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Ginseng and ginsenosides have been reported to have various pharmacological

effects, but their efficacies depend on intestinal absorption. Compound K (CK) is

gaining prominence for its biological and pharmaceutical properties. In this

study, CK-enriched fermented red ginseng extract (DDK-401) was prepared by

enzymatic reactions. To examine its pharmacokinetics, a randomized, single-

dose, two-sequence, crossover study was performed with eleven healthy

Korean male and female volunteers. The volunteers were assigned to take a

single oral dose of one of two extracts, DDK-401 or common red ginseng

extract (DDK-204), during the initial period. After a 7-day washout, they

received the other extract. The pharmacokinetics of DDK-401 showed that

its maximum plasma concentration (Cmax) occurred at 184.8 ± 39.64 ng/mL,

Tmax was at 2.4 h, and AUC0–12h was 920.3 ± 194.70 ng h/mL, which were all

better than those of DDK-204. The maximum CK absorption in the female

volunteers was higher than that in the male volunteers. The differentially

expressed genes from the male and female groups were subjected to a

KEGG pathway analysis, which showed results in the cell death pathway,

such as apoptosis and necroptosis. In cytotoxicity tests, DDK-401 and DDK-

204 were not particularly toxic to normal (HaCaT) cells, but at a concentration

of 250 μg/mL, DDK-401 had a much higher toxicity to human lung cancer

(A549) cells than DDK-204. DDK-401 also showed a stronger antioxidant

capacity than DDK-204 in both the DPPH and potassium ferricyanide

reducing power assays. DDK-401 reduced the reactive oxygen species

production in HaCaT cells with induced oxidative stress and led to apoptosis

in the A549 cells. In the mRNA sequence analysis, a signaling pathway with

selected marker genes was assessed by RT-PCR. In the HaCaT cells, DDK-401

and DDK-204 did not regulate FOXO3, TLR4, MMP-9, or p38 expression;
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however, in the A549 cells, DDK-401 downregulated the expressions of

MMP9 and TLR4 as well as upregulated the expressions of the p38 and

caspase-8 genes compared to DDK-204. These results suggest that DDK-

401 could act as amolecular switch for these two cellular processes in response

to cell damage signaling and that it could be a potential candidate for further

evaluations in health promotion studies.

KEYWORDS

fermented red ginseng, compound K (CK), pharmacokinetics, clinical trial, mRNA
sequence, antioxidant, cancer, inflammation

Introduction

Traditional Chinese medicine (TCM) is the oldest medicinal

practice in history, and its basic rule is to incorporate the

principles of Yin and Yang in all of its therapeutics. Various

other medical systems, particularly oriental medicine rooted in

Chinese medicine, are still considered valid (Borman and Kim,

1966). Given that ginseng is mentioned as a medicinal herb in the

Classic Herbal of Shennong, which was written around 100 CE, it

is apparent that the therapeutic history of ginseng began in the

ancient times (Dharmananda, 2002). Ginseng is a common name

for plants in the Panax family. In Chinese, “gin” refers to man,

and “seng”means essence; it was known as a gift to man from the

deity of themountains in ancient times. It is also known as a plant

made of crystals of the essence needed to cure human diseases

(Hu, 1976). In addition to historical references, fossil evidence

shows that plants from the Araliaceous family existed 65 million

years ago, and the Panax species are about 38 million years old

(Court, 2000). The book of Shanghan Lun, written in 220 CE,

mentions the medical applications of and methods to measure

107 formulas, of which 21 contain ginseng. Even today, most

people practicing TCM follow the formulations of Shanghan

Lun. Dharmananda (2002) documented the medical history of

ginseng from 220 CE to the 20th century. Experts in various

fields, such as oncology (Majeed et al., 2018; Nakhjavani et al.,

2019; Yu-hang et al., 2019), central nervous system (Radad et al.,

2011), energy metabolism (Zhang et al., 2017), stroke (Liu et al.,

2019), depression (Jin et al., 2019), infectious diseases (Nguyen

and Nguyen, 2019), neurology (Huang et al., 2019), skin

disorders (Kim and Kim, 2018), Parkinson’s disease

(González-Burgos et al., 2015), autophagy (Wu et al., 2019),

inflammation (Ramadhania et al., 2022), diabetes (Zhou et al.,

2019), hepatology (Gao et al., 2017), obesity (Li and Ji, 2018),

mitochondrial activity (Zhou et al., 2019c), cardiology (Zheng

et al., 2012), antimicrobials (Kachur and Suntres, 2016), immune

functions (Kang and Min, 2012; Riaz et al., 2019), and molecular

signaling pathways (Mohanan et al., 2018), have reviewed the

continuous details of ginseng’s efficacy to understand how the

ginsenosides disrupt diseases as well as their related mechanisms.

Ginseng is generally classified into white, red, and black ginseng

according to different stages of processing, and all of these

ginseng products are available in the market. Depending on

the stage of processing, the therapeutic metabolite content varies

widely. The different therapeutic functions attributed to products

from different steps have been classified previously (Jin et al.,

2015; Shin et al., 2019; Zhu et al., 2019). The dried fresh roots are

called white ginseng. The process of obtaining red ginseng begins

by washing the fresh ginseng roots in water to remove soil

particles; then, they are steamed at 90–98 °C for 1–3 h. This

process is repeated once or twice more to achieve appropriate

gelatinization of the ginseng starch; the product is then dried

until the root has a moisture content of 15–18%. This processing

method has been used since 1123 CE, although it has been

optimized in various ways (Lee et al., 2015). The value of the

resulting formulation depends upon the key chemical ingredient,

i.e., tri-terpenoid saponins called ginsenosides, which are the key

metabolites of ginseng (Christensen, 2008; Liu, 2012; Boopathi

et al., 2020). Ginsenosides are classified into major and minor

based on their molecular weights. Naturally biosynthesized

ginsenosides in plants are called major ginsenosides, and the

converted forms are called minor ginsenosides. The conversion

method involves hydrolysis of the glycose molecules in the

backbone moiety using physical (heat, microwave, and

puffing), chemical (acid and alkali), or enzymatic (various

glycosidase enzymes, genetic engineering, lactic acid bacteria)

techniques. The bioavailability of the major and minor

ginsenosides are the key issue in promoting ginsenosides as

drug candidates. Ginsenoside compound K (CK) is one of the

major metabolites that reaches systemic circulation, where it has

its various pharmacological effects (Sharma and Lee, 2020;

Murugesan et al., 2022). Recently, the benefits of fermented

functional food products (i.e., probiotics) that enhance human

gut health and immunity have gained attention for their potential

in treating various chronic diseases. The ginseng functional food

industry has also risen to leverage the efficacy of ginseng.

