestinal fibrosis (Manresa et al., 2016),
indicating that the PHD inhibitors serve as anti-fibrotic agents in the
treatment of IBD. Oral administration of betulinic acid hydroxamate
(BAH), an inhibitor of PHDs, prevented TNBS- or DSS-induced
mice colon inflammation and fibrosis (Prados et al., 2021). BAH-
treated animals showed a significant reduction of fibrotic markers
Tnc, Col1a2, Col3a1, Timp-1 and α-SMA and inflammatory
markers F4/80+, CD3+, Il-1β and Ccl3 in colon tissue, as well as
an improvement in epithelial barrier integrity and wound healing.

The aforementioned studies have demonstrated the therapeutic
effects of PHD inhibitors in the treatment of animal gut
inflammation. Notably, most of these studies showed the
stabilization of HIF-1α and attributed the protection to the
stabilization and activation of HIF-1. It should be noted that
there is no conclusive demonstration that HIF-1α is the primary
driver of the protective effects of these inhibitors. Inhibition of

PHDs may also activate nuclear factor-kappa B (NF-κB) (Cummins
et al., 2006;Welden et al., 2017). It was shown that ablation of NF-κB
in epithelial cells resulted in serious chronic intestinal inflammation
in mice (Nenci et al., 2007), indicating the requirement of NF-κB in
the maintenance of the gut immune homeostasis. As NF-κB is a
major regulator of immune and inflammatory processes (Nizet and
Johnson, 2009; Capece et al., 2022), its activation induced by PHD
inhibitors may also be of therapeutic benefit in IBD.

6.2 PHD inhibitor GB004 in clinical trail

As GB004 has been shown beneficial in treatment of intestinal
inflammation in animal models, it is being investigated as a potential
treatment option for IBD patients. A phase IA study showed that no
serious adverse events were observed when the healthy subjects
received a single ascending dose of GB004, indicating a well
tolerance (Levesque et al., 2019) (Table 2).

To determine the safety and pharmacokinetic profile, a multiple
dose phase IA study was conducted in healthy people in Canada
(Levesque et al., 2020). It is randomized, double-blinded and
placebo-controlled. GB004 solution or placebo solution were
orally administered at three doses once a day for 8 days. Forty-
two people participated and there were no recorded serious adverse
events. Following oral administration, the drug was absorbed and

TABLE 1 PHD inhibitors in treatment of gut inflammation in animal models.

PHD inhibitors Mechanism IBD models References

DMOG 2-OG analogue DSS-induced mice colitis Cummins et al. (2008)

Clostridium difficile-induced mice gut injury Hirota et al. (2010)

Ischaemia–reperfusion mice gut injury Hart et al. (2011)

Radiation-induced mice intestinal toxicity Taniguchi et al. (2014)

FG-4497 PHD active site blocker TNBS-induced mice colitis Robinson et al. (2008)

TRC160334 Unknown DSS-induced and TNBS-induced mice colitis Gupta et al. (2014)

Rosmarinic acid methyl ester Iron chelator TNBS-induced rat colitis Jeong et al. (2015)

AKB-4924 Iron chelator TNBS-induced mice colitis Okumura et al. (2012)

CG-598 Unknown DSS-induced mice colitis Kim et al. (2021)

Betulinic acid hydroxamate Dephosphorylation and inactivation of PHD2 TNBS- and DSS-induced mice colitis Prados et al. (2021)

TABLE 2 PHD inhibitor GB004 in clinical trail.

Clinical trail
stage

Test population Purpose Results References

Phase IA Healthy people Evaluation of the safety, tolerability, and
pharmacokinetics of a single ascending dose of
GB004

No serious adverse events Levesque et al.
(2019)

Phase IA Healthy people Evaluation of the safety, tolerability, and
pharmacokinetics of multiple daily doses of GB004

Safe and tolerable Levesque et al.
(2020)

Phase IB Patients with mild-to-
moderate active UC

Evaluation of safety, pharmacokinetics,
pharmacodynamics and efficacy of GB004

GB004 is safe, tolerable and beneficial in
improving mucosal healing and reducing
inflammation

Danese et al.
(2022)

Frontiers in Pharmacology frontiersin.org07

Lun et al. 10.3389/fphar.2023.1045997

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1045997


eliminated quickly from the systemic circulation. The influences of
GB004 and placebo on levels of erythropoietin (EPO) and VEGF in
plasma were similar with no dose-related effects, which highlights
the predominant effect of GB004 on the intestine. The data indicated
that GB004 at the doses tested did not influence the expression of
EPO and VEGF in plasma. These results might be due to low
accumulation of GB004 in plasma. The biopsie assay indicated that
there was more GB004 in colon than in the plasma (Levesque et al.,
2020). These results of the study suggest that GB004 at the doses
administrated daily are safe and tolerable.

A first-in-patient, phase IB, double-blinded, placebo-controlled
study was performed to evaluate the safety, tolerability and
pharmacokinetics of GB004 (Danese et al., 2022). Thirty-four
adult participants that had mild-to-moderate active UC were
randomized to GB004 solution (120 mg) (n = 23) vs. placebo
(n = 11) once daily for 28 days. After GB004 treatment, a greater
proportion of the patients had reduced faecal calprotectin and
mucosal healing. Formation of faecal calprotectin is induced in
inflammation and its expression level correlates with disease activity
and it is used as a clinical biomarker for mucosal inflammation
(Jukic et al., 2021). GB004 was generally well tolerated when
administered orally at 120 mg once daily for 28 days. There were
no discernable difference between the treatment groups regarding
systemic levels of EPO and VEGF. The concentrations of GB004 in
colonic tissues on day 28 were greater than those in plasma
(approximately 6 and 65 times higher than peak and average
plasma concentrations). The substantially higher contents of
GB004 in colon relative to those in plasma indicates a local gut
effect of GB004, which may explain the absence of increased
systemic levels of EPO and VEGF relative to placebo.

