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Introduction: Kidney cancer is one of the most common and lethal urological
malignancies. Discovering a biomarker that can predict prognosis and potential
drug treatment sensitivity is necessary for managing patients with kidney cancer.
SUMOylation is a type of posttranslational modification that could impact many
tumor-related pathways through the mediation of SUMOylation substrates. In
addition, enzymes that participate in the process of SUMOylation can also
influence tumorigenesis and development.

Methods:We analyzed the clinical and molecular data which were obtanied from
three databases, The Cancer Genome Atlas (TCGA), the National Cancer Institute’s
Clinical Proteomic Tumor Analysis Consortium (CPTAC), and ArrayExpress.

Results: Through analysis of differentially expressed RNA based on the total
TCGA-KIRC cohort, it was found that 29 SUMOylation genes were abnormally
expressed, of which 17 geneswere upregulated and 12 geneswere downregulated
in kidney cancer tissues. A SUMOylation risk model was built based on the
discovery TCGA cohort and then validated successfully in the validation TCGA
cohort, total TCGA cohort, CPTAC cohort, and E-TMAB-1980 cohort.
Furthermore, the SUMOylation risk score was analyzed as an independent risk
factor in all five cohorts, and a nomogram was constructed. Tumor tissues in
different SUMOylation risk groups showed different immune statuses and varying
sensitivity to the targeted drug treatment.

Discussion: In conclusion, we examined the RNA expression status of
SUMOylation genes in kidney cancer tissues and developed and validated a
prognostic model for predicting kidney cancer outcomes using three
databases and five cohorts. Furthermore, the SUMOylation model can serve as
a biomarker for selecting appropriate therapeutic drugs for kidney cancer patients
based on their RNA expression.
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Introduction

Kidney cancer is one of the most common and lethal urological
malignancies. Clear cell renal cell carcinoma (ccRCC) composes
approximately 70%–85% of all kidney cancers and arises from the
epithelium of the proximal tube of the kidney (Li et al., 2019a).
Patients with ccRCC have a poor outcome, although targeted therapy
and immune checkpoint blockade (ICB) agents have been recommended
as first-line treatment for metastatic ccRCC (Albiges et al., 2019). More
accurate prognosis prediction and personalized treatment plans are
essential for the full-course management of patients with ccRCC.
Today, many risk models that consist of clinical and molecular
features have been proposed to predict the outcome in patients with
kidney cancer (Wei et al., 2019; Ning et al., 2021; Li et al., 2022).

Posttranslational modification (PTM) is a process to modify
polypeptide chains through chemical modifications, which makes
protein functions more diverse. About 400 types of PTMs have been
reported. SUMOylation is carried out through small ubiquitin-related
modifier (SUMO) proteins and enzymes that connect SUMO proteins
to a lysine residue in the target protein (Ramazi and Zahiri, 2021).
SUMOylation has multiple physiological functions, such as chromatin
remodeling, stemness, cell identity, and protein stability. Abnormal
SUMOylation has been proven to be associated with cancer occurrence,

neurodegeneration, and infection (Celen and Sahin, 2020). In cancers,
SUMOylation of promyelocytic leukemia/retinoic acid receptor alpha
(PML/RARA) is important for cellular transformation and essential for
the pathogenesis of acute promyelocytic leukemia. Androgen receptor
SUMOylation is associated with tumorigenesis of prostate cancer, while
SUMOylation of proto-oncogene MYC occurs in B cell lymphoma
(Sahin et al., 2022). SUMOylation of tumor suppressor gene p53 might
have two opposite functions in cancer, cancer promotion, and cancer
suppression (Bettermann et al., 2012). Some drugs that target
SUMOylation have been discovered. Ginkgolic acid could reduce
cellular SUMOylation and inhibit the invasion capacity of lung,
colon, and liver cancers (Baek et al., 2017; Qiao et al., 2017; Li et al.,
2019b; Sahin et al., 2022).

In kidney cancer, transcription factors, hypoxia-inducible factor 1A
(HIF1A) and hypoxia-inducible factor 2A (HIF2A) are important for
tumorigenesis and development of ccRCC through activating
transcription of genes, such as vascular endothelial growth factor,
which could impact the angiogenesis signaling pathway (Schodel
et al., 2016). Previous studies have shown that SUMOylation could
also take part in the carcinogenesis of kidney cancer. SUMOylation of
HIF1A, E3 ligase hypoxia-associated factor could bind to HIF2A and
enhance its transcriptional activity, which then promotes the metastasis
of ccRCC cells (Koh et al., 2015). In addition, mutation of