Another current trend focuses on the advantages of drug

combinations over individual drugs, with primarily enhanced

efficacy in slowing or reversing disease progression and reduced

side effects (Liu et al., 2020). However, choosing effective

combinations through trial and error is both tedious and

expensive. Therefore, a principle similar to that long used in

TCM is suggested to moderate the various side effects without

requiring systematic evaluations of the extract formulations

(Posadzki et al., 2013). However, such a system needs to
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accommodate modern medicine by offering valid evidence when

identifying novel drug combinations practically (Shin et al.,

2021). Therefore, various studies have been conducted to

assess the therapeutic effects of individual ginsenosides as well

as crude, red, or fermented red ginseng extracts in animal models

and human trials (Lee et al., 2012; Jung et al., 2013; Kim, 2013;

Sohn et al., 2013; Choi et al., 2016; Choi et al., 2018; Ban et al.,

2021; Panossian et al., 2021), but these datasets are insufficient to

conclusively demonstrate the effectiveness of ginseng/

ginsenosides at the molecular level. In the present study, we

examine a CK-enriched fermented ginseng extract DDK-401 in a

human trial with a healthy population to understand its effects on

various signaling pathways (Figure 1). Moreover, we elucidate its

effects on the functional and therapeutic markers already

approved for treating various diseases.

Materials and methods

Ethical committee and study design

A randomized, open-label, single-dose, two-period, two-

sequence, crossover study was performed with healthy Korean

male and female subjects. This study was performed in

accordance with the principles of the Declaration of Helsinki

and Korean Good Clinical Practice guidelines. Informed written

consent was obtained from each subject in advance. The study

was approved by the Institutional Review Board of Kyung Hee

University Hospital (KHGIRB-21-419). Eleven healthy male and

female Koreans were enrolled in this study, and their age details

are shown in Supplementary Table S1. We expected to find large

individual variability in the pharmacokinetic profile of CK. To

reduce the individual variability in pharmacokinetics caused by

sex, we combined and calculated the means of the

pharmacokinetic data from the male and female groups

separately. The exclusion criteria were any significant clinical

illness within 2 weeks before the study, i.e., history of high blood

pressure, diabetes, and cardiovascular, hepatic, renal,

hematological, gastrointestinal, neurologic, or psychiatric

disease; blood donation within 8 weeks before the study; and

use of any medications, including prescription and over-the-

counter drugs, within 2 weeks before the study. In addition,

subjects who previously experienced adverse reactions to

ginseng were excluded.

The enrolled subjects were assigned to receive a single oral

dose of one of two extracts, DDK-401 (100 mL spout pouch,

combination of well-known representative ginsenosides Rg1,

Rb1, and Rg3 at 21.51 mg and ginsenoside CK at 31.19 mg) or

DDK-204 (100 mL spout pouch, ginsenosides Rg1, Rb1, and

Rg3 at 11.29 mg and ginsenoside CK at 0 mg) during the first

period. After a 7-day washout, each subject received the other

extract. The dose for oral administration was chosen based on

FIGURE 1
Graphical illustration of the fermented red ginseng extract (DDK-401) and red ginseng extract (DDK-204) analyzed by Korean volunteers.
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the recommended total daily intake of each investigational

product.

DDK-401 and DDK-204 extract
preparations

CK-enriched fermented ginseng extract (DDK-401) and

common red ginseng extract (DDK-204) were supplied by

Deadong Korea Ginseng Co., Ltd. (Geumsan, Korea). First,

the red ginseng powder was dissolved in a mixture of water

and food-grade alcohol and extracted at 75 ± 5 °C. This extraction

procedure was repeated 4 times. Then, the supernatant was

collected and evaporated at 60 ± 5 °C with 500–760 mmHg

vacuum until the sugar content was 65 brix and solid content

was ≥60%. Finally, the sample was sterilized at 80–85 °C for

30–40 min and aged at 60 ± 5 °C for 24–75 h; this product was

named DDK-204 and used as the control.

Second, the red ginseng concentrate (60 brix) was diluted in

water until the solid content was 5%. Then, an enzyme mixture

(pectinase and β-glucosidase) was added to the diluted red

ginseng concentrate at a concentration of 3% and reacted at

60 ± 2 °C for 114–168 h at 3000 rpm. Thereafter, the enzyme was

inactivated at 90 °C for 30 min. Next, the sample was evaporated

at 55 ± 5 °C and 500–760 mmHg vacuum until the solid content

reached 40%. Then the sample was dissolved in 80% food-grade

alcohol and incubated for 1–2 h. Following this, centrifugation

was performed at 0.5 m3/h for 5–6 h, and the supernatant was

collected. A second evaporation was then performed at 55 ± 5 °C

and 500–760 mmHg vacuum until the sugar content was 65 brix

and solid content was ≥60%. The concentrate was then

fermented with a mixture of Lactobacillus species at 1%

concentration and 37 °C for one day. The resulting CK-

enriched red ginseng concentrate was named DDK-401 and

stored in the refrigerator until it was used for the analysis and

bioassays.