Hypoxia promotes glycolysis and thus excess lactate production,
leading to acidification of the extracellular microenvironment,
which may influence the therapeutic efficacy of drugs (Singh
et al., 2021). This phase IB trial study showed the therapeutic
benefits of GB004 in the treatment of UC, suggesting that this
compound works in lactate acidosis.

Currently, a larger phase 2 SHIFT-UC study (NCT03860896)
about GB004 on active UC is ongoing.

6.3 PHD inhibitors development and
limitation

Several PHD inhibitors have been developed and their potential in
treating IBD and other diseases such as anemia associated with chronic
kidney disease (CKD) are under investigation (Welden et al., 2017;
Semenza, 2019). Enhanced angiogenesis and increased expression of
EPO were observed in conditional knockout of PHD2 (Takeda et al.,
2006; Takeda et al., 2007; Katschinski, 2009). These findings and
previous results that HIF-induced EPO production and
concomitantly enhanced erythropoiesis (Semenza and Wang, 1992)
imply thatHIF activation by inhibiting PHDs is favorable to people with
anemia and ischemia-related diseases. Pharmacologicalmanipulation of
PHD-HIF axis has been quested for treating disorders related to local
and systemic hypoxia. PHD inhibitors were developed for the treatment
of chronic kidney disease (CKD)-related anemia (Welden et al., 2017;
Semenza, 2019; Wish et al., 2021; Macdougall, 2022). At least six PHD
inhibitors roxadustat (FG-4592), daprodustat (GSK1278863),

vadadustat (AKB-6548), molidustat (BAY 85-3934), enarodustat
(JTZ-951) and desidustat have been developed and the phase
3 clinical trials showed that their effects were non-inferior to current
EPO-stimulating agents (Sugahara et al., 2022). Roxadustat was first
approved in China for treatment of CKD-related anemia patients
receiving hemodialysis or peritoneal dialysis in 2018 (Dhillon, 2019)
and for the treatment of CKD-related anemia patients not receiving
dialysis in 2019 (Li et al., 2020). Roxadustat was then launched in other
countries such as Japan, Chile, South Korea, the European Union, and
the United Kingdom (Sugahara et al., 2022). On 01 Feb 2023, FDA
approved daprodustat as the first oral treatment for anemia caused by
CKD for adults who have been receiving dialysis for at least 4 months
(https://www.fda.gov/).

Though no adverse effects were observed in studies of GB004 in IBD
patients, there are not any long-term clinical data withGB004. The worry
about the long-term use of PHD inhibitors are raised (Welden et al.,
2017). It is well known that HIFα is highly expressed in cancer cells and
its expression is positively linked with cancer aggressiveness and
mortality (Schito and Semenza, 2016). Thus, the risk of HIF-
activating therapies to promote tumor should be assessed. Activation
of HIFα promotes EPO expression and subsequent erythrocyte
formation. The agents that stimulate EPO expression are associated
with an increased risk of thromboembolic diseases (Vittori et al., 2021;
Semenza, 2022). The risk of fibrosis is another concern when using
inhibitors of PHD. Intestinal fibrosis is a common complication of IBD
(D’Alessio et al., 2022). More than 30% of IBD patients have intestinal
fibrosis (Ramakrishnan and Shah, 2016). It was demonstrated that
activation of HIF1α in epithelial cells promoted fibrogenesis in vivo.
Higgins et al. (2007) provided clinical and genetic evidence that HIF-1
activation in renal epithelial cells might promote fibrogenesis through the
induction of extracellularmatrix-modifying factors and lysyl oxidase. The
disturbance of biochemical processes by inhibition of PHDs is also a
concern. Currently, some of the tested PHD inhibitors are analogues of 2-
OG. In humans, there are many 2-OG-dependent dioxygenases and
these enzymes hydroxylate proteins involved in many biological
processes such as collagen and hormone synthesis and fatty acid
metabolism (McDonough et al., 2010; Markolovic et al., 2015;
Losman et al., 2020). The use of 2-OG analogues might potentially
influence these reactions and result in side effects. Some PHD inhibitors
are Fe2+ chelators and may inhibit other enzymes requiring Fe2+, which
could also lead to unwanted adverse effects.

7 Conclusion

IBD is a chronic inflammatory disorder of intestine and is
characterized by disrupted intestinal barrier and dysregulated
immune. HIFα plays a critical role in protecting intestinal
epithelial barrier and maintaining the healthy mucosal function.
Many studies have demonstrated that stabilization of HIFα through
inhibition of PHDs is protective in experimental colitis. Targeting
PHD-HIF system to repair the disrupted intestinal barrier is
becoming a novel strategy for therapy of IBD. A few PHD
inhibitors have proven to be beneficial in several models of IBD
and clinical trials are ongoing. As there is potential side effect for
persistent activation of HIFs, systemic exposure to PHD inhibitors
may cause adverse effect. Thus, a long-term follow-up is required to
confirm the safety of the treatment with PHD inhibitors. The
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potential side effects of PHD inhibitors should be assessed before
clinical use. Developing PHD inhibitors that are intestine
preferential localization might be an approach to reduce the
adverse effect. In summary, development of the inhibitors
targeting PHDs may meet the unmet needs for IBD treatment
and will have deep impact on medicine.
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