FIGURE 1
The survival and SUMOylation risk score distribution and SUMOylation risk model gene expression status. In each sub-figure, the upper panel shows
the risk score distribution, the dashed horizontal line shows the median value of the risk score, and the dashed vertical line shows the patients with the
median value of the risk score (green dots show the low-risk group, and red dots shows the high-risk group). The middle panel shows the survival status
(red dots represent dead status, and green dots represent live status), and the bottom panel shows the heatmap of the SUMOylation risk model gene
expression in each cohort. (A) Discovery TCGA cohort. (B) Validation TCGA cohort. (C) Total TCGA cohort. (D) CPTAC cohort. (E) E-MTAB-1980 cohort.
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microphthalmia-associated transcription factor (MITF) could impair
the SUMOylation of MITF, and then improve the transcriptional
activity of HIF1A through binding to its promoter (Bertolotto et al.,
2011). A study has also shown that SUMOylation-related genes could
help predict the outcome of patients with bladder cancer (Guo et al.,
2022). However, the role of SUMOylation-related genes have not been
well discussed in kidney cancer.

In this study, we screened the differentially expressed
SUMOylation genes at the RNA level between kidney cancer
and normal kidney tissues. A SUMOylation risk model was
constructed to predict prognosis and guide the drug selection
for the treatment of patients with kidney cancer. We then found
the different immune statuses between various SUMOylation risk
groups and analyzed protein expression further. This study not
only built a robust prognosis model but also screened the
significant SUMOylation-related genes, which may be essential
for the development of kidney cancer.

Methods

Data acquiring

Three databases were used in this study: The Cancer
Genome Atlas (TCGA), the National Cancer Institute’s
Clinical Proteomic Tumor Analysis Consortium (CPTAC),
and ArrayExpress. Specifically, the Kidney Renal Clear Cell

Carcinoma (KIRC) cohort in the TCGA database,
PDC000127 cohort in the CPTAC database, and E-MTAB-
1980 cohort in the ArrayExpress database were enrolled in
our study (Sato et al., 2013; Clark et al., 2019). Clinical and RNA
expression data of these three cohorts, and protein expression
data of the PDC000127 cohort and Chinese Fudan cohort were
downloaded and processed (Clark et al., 2019; Qu et al., 2022).
Data of patients who had complete clinical data in the three
cohorts were used for prognosis analysis. Detailed patient lists
and clinical features are shown in the supplementary file and
summarized in Supplementary Table S1. The SUMOylation
genes were obtained from the molecular signature database
(Supplementary Material).

Analysis of differential SUMOylation gene
expression

RNA-seq data from 72 normal kidney tissues and 539 tumor
tissues in the TCGA-KIRC cohort were used to screen the
differential SUMOylation gene expression. The “limma”
package was used, and genes with a fold change>1 and false
discovery rate <0.05 were considered differentially expressed
(Ritchie et al., 2015). The intersection of differential
SUMOylation genes, and the TCGA-KIRC, CPTAC, and
E-MTAB-1980 gene lists were used for further clinical
prognosis analysis.

FIGURE 2
The different outcomes in various SUMOylation risk groups. In each figure, the red line represents the outcome of patients in the high SUMOylation
risk group, the blue line shows the outcome of patients in the low SUMOylation risk group, and the box shows the live patient count during the entire
follow-up period. Log-rank analysis was used to compare the outcomes of patients in different risk groups and presented by the Kaplan-Meier curve. (A)
Discovery TCGA cohort. (B) Validation TCGA cohort. (C) Total TCGA cohort. (D) CPTAC cohort. (E) E-MTAB-1980 cohort. (F) Total TCGA cohort
(After PSM). Propensity-matched analysis: PSM.
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SUMOylation-related gene risk model
construction

In total, 513 TCGA-KIRC patients, 89 CPTAC patients, and
99 E-MTAB patients were diagnosed with ccRCC by pathology,
and with complete clinical data (age, sex, clinical stage, tumor
stage, metastasis stage, node stage, grade, and survival time more
than 1 month), were analyzed for building a prognosis risk
model. First, the 513 TCGA-KIRC patients were randomly
separated into a discovery TCGA cohort (256 patients) and a
validation TCGA cohort (257 patients) in a 1:1 ratio, using the
set.seed function of Base R, and the seed was set as 4443. The

discovery TCGA cohort was used for constructing a risk model,
and the differential SUMOylation genes were analyzed by
univariate cox regression to find the prognosis-related genes.
These genes were analyzed with Lasso regression analysis, and the
selected genes were tested in multivariate cox regression analysis
using the Akaike information criterion method. The coefficient
and expression value of these genes were employed to compute a
risk score and construct a risk model, which was named the
SUMOylation risk model in this study.