Chromatographic conditions for analyzing
the ginsenoside profiles of DDK-401 and
DDK-204

One g each of DDK-401 and DDK-204 were dissolved in

50 mL of 70% methanol and filtered with a 0.45 μm membrane

filter. The samples were then injected into an Ultimate

3000 HPLC system with a PRONTOSIL 120-5-C18 ACE-EPS

(250 × 4.6 mm i.d., 5 µm particle size) (Bischoff

Chromatography, Leonberg, Germany). The mobile phase

consisted of water (solvent A) and acetonitrile (solvent B) in

the following gradients: 0–10 min, 20% B; 10–42 min, 29% B;

42–67 min, 41% B; 67–70 min, 47% B; 70–90 min, 71% B;

90–95 min, 71% B. The flow rate of the mobile phase was

1.0 mL/min, and an injection volume of 10 µL was used in the

quantitative analysis. The column temperature was maintained

constant at 40 °C. The ginsenoside profiles were determined at

203 nm.

Preparation of standard solution for quantitative
calibration

A standard stock solution of 10% was prepared by

dissolving accurately weighed quantities of the standard

for each ginsenoside in high-performance liquid

chromatography (HPLC)-grade methanol. These stock

solutions were then diluted with HPLC-grade methanol to

200, 100, 50, 25, and 12.5 μg/mL concentrations as working

solutions for the quantitative calibrations. The calibration

curves and quantitative evaluations were then obtained at

203 nm.

Pharmacokinetic assessment

The quantitative determination of CK concentration in

the plasma was achieved using 2 mL of intravenous blood

collected from each volunteer before administration and at 2,

4, 8, and 12 h after dosing during each period. The blood

samples were centrifuged at 3000 rpm for 10 min, and the

supernatant was separated and frozen at -80 °C until analysis.

The plasma concentrations of ginsenoside CK were

determined by PCAM KOREA Co., Ltd. (Daejeon, Korea)

using a HPLC–tandem mass spectrometry system. The

chromatographic analysis was performed using a Waters

I-class (Waters, USA), with Berberine (Dr. Ehrenstorfer

GmbH, Germany) as the internal standard.

Chromatographic separation was achieved with an Acquity

UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 μm; Waters,

USA) maintained at 45 °C. The mobile phase was a gradient of

0.1% formic acid in water and 100% acetonitrile. Mass

spectrometry was performed in the positive mode on an

API Xevo TQ-XS instrument (Waters, USA) equipped with

an electrospray ionization probe. The temperature of the ion

source was set to 150 °C, and the voltage of the ion spray was

3 kV. The quantifications were performed by multiple

reaction monitoring of the transitions at 645.2–203 nm for

ions of ginsenoside CK, with a dwell time of 11.28 min. To

validate the quantitative data in terms of linearity, the limit of

detection (LOD) and limit of quantification metrics were

calculated (Supplementary Table S2).

RNA-sequencing and analysis

The total mRNA was extracted from each blood plasma

sample to build the mRNA-seq libraries that were generated

using a TruSeq stranded mRNA LT sample prep kit (Illumina,

San Diego, CA, USA) following manufacturer protocols and
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sequenced using a Novaseq 6000 sequencing system (Illumina).

The reads were trimmed with Trimmomatic (Bolger et al., 2014)

to remove any adapters and low-quality reads, resulting in clean

reads for improved paired-end mapping. The trimmed reads

were mapped to the Homo sapiens reference genome (GRCm38)

transcriptome using Salmon software version 1.3.0 (Patro et al.,

2017). Differential gene expressions among the three

experimental groups were evaluated using edgeR (version

3.30.3) software (McCarthy et al., 2012). The differentially

expressed genes were identified based on a cutoff threshold of

p < 0.05 and log-fold change >1 before being subjected to further
analyses.

Functional annotations

Functional annotations for each gene were made using the

drug discovery protocol. The seven datasets used are included

in Supplementary Table S3: DrugBank (Wishart et al., 2018),

Human Protein Atlas (Uhlén et al., 2015), STITCH

(Szklarczyk et al., 2016), Surfaceome (Bausch-Fluck et al.,

2018), Tumor Suppressor Gene Database v2.0 (TSGene)

(Zhao et al., 2016), pepBDB (Wen et al., 2019), and

Comparative Toxicogenomics Database (Grondin et al.,

2021). First, entered the DrugBank ID for each gene to

navigate the details of known drugs from the complete

database xml file. Second, downloaded the FDA-approved

potential drug candidate list from the Human Protein Atlas

database. Third, searched STITCH to observe small-molecule

drug interactions. Fourth, used Surfaceome to understand the

cell surface proteins. Fifth, used TSGene to obtain the cancer

therapeutic gene candidates. Sixth, observed the peptide-

binding protein interactions.

Cell cytotoxicity assay

Cell cultures
Immortalized human epidermal keratinocyte (HaCaT)

and murine macrophage RAW 264.7 cells were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% fetal bovine serum (FBS) and 1% penicillin-

streptomycin. Generally, 89% Roswell Park Memorial

Institute (RPMI) 1640 with 10% FBS and 1% penicillin-

streptomycin were used to culture the human lung

carcinoma cells (A549). All three cell lines were allowed to

adhere and develop for 24 h before being treated with different

samples in a humidified 37 °C incubator with a 5% CO2

atmosphere.

Cell cytotoxicity assay
We evaluated the cytotoxicities of DDK-401 and DDK-204

on the HaCaT and RAW 264.7 cells using an MTT

colorimetric assay, which was performed in 96-well plates

(Mathiyalagan et al., 2019; Pu et al., 2021). Seeding was

performed at 5 × 104 cells/well (HaCaT) and 1 × 104 cells/

well (RAW 264.7), and the 96-well plates were incubated at

37 °C in a humidified atmosphere of 5% CO2 for 24 h

(Ramadhania et al., 2022). Subsequently, the cells were

treated with various concentrations of DDK-401 or DDK-

204 in serum-free-medium at 62.5, 125, 250, and 500 μg/mL

for the HaCaT cells and at 25, 50, 100, 250, and 500 μg/mL for

the RAW 264.7 and A549 cells, followed by incubation for

24 h. Then, 20 µL of MTT (5 mg/mL, phosphate-buffered

saline (PBS), Life Technologies, Eugene, OR, USA) were

added to the cells at 37 °C for 4 h. The insoluble formazan

was dissolved by placing 100 μL of dimethylsiloxane (DMSO)

in each well and absorbance was measured at 570 nm using an

enzyme-linked immunosorbent assay (ELISA) microplate

reader (Bio-Tek, Instruments, Inc., Winooski, VT, USA).

Antioxidant assay

In vitro DPPH assay
The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) method was

used with a slight modification to estimate the free-radical

scavenging activities of the samples (Subbiah et al., 2020).

DPPH (0.2 mM) was dissolved with ethanol (pro-analysis

grade) to obtain a DPPH radical solution. Then, 20 µL of

the sample extract and 180 µL of the DPPH solution were

added to a 96-well plate and incubated at 25 °C for 30 min in

the dark, followed by absorbance measurement at 517 nm.

Vitamin C (ascorbic acid) standard curves with

concentrations from 0 to 100 μg/mL were used to

determine the DPPH radical scavenging activity, which is

expressed in milligrams of ascorbic acid equivalent per

gram (mg AAE/g) of the extract.

Reducing power assay
The reducing capacity of a compound indicates its

potential antioxidant activity. To conduct this assay (Akter

et al., 2021), 100 µL of various concentrations of the samples

were mixed with 250 µL of 0.2 mM phosphate buffer (pH 6.6)

and 250 µL of 1% potassium ferricyanide. The mixtures were

then incubated at 50 °C for 20 min. After cooling, 250 µL of

10% trichloroacetic acid was added to the mixtures and

centrifuged at 3000 rpm for 10 min. Then, 50 µL of the

upper layer of each mixed solution was transferred and

mixed with 50 µL of distilled water and 250 µL of 0.1%

ferric chloride solution in a 96-well plate. The absorbance

was then measured at 700 nm using a UV spectrometer

microplate reader (Bio-Tek, Instruments, Inc., Winooski,

VT, USA). Vitamin C was used as the standard, and a

blank solution was prepared by omitting the sample; the

results are expressed as mg AAE/g of extract.
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Reactive oxygen species generation assays in
HaCaT and lung cancer cells
Effects of DDK-401 on reactive oxygen species

production in HaCaT cells under oxidative stress

Intracellular reactive oxygen species (ROS) were determined

using the 2′,7′-dichlorodihydro-fluorescein diacetate (DCFH-

DA) reagent, as described by Pu et al. (2021), with a slight

modification. Briefly, HaCaT cells (5 × 104 cells/well) were seeded

in a 96-well plate (Nest Inc., Corning, NY, USA) and incubated

for 24 h at 37 °C and 5% CO2. To assess the antioxidant activity,

the cells were treated with H2O2 (500 μmol/L) for 2 h, and the

supernatant was aspirated. The cells were then either treated or

not treated with different concentrations of the samples for 24 h.

Vitamin C was used as the positive control. After washing the

cells twice with PBS, we added 20 μM DCFH-DA in PBS and

incubated them for another 20 min. The supernatant was next

removed by washing the cells with PBS twice, and a multimodal

plate reader was used to measure the fluorescence intensity at an

excitation wavelength of 485 nm and emission wavelength of

528 nm.

Effects of DDK-401 on reactive oxygen species

production in A549 cells under oxidative stress

To detect the ROS intensity of human lung cancer cells

(A549), we used the DCFH-DA reagent with fluorescent image

capture technique. We plated the cells at a density of 1 × 104 cells/

well in 96-well culture plates, allowed them to adhere, and then

placed them in an incubator overnight to achieve 100%

confluency. The A549 cells were then treated with various

concentrations of DDK-401 or DDK-204 (0, 25, 50, 100, 250,

and 500 μg/mL) for 24 h. The next day, the cells were stained by

adding 100 μL of DCFH-DA solution (10 μM) to each well and

incubated in the dark for 30 min. The old media were discarded,

and the cells were washed twice with 1× PBS (100 μL/well). A

multimodal plate reader (spectrofluorometer) was used to

determine the fluorescence intensity caused by ROS

production at an excitation wavelength of 485 nm and

emission wavelength of 528 nm.

Inflammation inhibition assay

The detection of nitric oxide (NO) levels has been described

previously (Ramadhania et al., 2022). The RAW 264.7 cells (1 ×

104) were placed in 24-well culture plates and incubated for 24 h

at 37 °C in a humidified environment with 5% CO2. Then, they

were treated with different concentrations of DDK-401 or DDK-

204 (0, 25, 50, 100, 250, and 500 μg/mL) for 1 h. In the presence

of the samples, 1 μg/mL lipopolysaccharide (LPS) was used as the

stimulator, and the treated cells were placed in an incubator for

one day. The nitrite levels in the cell media were determined

using the Griess reagent: 100 μL of the stimulated supernatant

was mixed with an equivalent volume of the Griess reagent. A

microplate reader was used to compare the absorbance at 540 nm

with a standard curve obtained using sodium nitrite (BioTek

Instruments, Inc.). L-NMMA (50 μM), a standard inhibitor, was

used as the positive control in this experiment. Each assay was

repeated three times, and the results are expressed in terms of

percentage of NO production.

Reverse transcription polymerase chain
reaction (RT-PCR)

The total RNA was extracted using QIAzol lysis reagents

(QIAGEN, Germantown, MD, USA), and the reverse

transcription reactions were performed using 1 µg of total

RNA in 20 µL of the reaction buffer with an amfiRivert

reverse transcription kit (GenDepot, Barker, TX, USA),

according to manufacturer instructions. The obtained cDNA

was amplified with primers, as shown in Table 1. The reaction

was cycled 35 times: 30 s at 95 °C, 30 s at 60 °C, and 50 s at 72 °C.