The risk score of each patient in the five cohorts (discovery
TCGA cohort, validation TCGA cohort, total TCGA cohort,
CPTAC cohort, and E-MTAB-1980 cohort) was calculated.

TABLE 1 The clinical feature in different risk group in total TCGA and total TCGA cohort after PSM.

Original total TCGA cohort PSM total TCGA cohort

Low risk group High risk group p-value Low risk group High risk group p-value

N = 256 N = 257 N = 180 N = 180

Age (years) 60.36 ± 11.71 60.49 ± 12.41 0.908 59.63 ± 11.53 60.87 ± 12.51 0.327

Gender 0.003 0.648

Male 151 (58.98%) 185 (71.98%) 122 (67.78%) 127 (70.56%)

Female 105 (41.02%) 72 (28.02%) 58 (32.22%) 53 (29.44%)

Tumor stage <0.001 0.839

T1 156 (60.94%) 105 (40.86%) 103 (57.22%) 101 (56.11%)

T2 29 (11.33%) 37 (14.40%) 20 (11.11%) 24 (13.33%)

T3 70 (27.34%) 105 (40.86%) 56 (31.11%) 53 (29.44%)

T4 1 (0.39%) 10 (3.89%) 1 (0.56%) 2 (1.11%)

Node stage 0.096 0.812

N1 118 (46.09%) 116 (45.14%) 85 (47.22%) 81 (45.00%)

N2 3 (1.17%) 11 (4.28%) 1 (0.56%) 2 (1.11%)

Nx 135 (52.73%) 130 (50.58%) 94 (52.22%) 97 (53.89%)

Metastasis stage sstagestage s <0.001 0.844

M1 222 (86.72%) 188 (73.15%) 156 (86.67%) 159 (88.33%)

M2 19 (7.42%) 58 (22.57%) 16 (8.89%) 13 (7.22%)

Mx 15 (5.86%) 11 (4.28%) 8 (4.44%) 8 (4.44%)

Clinical stage <0.001 0.810

Stage I 153 (59.77%) 102 (39.69%) 101 (56.11%) 99 (55.00%)

Stage II 28 (10.94%) 26 (10.12%) 20 (11.11%) 24 (13.33%)

Stage III 55 (21.48%) 67 (26.07%) 42 (23.33%) 44 (24.44%)

Stage IV 20 (7.81%) 62 (24.12%) 17 (9.44%) 13 (7.22%)

Grade <0.001 0.900

Grade 1 9 (3.52%) 4 (1.56%) 3 (1.67%) 4 (2.22%)

Grade 2 132 (51.56%) 91 (35.41%) 83 (46.11%) 82 (45.56%)

Grade 3 100 (39.06%) 104 (40.47%) 80 (44.44%) 83 (46.11%)

Grade 4 15 (5.86%) 58 (22.57%) 14 (7.78%) 11 (6.11%)

PSM, propensity score matching analysis.
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Patients in each cohort were allocated into high- and low-risk
groups according to the median SUMOylation risk score as the
cut-off value. Outcomes of the different groups of patients were
evaluated by log-rank analysis and presented by Kaplan-Meier
curve, and the receiver operating characteristic curve was
conducted. The propensity-matched analysis (PSM),
subgroup analysis, and interaction test was conducted to
further test and validate the role of the risk group in
outcome predicting. The PSM test was conducted using the
“MatchIt” package and the caliper was set as 0.03. The role of
SUMOylation risk score in prognosis prediction was
investigated by univariate and multivariate cox regression
sequentially. In addition, a nomogram was built, and then
multi-ROC and calibration analyses were conducted to test
the nomogram.

The correlation between the SUMOylation
risk group and molecular features

Gene Set Variation Analysis (GSVA) analysis which was
conducted by “c2. cp.kegg.v6.2. symbols.gmt” and “GSVA”
package was used to clarify the molecular features in the
tumor tissues of different risk groups. The infiltration immune
cell proportion in tumor tissues of TCGA-KIRC patients was
computed and assessed using CIBERSORT (https://cibersort.
stanford.edu/) (Newman et al., 2015).

In addition, the immune subtype was raised according to the
160 immune expression signatures, and the all-type tumors in the
TCGA database were clustered into six subtypes, C1 (wound healing),
C2 (IFN-g dominant), C3 (inflammatory), C4 (lymphocyte depleted),
C5 (immunologically quiet), and C6 (TGF-b dominant) (Thorsson
et al., 2018). Subtype data of the TCGA-KIRC tumors were taken out.

A previous study proposed and computed the TIDE score of
samples across tumor types in the TCGA database based on the
expression of specific genes. The results are published at https://tide.

dfci.harvard.edu/, and related information of TCGA-KIRC patients
was extracted from there (Jiang et al., 2018).