Using 1% agarose gels, the amplified RT-PCR products were

analyzed, visualized using Safe-Pinky DNA Gel Staining

(GenDepot, Barker, TX, USA), and imaged under ultraviolet

light.

Statistical analysis

All experiments were performed at least in triplicate (n = 3)

unless stated otherwise. The experimental data are reported as

mean ± standard error (SEM). Statistical significances between

the control and sample groups were evaluated by Student’s t-test

with a two-tailed distribution and two-sample equal variances. A

greater extent of statistical significance is indicated by an

increasing number of asterisks (*p < 0.05, **p < 0.01, and

TABLE 1 List of primers and their sequences used for mRNA gene
expression validation by RT-PCR.

Gene Primer sequence (59-39)

FOXO3 F: TCA AGG ATA AGG GCG ACA GC

R: GGA CCC GCA TGA ATC GAC TA

TLR4 F: GAG GAC TGG GTG AGA AAC GA

R: GAA ACT GCC ATG TCT GAG CA

Caspase 8 F: AGA GTC TGT GCC CAA ATC AAC

R: GCT GCT TCT CTC TTT GCT GAA

MMP 9 F: CGT CGT GAT CCC CAC TTA CT

R: AGA GTA CTG CTT GCC CAG GA

p38 F: CGA CTT GCT GCT GGA GAA GAT GC

R: TCC ATC TCT TCT TGG TCA AGG

GAPDH F: CAA GGT CAT CCA TGA CAA CTT TG

R: GTC CAC CAC CCT GTT GCT GTA G
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***p < 0.001) and hash markers (#p < 0.05, ##p < 0.01 and ###p <
0.001). The hash marker (#) indicates significance between the

normal and stimulated controls, and the asterisk (*) indicates

significant differences between the stimulation groups (DDK-

204 or DDK-401).

Results and discussion

Ginsenoside absorption profiling after oral
intake

Preparation of DDK-401 and DDK-204
Ginsenosides and ginseng extracts have been reported to have

various pharmacological effects, and ginseng has been used as a

medicinal herb in TCM for several centuries. However, ginsenosides

are mainly absorbed in the gastrointestinal tract after the gut

microbes hydrolyze the linear carbohydrates from their

backbones. In addition, the minor ginsenosides, which have only

one or no glycose moieties, generally reach the systemic circulation.

Thus, the absorption and bioavailability of ginsenosides greatly

depend on the gastrointestinal bioconversion ability of each

individual, and the minor saponins must be enriched by various

processing technologies. Bioconversion techniques such as puffing

(Pu et al., 2021) and heat treatment (steaming) do not produce

ginsenoside CK (Piao et al., 2020), which is one of the active

metabolites that reaches systemic circulation and has various

pharmacological activities (Sharma and Lee, 2020). Therefore, the

pharmacologically activeminor saponinCKmust be enriched by the

edible enzymes in the ginseng extract to maximize its biological

activity irrespective of an individual’s gut function. This study, we

aimed to increase the total ginsenoside and CK content using

pectinase and β-glucosidase enzymes to begin the glucose

hydrolysis of major ginsenosides in red ginseng concentrate, such

as Rb1, Rd, and Rg3. We performed additional fermentation with

Lactobacillus species at 37 °C for 1 day to accelerate the hydrolysis of

the glucose molecules from the major ginsenosides to increase CK

production (Table 2). The synthesis of CK has beenmainly reported

from the hydrolysis of glycose molecules of the major ginsenosides,

such as Rb1, Rb2, Rd, Rc, compound O, compound Y, compound

Mc, Rg3, gypenoside XVII, and F2 (Sharma and Lee, 2020). As a

result of the above processes, the fermented red ginseng extract

(DDK-401) was enriched, with 10 mg/g of CK and 32.98 mg/g of

total ginsenoside content, compared to the control red ginseng

extract (DDK-204), which contained 9.72 mg/g of total ginsenosides

and without CK. The CK was thus clearly produced by the

fermentation process and not the steaming process (Piao et al.,

2020). It was previously reported that the bioconversion and

fermentation of red ginseng yields CK in Korean ginseng (Choi

et al., 2016; Fukami et al., 2018).

Ginsenoside absorption profiling after oral
intake of DDK-401

After oral intake, the human volunteers showed greater CK

absorption from the fermented DDK-401 extract than from the

control red ginseng extract (DDK-204) (Figure 2A). The Tmax was

2.4 h, Cmax was 184.8 ± 39.64 ng/mL, and AUC0–12h was 920.3 ±

194.70 ng·h/mL for DDK-401, whereas the Tmax was 12 h, Cmax was

2.5 ± 1.09 ng/mL, and AUC0–12h was 11.3 ± 4.66 ng·h/mL for DDK-

204 (Table 3). These pharmacokinetic patterns are similar to those in

other reports (Sharma and Lee, 2020). Although various studies have

reported enhanced CK absorption after oral administration of

fermented red ginseng extract, the concentration of CK in the

blood plasma still varies by individual, as shown in Figure 2B

(individuals with the highest CK absorption profiles).

Variations in the CK absorption profiles between
male and female groups

Although high CK absorption has been reported previously

(Sharma and Lee, 2020), differences in the absorption patterns

betweenmales and females following oral intake of fermented red

ginseng extract have not been explored. Our results indicate that

as a group, the female volunteers absorbed more CK (Figure 3B)

than the male volunteers (Figure 3A), although this pattern also

applied to individual female and male volunteers (Figure 3C).

Similarly, the female volunteers were previously reported to

absorb higher concentrations of CK than males after oral

doses of a high concentration of CK (Chen et al., 2017).

TABLE 2 Ginsenoside profiles of DDK-401 and DDK-204 for in vivo pharmacokinetic assessments.

Samples Rg1 Re Rf Rb1 Rg2 Rc Rb2 Rb3 Rd F2 Rg3 Rk1 Rg5 CK Total
(mg/
g)

DDK-401
Fermented
Ginseng
Extract

1.66 ±
0.035

2.77 ±
0.025

0.38 ±
0.046

5.26 ±
0.123

2.35 ±
0.059

3.08 ±
0.061

3.6 ±
0.095

0.22 ±
0.010

1.05 ±
0.055

0.00 ±
0.000

0.78 ±
0.026

0.63 ±
0.080

0.5 ±
0.025

10.69 ±
0.040

32.98 ±
0.284

DDK-204
Red
Ginseng
Extract

0.96 ±
0.026

1.41 ±
0.031

0.39 ±
0.020

2.87 ±
0.051

0.22 ±
0.005

1.46 ±
0.026

1.17 ±
0.049

0.15 ±
0.040

0.57 ±
0.055

0.00 ±
0.000

0.22 ±
0.031

0.17 ±
0.021

0.15 ±
0.040

0.00 ±
0.000

9.72 ±
0.208
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RNA sequence analysis of blood plasma
after oral intake of samples

Differential gene expression and KEGG pathway
enrichment

As explained in the Pharmacokinetic Assessment section, whole

mRNA transcripts were assessed against the human reference

genome for genome-wide differential transcript expressions. The

samples were grouped into four categories, namely DDK-401 (male

and female) and DDK-204 (male and female). Overall,

701 transcripts were found to have differential expressions

(Supplementary Table S3), and the transcripts overlapped among

the groups, as illustrated in a Venn diagram (Supplementary Figure

S1). The transcripts belonging to the tumor suppressor genes

category are displayed in a heatmap (Figure 4). Overall, nine

annotations were included in this study, as explained earlier. In

addition, all differentially expressed genes were subjected to KEGG

pathway enrichment in the David online webserver, which showed

that the cell death pathways, such as apoptosis and necroptosis, were

enriched by the extract treatments (Supplementary Table S4).

Finally, we selected gene candidates (FOXO3, cysteine-aspartic

protease 8 (caspase-8), toll-like receptor 4 (TLR4), and matrix

metallopeptidase 9 (MMP-9)) for the RT-PCR expression

analysis because these are known to be involved in the signaling

and cell-death pathways as well as tumor suppression.

Effects of DDK-401 on the viabilities of
HaCaT and lung cancer cells

The cytotoxicities of DDK-401 andDDK-204 to HaCaT cells was

determined for safety purposes. TheHaCaT cells represent normal cell

conditions, and lung cancer cells (A549) were used to examine the

apoptosis signaling pathway. Each sample was evaluated at various

sample concentrations (62.5, 125, 250, and 500 μg/mL in HaCaT and

25, 50, 100, 250, and 500 μg/mL in A549 cells). As shown in Figure 5,

at concentrations less than 500 μg/mL, both DDK-401 and DDK-204

were nontoxic to HaCaT cells. In the A549 cells, DDK-401

demonstrated minimal toxicity after 24 h at 250 μg/mL. At a

concentration of 500 μg/mL after 24 h, DDK-401 showed

significantly decreased cancer cell proliferation than DDK-204.

Moreover, A549 cell viability was reduced by DDK-401 in a dose-

dependent manner. The cytotoxicity results in this investigation

match those in a previous report (Yu et al., 2018).

The results shown in Figure 5 indicate that at 500 μg/mL,

DDK-401 and DDK-204 were only mildly toxic, from which it

can be concluded that both substances are relatively safe when

cell conditions are normal. On the other hand, in lung cancer

A549 cells, which represent cell damage and imbalanced

conditions, DDK-401 had a much higher toxicity than DDK-

204, producing apoptosis of the cancer cells.

Antioxidant content shown by DPPH assay
and ROS generation in HaCaT and cancer
cells

Antioxidant capacity: DPPH and reducing power
assays

The DPPH scavenging and potassium ferricyanide reducing

power assays were used to evaluate the antioxidant capacities of

DDK-401 and DDK-204, and the results are shown in Table 4.

FIGURE 2
Absorption profiles of CK in humanblood after oral intake of fermented red ginseng extract (DDK-401) and red ginseng extract (DDK-204). (A)MeanCK
level. Inset shows the mean CK absorption profile after DDK-204 intake. (B) Mean CK level from individuals with highest CK absorption in this study.

TABLE 3 Pharmacokinetic parameters of CK in human blood after oral
intake of fermented ginseng extract (DDK-401) and red ginseng
extract (DDK-204).

Parameters DDK-401 DDK-204

Tmax (h) 2.4 ± 0.27 12.0 ± 0.00

Cmax (ng/mL) 184.8 ± 39.64 2.5 ± 1.09

AUC0-12h (ng·h/mL) 920.3 ± 194.70 11.3 ± 4.66

Frontiers in Pharmacology frontiersin.org08

Ahn et al. 10.3389/fphar.2022.999192

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.999192


The most frequently used antioxidant standard for these assays is

vitamin C; therefore, the results of the DPPH and potassium

ferricyanide reducing power assays are expressed in terms of mg

AAE/g of the extract. These assays are widely used to determine

the antioxidant properties of compounds as free radical

scavengers or hydrogen donors (Warinhomhoun et al., 2021)

as well as the ability of the compounds to transform from Fe3+/

ferricyanide complex to Fe2+/ferrous forms (Aryal et al., 2019).

DDK-401 showed higher antioxidant abilities in both the DPPH

and potassium ferricyanide reducing power assays, with values of

0.093 ± 0.02 and 0.340 ± 0.001 mg AAE/g of extract, respectively.

In the DPPH assay, the antioxidant capacity of DDK-401 was

generally 2 times higher than that of DDK-204, and in the

potassium ferricyanide reducing power assay, it was 3 times

higher than that of DDK-204. In agreement with a previous study

(Jung et al., 2019; Park et al., 2021), we found that CK-enriched

ginseng extract (DDK-401) exhibited greater antioxidant activity

than the common red ginseng extract (DDK-204). This result

could be attributed to CK’s potential for radical scavenging

activity in antioxidant assays (Baik et al., 2021). Antioxidants,

whether endogenously produced or supplied by external sources,

can scavenge ROS and reduce cellular oxidation, thereby

alleviating oxidative stress (Liu et al., 2018).