Drug treatment sensitivity predicting information was packaged
in the “pRRophetic” package (Yang et al., 2013; Geeleher et al.,
2014). The targeted agent’s treatment sensitivity of TCGA-KIRC
patients was calculated using the package and represented half
maximal inhibitory concentration (IC50).

The SUMOylation risk model genes encoding protein expression
data of CPTAC and Chinese Fudan cohort were obtained from the
published data (Clark et al., 2019; Qu et al., 2022). The IHC data and
images of renal cancer and kidney tissues were obtained and analyzed
using the HPAnalyze package (Tran et al., 2019).

Immunohistochemistry (IHC) detection and
IHC score

The tissue microarray (TMA) containing 30 kidney cancer tissues
and 30 adjacent normal kidney tissues was purchased from
SHANGHAI OUTDO BIOTECH CO., LTD (Lot: HKid-
CRCC060PG-01). Primary antibodies targeting CDCA8
(PROTEINTECH: 12465-1-AP), CDH1 (PROTEINTECH: 20874-1-
AP), and PPARA (PROTEINTECH: 66826-1-Ig) were used to detect
the corresponding protein expression via IHC. The IHC procedure
involved deparaffinization and rehydration of the TMA, followed by
heating the slides in Tris-EDTA (PH 8.0) for antigen retrieval.
Subsequently, the slides were incubated in 0.3% H2O2 for 30 min
and blocked in 10% goat serum to prevent non-specific binding.
The slides were then incubated with antibodies against CDCA8 at a
1:100 dilution, CDH1 at a 1:600 dilution, and PPARA at a 1:100 dilution
overnight at 4°C. Finally, the slides were incubated with the secondary
antibody and visualized using DAB chromogen.

We used ImageJ software to analyze the staining intensity of
IHC. We measured the staining intensity for each tissue section
and divided the samples into quartiles. Based on these quartiles, we
classified the samples into three groups: low expression (staining

FIGURE 3
The propensity-matched analysis (PSM), subgroup analysis, and interaction test of SUMOylation risk group in the total TCGA cohort. (A) The red line
showed the SMD value of the original total TCGA cohort. The green lines showed the SMD value of each variable after the adjustment of the PSM analysis.
(B) The forest figure showed the result of the subgroup analysis and interaction test, and low-risk group as the reference.
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TABLE 2 Univariate and Multivariate Cox regression reveals riskscore is an independent risk factor in kidney cancer.

Cohorts Variables Univariate cox regression Variables Multivariate cox regression

HR (95% CI) p-value HR (95% CI) p-value

Discovery TCGA cohort Age 1.035 (1.015–1.055) <0.001 Age 1.038 (1.016–1.06) 0.001

Gender 1.154 (0.732–1.817) 0.538

Grade 2.331 (1.715–3.168) <0.001 Grade 1.475 (1.04–2.091) 0.029

Clinical stage 1.706 (1.417–2.053) <0.001 Clinical stage 1.635 (0.846–3.161) 0.144

Tumor Stage 1.931 (1.508–2.472) <0.001 Tumor Stage 0.801 (0.387–1.658) 0.549

Metastasis stage 1.771 (1.248–2.515) 0.001 Metastasis stage 0.965 (0.466–1.998) 0.924

Node stage 0.797 (0.638–0.995) 0.045 Node stage 0.974 (0.77–1.231) 0.824

SRGs riskscore 2.718 (1.887–3.916) <0.001 SRGs riskscore 1.83 (1.231–2.721) 0.003

Validation TCGA cohort Age 1.024 (1.005–1.042) 0.012 Age 1.024 (1.004–1.045) 0.018

Gender 0.951 (0.615–1.47) 0.82

Grade 2.207 (1.669–2.919) <0.001 Grade 1.26 (0.914–1.735) 0.158

Clinical stage 2.103 (1.733–2.552) <0.001 Clinical stage 2.297 (1.561–3.379) <0.001

Tumor Stage 1.899 (1.521–2.37) <0.001 Tumor Stage 0.675 (0.454–1.003) 0.052

Metastasis stage 2.625 (1.916–3.596) <0.001 Metastasis stage 1.148 (0.667–1.976) 0.618

Node stage 1.011 (0.818–1.249) 0.92

SRGs riskscore 1.285 (1.171–1.41) <0.001 SRGs riskscore 1.202 (1.065–1.356) 0.003

Total TCGA cohort Age 1.029 (1.016–1.043) <0.001 Age 1.032 (1.018–1.047) <0.001

Gender 1.049 (0.767–1.437) 0.764

Grade 2.284 (1.861–2.804) <0.001 Grade 1.443 (1.146–1.816) 0.002

Clinical stage 1.895 (1.659–2.166) <0.001 Clinical stage 2.003 (1.45–2.769) <0.001

Tumor Stage 1.919 (1.626–2.264) <0.001 Tumor Stage 0.726 (0.514–1.025) 0.069

Metastasis stage 2.179 (1.728–2.748) <0.001 Metastasis stage 1.032 (0.68–1.566) 0.883

Node stage 0.905 (0.777–1.054) 0.2

SRGs riskscore 1.334 (1.236–1.439) <0.001 SRGs riskscore 1.238 (1.12–1.368) <0.001

CPTAC cohort Age 1.014 (0.964–1.065) 0.596

Gender 1.318 (0.356–4.873) 0.679

Grade 2.603 (1.225–5.532) 0.013 Grade 0.765 (0.323–1.814) 0.544

Clinical stage 3.853 (1.819–8.164) <0.001 Clinical stage 3.95 (1.607–9.708) 0.003

Tumor Stage 2.894 (1.287–6.506) 0.01 Tumor Stage 0.732 (0.275–1.949) 0.532

Metastasis stage 0.781 (0.429–1.423) 0.42 Metastasis stage

Node stage 0.331 (0.1–1.102) 0.072 Node stage

SRGs riskscore 3.33 (1.867–5.939) <0.001 SRGs riskscore 2.699 (1.349–5.402) 0.005

E-MTAB cohort Age 1.044 (1.002–1.087) 0.04 Age 1.02 (0.978–1.063) 0.357

Gender 0.441 (0.131–1.486) 0.187

Grade 2.982 (1.671–5.32) <0.001 Grade 0.809 (0.353–1.852) 0.616

Clinical stage 2.289 (1.654–3.167) <0.001 Clinical stage 1.339 (0.371–4.829) 0.655

Tumor Stage 2.564 (1.675–3.925) <0.001 Tumor Stage 1.329 (0.475–3.72) 0.589

(Continued on following page)
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intensity below the 25th percentile), moderate expression (staining
intensity between the 50th and 75th percentiles), and high
expression (staining intensity above the 75th percentile).

Statistical analysis

Continuous variables were analyzed by the t-test, while
categorical variables were examined using the chi-square test.
All statistical analyses were conducted using R software, and a
two-sided p-value of < 0.05 was considered statistically
significant.

Results

Differential SUMOylation genes in
TCGA-KIRC dataset

Among these SUMOylation genes, 29 genes were
abnormally expressed in kidney cancer tissues. Of these,
17 genes (CDKN2A, H4C5, AURKB, BIRC5, H4C11,
TOP2A, cell division cycle-related protein 8 [CDCA8],
H4C12, NR5A2, BLM, NFKB2, PML, H4C8, H4C9, RARA,
NR1H3, and H4-16) were upregulated and 12 genes (CHD3,
peroxisome proliferator-activated receptor alpha [PPARA],
NR4A2, CDH1, VDR, PPARGC1A, THRB, NR3C2, TFAP2A,
TFAP2C, NOS1, and TFAP2B) were downregulated than in the
adjacent normal kidney tissues (Supplementary Material;
Supplementary Figure S1).

SUMOylation gene risk model for predicting
the survival of patients with kidney cancer

In these 29 genes, seven (AURKB, BIRC5, CDCA8, CDH1,
NR1H3, PPARA, and TOP2A) were correlated with the
prognosis of kidney cancer through univariate cox regression
analysis using the discovery TCGA cohort, and five genes
(AURKB, CDCA8, CDH1, NR1H3, and PPARA) were selected
from Lasso regression (Supplementary Figure S2). In addition,
three genes (CDCA8, CDH1, and PPARA) presented as
independent factors of kidney cancer by multivariate cox
regression (Supplementary Material). Finally, a SUMOylation
risk model was constructed with the following equation: risk
score = 0.413023054*CDCA8- 0.024059083*CDH1-
0.12352751*PPARA. The patients’ risk scores in these five
cohorts were computed, and patients in each cohort were
divided into two risk groups. In the discover TCGA cohort,
patients with high-risk scores often had a short survival time
(Figure 1A), and log-rank analysis also showed that patients in

TABLE 2 (Continued) Univariate and Multivariate Cox regression reveals riskscore is an independent risk factor in kidney cancer.