Effect of DDK-401 on ROS production in
HaCaT cells with H2O2-induced oxidative stress

We used the DCFH-DA assay to investigate the

antioxidant properties of DDK-401 and determine whether

it could reduce accumulated intracellular ROS in H2O2-

induced HaCaT cells. Commonly, H2O2 is used to induce

intracellular ROS and produce imbalance in the cellular

oxidant–antioxidant levels. Because the mitochondria are

the major sources of ROS, mitochondrial dysfunction

caused by excess ROS can lead to apoptosis and DNA

damage (Zhang et al., 2020). The mean value of the ROS

levels measured in the group treated with 500 μM H2O2 was

260% higher than that in the control group. The trend of

decreased cell viability after H2O2 exposure is shown in

Figure 6A. Vitamin C was used as the positive control. For

H2O2-induced oxidative stress in the HaCaT cells, DDK-401

was stronger than DDK-204 in a dose-dependent manner. At a

concentration of 250 μg/mL, DDK-401 and DDK-204 reduced

ROS levels by an average of 23% and 7%, respectively,

compared with the group treated with only H2O2

(Figure 6A). These results may be attributed to the CK in

DDK-401; previous studies have reported that CK activates

the NF-κB and JNK pathways, which contribute to the

FIGURE 3
Absorption profiles of CK in human blood serum after oral intake of fermented red ginseng extract (DDK-401) and red ginseng extract (DDK-
204): (A) male volunteers, (B) female volunteers; maximum CK absorption in individual (C) male and (D) female.
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inhibition of TNF-α and anti-inflammatory activity related to

ROS inhibition (Choi et al., 2007; Park et al., 2012). Oxidative

stress usually activates certain signaling pathways, including

the p38, MMP, and caspase pathways.

Effect of DDK-401 on ROS generation to induce
apoptosis of cancer cells

In A549 cells, the DCFH-DA reagent was used to measure

the intracellular ROS levels with DDK-401 and DDK-204 at

FIGURE 4
Transcripts belonging to the “tumor suppressor genes” category that were differentially expressed between the DDK-401 male and female
groups and DDK-204 male and female groups displayed as a heatmap.
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various concentrations. Red ginseng extract has been shown to

induce cancer cell death by causing DNA damage, stimulating

ROS production, and activating numerous pro-apoptotic

markers. Furthermore, mitochondrial damage can cause

release of ROS because the mitochondria are the largest

source of ROS (Brunelle and Chandel, 2002). At 500 g/mL,

DDK-401 produced a higher level of ROS than DDK-204, as

shown in Figure 6B. Thus, the antiproliferative action of DDK-

401 could be assessed by measuring the ROS levels. Intracellular

oxidative stress is known to cause cell death in a variety of cell

lines; therefore, this assessment was crucial. The data show that

DDK-401 could be a potential drug candidate in clinical trials for

the treatment of lung cancer.

ROS have been identified as signaling molecules in various

pathways that regulate both cell survival and cell death

depending on the level (Azad et al., 2008; Chen et al., 2018).

Apoptosis and autophagy are important molecular processes that

maintain balance in organisms and cells. Apoptosis destroys

damaged or unwanted cells, while autophagy maintains

cellular homeostasis by recycling specific intracellular

organelles and molecules, although autophagy can result in

cell death in some cases (Thorburn, 2008; Fan and Zong,

2013). We conclude that DDK-401 reduced ROS production

in normal cells (HaCaT) experiencing oxidative stress and also

led to apoptosis of lung cancer (A549) cells, suggesting that

DDK-401 could act as a molecular switch for these two cellular

processes in response to cell damage signaling.

Effect of DDK-401 on gene expression
affecting apoptotic and inflammatory
responses

Living cells produce ROS as a normal metabolic byproduct.

Under excessive stress, the cells generate excess ROS, so living

organisms have evolved a series of response mechanisms to adapt

to ROS exposure and use ROS as a signaling molecule. ROS

molecules cause oxidative stress in a feedback mechanism

involving numerous biological processes, including apoptosis,

necrosis, and autophagy (He et al., 2017). Apoptosis is a normal

process that occurs during development and aging as well as

functions as a homeostatic mechanism to maintain cell

populations in tissues. Apoptosis can even occur as a defense

mechanism during immune responses or when cells are damaged

by disease or toxins (Elmore, 2007). In this study, we investigated

several gene markers that we selected through a whole-

transcriptome search for differential expressions. We found

differentially expressed genes related to apoptosis and immune

responses to inflammation, such as FOXO3, TLR4, caspase-8,

MMP-9, and p38 MAP kinase (p38) (Cuadrado and Nebreda,

2010; van der Vos and Coffer, 2011; Zheng et al., 2021). In

addition, we investigated the effects of DDK-401 and DDK-204

without any stimulation (UV-B irradiation) in HaCaT cells to

FIGURE 5
In vitro cytotoxicities of DDK-401 andDDK-204 samples in (A)HaCaT and (B)A549 lung cancer cells over 24 h. The graph shows themean ± SD
value of four repetitions. **p < 0.01; ***p < 0.001 indicate significant differences from the control groups.

TABLE 4 Antioxidant capacity of DDK-401 and DDK-204.