Cohorts Variables Univariate cox regression Variables Multivariate cox regression

HR (95% CI) p-value HR (95% CI) p-value

Metastasis stage 6.113 (2.571–14.537) <0.001 Metastasis stage 2.228 (0.255–19.504) 0.469

Node stage 18.529 (7.024–48.876) <0.001 Node stage 5.155 (1.351–19.68) 0.016

SRGs riskscore 15.613 (5.516–44.194) <0.001 SRGs riskscore 8.097 (1.973–33.22) 0.004

The bold values implied the correspondence variable was shown significant difference in Univariates or Multivariate Cox regression analysis.

FIGURE 4
The SUMOylation risk score is an independent poor prognosis
factor of kidney cancer patients. In each subfigure, the left panel
shows the multivariate cox regression results, and the right panel
presents the receiver operating characteristic curve of 1, 3, and
5 years (the 1 and 3 years of the CPTAC cohort). (A) Discovery TCGA
cohort. (B) Validation TCGA cohort. (C) Total TCGA cohort. (D)CPTAC
cohort. (E) E-MTAB-1980 cohort.
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the high-risk group had a significantly worse outcome (p < 0.001,
Figure 2A). These findings were verified by the four other cohorts
(validation TCGA cohort, total TCGA cohort, CPTAC cohort,
and E-MTAB-1980 cohort) (Figures 1B–E; Figures 2B–E).

In the total TCGA cohort, the high SUMOylation risk group is
significantly correlated with Male patients (p = 0.003), high tumor
stage (p < 0.001), metastasis stage (p < 0.001), clinical stage (p <
0.001), and tumor grade (p < 0.001) (Table 1). After the PSM
analysis, each group has been assigned 180 patients, and there is no
significant difference in clinical features between the high and low-
risk groups (Table 1; Figure 3A). And the high-risk group still
presents a poorer prognosis than the low-risk group (Figure 2F).

In addition, the subgroup and interaction analysis also show
high-risk group associated with poor outcomes in the patients with

the following features, ≤65 years, male, clinical stage I, clinical stage
IV, grade III, grade IV, T1, T2, M0+Mx, M1 and N0+Nx. The
contrary result in the N1 subgroup might be due to the limited
number of patients (Figure 3B).

Although clinical features present in each cohort may vary
in functions for predicting the survival status, the SUMOylation
risk score could be an independent prognosis factor in all five
cohorts and presented a good prognostic effect (Table 2;
Figure 4).

In the total TCGA cohort, age, clinical stage, Grade, and
SUMOylation risk score presented as independent risk factors,
and these four variables were used to build a nomogram to
predict the survival rate of patients with kidney cancer
(Figure 5).

FIGURE 5
A nomogram for predicting the survival rate of kidney cancer patients. (A) Using multivariate cox regression results of the total The Cancer Genome
Atlas cohort, patient age, Grade, clinical stage, and SUMOylation risk score show independent risk factors of patient outcomes. Each featurewas assigned
a value, and the total value of patients corresponded to values of 1-, 3- and 5-year survival rates. (B) The nomogram shows the highest AUC value of in
multi-ROC analysis. (C) Calibration curves of the nomogram for predicting the outcome of 1, 3, and 5 years in the total TCGA cohort.
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Different SUMOylation subgroups present
various molecular features

GSVA analysis revealed the proteasome, DNA replication,
glycosaminoglycan biosynthesis chondroitin sulfate, glycosaminoglycan
biosynthesis keratan sulfate pathways were significantly highly enriched
in kidney cancer tissues with the high-risk group (Figure 6A).

In the two groups (the high-risk and low-risk groups),
10 types of immune cell infiltration statuses were different.
Among them, T cell CD8, T cells CD4 memory activated,
T cells follicular helper, T cells regulatory (Tregs), T cells
gamma delta, and macrophages M0, were higher in the tissues
of the high-risk group, while T cells CD4 memory resting,
monocytes, macrophages M2, and mast cells resting were

FIGURE 6
The cell signaling and immune status in the different risk groups of kidney cancer tissues. (A) The GSVA analysis shows seven pathways were up-
regulated in the low-risk group, while four pathways were up-regulated in the high-risk group. (B) The different types of immune cells infiltrated in the
tumor tissues, *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. (C) The patients’ immune subtypes in the different risk groups. C1
(wound healing), C2 (IFN-g dominant), C3 (inflammatory), C4 (lymphocyte depleted), and C6 (TGF-b dominant).
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higher in the low-risk group (Figure 6B). Tissues in the high-risk
group presented higher ratios of C1, C2, C4, and C6 (total 20%)
than tissues in the low-risk group (total 6%). Additionally, they
had a lower C3 ratio (80%) than tissues in the low-risk group
(94%) (Figure 6C).

SUMOylation subgroupsmay be a biomarker
of kidney cancer treatment

Tissues in the high-risk group showed a high TIDE score and a lower
MSI score (Figure 7A). In addition, tumor tissues in the high-risk group
had a lower IC50of axitinib (p=0.047), sorafenib (p< 0.001), sunitinib (p<
0.001), pazopanib (p < 0.01), and temsirolimus (p < 0.001) (Figure 7B).

RNA and protein expression status of the
SUMOylation risk model genes

At the RNA level, CDCA8 was overexpressed, while CDH1 and
PPARA were downregulated in kidney cancer tissues, in TCGA-KIRC
(Figure 8A). PPARA was downregulated at both the RNA (Figure 8A)
and protein levels (Figure 8F). CDH1 was downregulated in cancer
tissues at both the RNA (Figure 8A) and protein levels in the CPTAC
(Figure 8B) and Chinese Fudan cohort which detecting by proteome
sequencing (Figure 8C), and TMA tissues (Figure 8E). However,
CDCA8 protein was downregulated in the CPTAC kidney cancer
tissues (Figure 8B) and TMA tissues (Figure 8D), which is contrary
to the RNA level (Figure 8A).

Discussion

Here, we analyzed the SUMOylation-related gene expression
status at the RNA level in kidney cancer tissues and built a risk
model using three SUMOylation genes, CDH1, CDCA8, and

PPARA, to indicate the outcomes based on differentially
expressed SUMOylation genes. The risk model also presented as
a potential biomarker to reflect the sensitivity of targeted therapy
and immune status in tumor tissues. Our study analyzed the protein
expression data of these three SUMOylation risk model genes.

Few studies previously focused on the role of SUMOylation in kidney
cancer. Overexpression of SUMO-Specific Protease 1 (SENP1), a SUMO
protease, could reduce the SUMOylation and ubiquitination of HIF2α,
and then increase the local invasion andmetastasis capacity of ccRCCcells
(Lee et al., 2022).While SENP1deficiency could lead to deSUMOyation of
HIF1α and then inhibit cell proliferation (Dong et al., 2016). In addition,
the SUMOylation of hypoxia-associated factor (HAF) could mediate
HIF1α degradation, and promoter HIF2α-dependent transcription, and
then promote ccRCC development and morbidity (Koh et al., 2015). In
our study, the GSVA analysis showed proteasome pathways were
significantly highly enriched in kidney cancer tissues in the high-risk
group (Figure 6A). Proteasomes take part in the degrading protein
process, and it was involved in lots of cellular functions, the
dysregulation of proteasomes could result in uncontrolled growth,
immune escape, drug resistance, and EMT of cancer (Chen et al.,
2017). The poor prognosis of kidney patients in the high-risk group
might be associated with the abnormal proteasome in tumor tissue.

CDH1 is also known as E-Cadherin, and its mutation has proven to
correlate with tumorigenesis, progression, and invasion of gastric, breast,
and colorectal cancers. In addition, the CDH1 protein is a subunit of an
E3 ubiquitin ligase, an anaphase-promoting complex or cyclostome
(APC/C), and can participate in the mechanism of P53 regulating the
G2 checkpoint through SUMOylation (Wang et al., 2020). Previous
studies have shown that HIF can mediate suppression of CDH1 gene
transcription, and result in the downregulation of E-cadherin in VHL-
deficient kidney tumor tissues. In addition, one study showed that
hypermethylation of the E-cadherin promoter also contributes to the
downregulation of CDH1 (Dulaimi et al., 2004; Esteban et al., 2006).
These results may partly explain the reason that CDH1 was
downregulated both at the RNA and protein levels. Moreover, Zhang
et al. (2017) revealed that reduced E-cadherin in kidney cancer could

FIGURE 7
The TIDE score and targeted drug treatment sensitivity prediction in different risk groups. (A–C) TIDE, MSI, and exclusion scores of the two
SUMOylation risk groups (*** indicates p < 0.001, ns indicates no significant difference). (D–H) Five targeted drugs half maximal inhibitory concentration
prediction.

Frontiers in Pharmacology frontiersin.org10

Li et al. 10.3389/fphar.2023.1038457

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1038457


facilitate tumor progression by activating the WNT/β-catenin pathway.
PPARA is a transcription factor, and it can modulate lipid, glucose, and
amino acid metabolism, regulate inflammation, and display a tumor
suppressor or oncogene role in many cancer types (Tan et al., 2021).
PPARAcanbe SUMOylated and results in the function nuance regulation
(Wadosky andWillis, 2012). Indeed, the SUMOylation of PPARA should

result in a decrease in its transcriptional activity. In kidney cancer,
inhibiting PPARA through an antagonist or siRNA could induce
apoptosis and cell cycle arrest of kidney cancer cell lines, and it has
been proven to be a diagnostic and prognostic marker for ccRCC (Abu
Aboud et al., 2013). Although our study showed that PPARA is
downregulated in kidney cancer tissues, Omran et al. revealed that