Sample DPPH Reducing power

(mg AAEa/g extract) (mg AAEa/g extract)

DDK-401 0.093 ± 0.02 0.340 ± 0.001

DDK-204 0.049 ± 0.01 0.097 ± 0.002

amg AAE/g extract: mg ascorbic acid equivalents/g extract; DPPH: 2,2-diphenyl-1-

picrylhydrazyl radical scavenging assay.
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observe whether our samples could trigger inappropriate

apoptosis or inflammation under normal conditions showed

in (Figure 7). The RT-PCR analysis (Supplementary Figure

S3) showed that in HaCaT cells, neither compound regulated

FOXO3, TLR4, MMP-9, or p38 expression, indicating that DDK-

401 did not trigger inappropriate apoptosis or inflammation

under normal conditions. The ability to control cellular living or

death has enormous therapeutic potential. However,

upregulation of caspase-8 was observed, which is similar to

the RNA-seq data indicating differential expression (Figure 4).

Although the activation of caspase-8 is mainly associated with

death receptor signaling cascades, it is also activated downstream

of the mitochondria. The roles of caspase-8 in the shift from

autophagy to apoptosis in cisplatin-resistant MCF7 cells and in

TRAIL-mediated autophagy in HCT 116 cells have already been

studied (de Vries et al., 2006; Hou et al., 2010). In the lung cancer

A549 cells, DDK-401 treatment downregulated the expressions

of MMP9 and TLR4 while upregulating the expressions of

FIGURE 7
In vitro validation of the selected candidate gene expressions in normal (HaCaT) and lung cancer (A549) cell lines by RT-PCR.

FIGURE 6
(A) Reactive oxygen species (ROS) inhibition by DDK-401 and DDK-204 in HaCaT cell lines treated with H2O2. The graph shows the mean ± SD
value of three repetitions. *p < 0.05 and **p < 0.01 indicate significant differences from the control groups; #p < 0.05 and ##p < 0.01 indicate
significant differences from the H2O2 stimulation groups. (B) ROS generation by DDK-401 and DDK-204 in A549 cancer cells. The graph shows the
mean ± SD value of three repetitions. **p < 0.01 indicates significant difference from the control group.
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p38 and caspase-8 genes, compared with the cells treated with

DDK-204. The MMPs are a group of zinc-dependent

metalloenzymes that regulate various cellular processes,

including tumor cell proliferation and metastasis (Guo et al.,

2019). Several studies have noted that MMPs are overexpressed

inmalignant tissues than the adjacent normal tissues in a range of

tumors, including lung, colon, breast, and pancreatic carcinomas

(Radad et al., 2011; Nakhjavani et al., 2019). Previous research

has shown that downregulating the expressions of intracellular

MMP-9 can increase invasion and metastasis processes several

cancers (Zhang et al., 2017, Liu et al., 2019). Furthermore,

oxidative stress can induce receptor-dependent apoptosis and

damage the mitochondria of normal cells. Mitochondrial

dysfunction then further increases ROS accumulation and

activates the p38 MAPK pathway. ROS can continuously

activate p38 MAPK by activating MAPK kinase and inhibiting

MAPK phosphatase. In A549 cells, ROS can regulate the

expressions of Bax and Bcl-2 by activating p38 MAPK, which

increases the level of cytochrome c in the cytoplasm and triggers

the caspase cascade reaction leading to apoptosis (Jin et al., 2019;

Nguyen and Nguyen, 2019). The caspases are a family of

cysteine-containing proteolytic enzymes that play a central

role in the execution phase of cell apoptosis. It has been

reported that the effects of the caspase 8 pathway on cancer

cells involve inducing apoptosis (Huang et al., 2019). The

apoptosis induced by most anticancer drugs occur by the

activation of caspases (González-Burgos et al., 2015; Kim and

Kim, 2018). Caspase-8 is important in the death receptor-

mediated extrinsic pathway, and DDK-401 promotes the

activation of caspase-8 in A549 cells in this study, showing

that it can cause apoptosis by activating the extrinsic caspase

pathway (Wu et al., 2019; Yi, 2019). TLR4 is an important

member of the type I transmembrane protein family.

Recently, growing evidence has shown TLR4 in various

tumors (Gao et al., 2017; Li and Ji, 2018; Zhou et al., 2019),

including head and neck, lung, gastrointestinal, liver, pancreatic,

skin, breast, ovarian, cervical, and prostate cancers. TLR4-

mediated cancer growth is involved in breast tumor

progression, and the downregulation of TLR4 prevented

breast cancer progression and improved survival (Zhou et al.,

2019c). According to our findings, DDK-401 could induce cell

apoptosis by upregulating and downregulating various

transcriptional factors under cancerous conditions.

Conclusion

Although ginseng and ginsenosides have been reported to

have various pharmacological effects, the uptake of

ginsenosides into systemic circulation, which is required for

their effectiveness, depends on individual factors. Because CK

was reported to be a minor saponin that reached systemic

circulation, we enriched the total ginsenoside and CK content

by fermenting red ginseng extract (DDK-401) via

bioconversion and fermentation by edible enzymes. Because

clinical trials are a prompt option for evaluating product

efficacy, we evaluated DDK-401 in a clinical trial of healthy

Korean volunteers. We found higher CK in blood plasma after

oral intake of DDK-401 than after the consumption of the

control red ginseng formula. Moreover, we identified

differences in the CK absorption patterns between female

and male volunteers, with higher concentrations of CK

being detected in females than in males. We also observed

differential expression patterns of various tumor suppressor

genes between the female and male groups through RNA-seq

analysis. DDK-401 exhibited no cytotoxicity in normal non-

diseased HaCaT and RAW 264.7 cells, whereas it showed

cytotoxicity in lung cancer cells (A549). Furthermore, DDK-

401 inhibited H202-induced ROS production in HaCaT cells

and increased ROS production in cancer cells. Finally, the

candidate genes responsible for apoptosis and inflammation

were validated using RT-PCR (Figure 7). This is a pilot study

reporting that fermented red ginseng extract (DDK-401)

produces unique, differential absorption and gene

regulation patterns compared with red ginseng extract

(DDK-204). Thus, DDK-401 could be a potential candidate

for further investigations in clinical trials for health

promoting activities and anticancer agents; various

nanoformulations could also be considered to boost its

bioavailability and anticancer properties.
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