FIGURE 8
The RNA and protein expression of the SUMOylation risk model genes. (A) The RNA expression values of cell division cycle-related protein 8
(CDCA8) (p < 0.001), CDH1 (p < 0.001), and peroxisome proliferator-activated receptor alpha (PPARA) genes (p < 0.001), between normal and kidney
cancer tissues from the TCGA-KIRC dataset. (B) CDCA8 and CDH1 protein expression of the normal and tumor tissues in the National Cancer Institute’s
Clinical Proteomic Tumor Analysis Consortium cohort dataset. (C) CDH1 protein expression status in Chinese Fudan cohort. (D) The IHC detection
of CDCA8 protein expression in TMA tissues. Left panel: the bar plot shows the CDCA8 expression status detected by IHC. Middle panel: The whole TMA
slide of CDCA8 detection; the tissue with the blue rectangle means these tissues were excluded from statistics because the tissue was too little. Right
panel: displayed detailed CDCA8 statistic data. (E) The IHC detection of CDH1 protein expression in TMA tissues. Left panel: the bar plot shows the
CDH1 expression status detected by IHC. Middle panel: The whole TMA slide of CDH1 detection; the tissue with the blue rectangle means these tissues
were excluded from statistics because the tissue was too little. Right panel: displayed detailed CDH1 statistic data. (F) The IHC detection of PPARA protein
expression in TMA tissues. Left panel: the bar plot shows the PPARA expression status detected by IHC. Middle panel: The whole TMA slide of PPARA
detection; the tissue with the blue rectangle means these tissues were excluded from statistics because the tissue was too little. Right panel: displayed
detailed PPARA statistic data.
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PPARA protein expression was correlated with Grade, where it had a
higher expression in grade 4 tissues than in grade 1 tissues (Abu Aboud
et al., 2013). The CDCA8 gene encodes a protein that takes part in the
composing of chromosomal passenger complex. CDCA8 is upregulated
in bladder and prostate cancer tissues, and knockdownofCDCA8 inhibits
tumor cell proliferation (Gao et al., 2020; Xu et al., 2022). In addition,
CDCA8 expression status could predict the prognosis of prostate and liver
cancers (Shuai et al., 2021; Xu et al., 2022). CDCA8was identified as a core
gene involved in the metastasis of ccRCC cells. (Peng et al., 2020). The
function of CDCA8 in kidney cancers should be further investigated.

In this study, we determined that CDH1 (Figures 8A–C, E), and
PPARA (Figures 8A, F) were downregulated both at the RNA and
protein levels. However, CDCA8 protein was downregulated in CPTAC
kidney cancer tissues assessed by proteome sequencing (Figure 8B) and
in kidney cancer TMA tissues by the IHC method (Figure 8D), which is
contrary to the RNA level (Figure 8A).Many reasonsmight contribute to
the contradiction between the protein and RNA expression levels of
CDCA8. Studies had revealed that MiR-133a-3p played crucial roles in
the regulation of CDCA8 in oesophageal cancer (Wang et al., 2022), and
miR-133b regulated theCDCA8 expression in lung adenocarcinoma (Hu
et al., 2021) through a post-transcriptional regulation manner. However,
the mechanism of the contrary expression level of RNA and protein in
kidney cancer has not beenwell discussed, which should be studied in the
future.

Our SUMOylation risk model indicated that patients in the high-risk
group have a worse outcome. The immune subtype analysis revealed a
significantly higher ratio of C1, C2, C4, and C6 subtypes and a lower
C3 subtype in the high-risk model group. The previous study proposed
that patients in theC3 subtype often had the best prognosis of all subtypes,
while patients in the C6 subtype had the worst outcome. Different
outcomes of the distinct SUMOylation risk group might be
attributable to the varying immune statuses in tumor tissues, which
were assessed by the immune subtype and immune cell analysis.

A high TIDE score was associated with the immune escape capacity
of tumor cells, while a low IC50 might indicate a sensitivity to drug
treatment. In this study, tissues of the high-risk group presented a high
TIDE score and a low IC50 of the five targeted drugs, which implied that
patients with high-risk scoresmight bemore suitable for receiving the ICB
plus targeted agent treatment as the first-line treatment.

In our study, we examined the RNA expression status of
SUMOylation genes in kidney cancer tissues and constructed and
verified a SUMOylation prognosis model for predicting the outcome
of kidney cancer using three databases and five cohorts. In conclusion,
the SUMOylation risk model may be a biomarker for the selection of
treatment drugs for kidney cancer.
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