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Objective: Accumulated evidence highlights the biological significance of

oxidative stress in tumorigenicity and progression of colorectal cancer

(CRC). Our study aimed to establish a reliable oxidative stress-related

signature to predict patients’ clinical outcomes and therapeutic responses.

Methods: Transcriptome profiles and clinical features of CRC patients were

retrospectively analyzed from public datasets. LASSO analysis was used to

construct an oxidative stress-related signature to predict overall survival,

disease-free survival, disease-specific survival, and progression-free survival.

Additionally, antitumor immunity, drug sensitivity, signaling pathways, and

molecular subtypes were analyzed between different risk subsets through

TIP, CIBERSORT, oncoPredict, etc. approaches. The genes in the signature

were experimentally verified in the human colorectal mucosal cell line (FHC)

along with CRC cell lines (SW-480 and HCT-116) through RT-qPCR or

Western blot.

Results: An oxidative stress-related signature was established, composed of

ACOX1, CPT2, NAT2,NRG1, PPARGC1A, CDKN2A, CRYAB, NGFR, andUCN. The

signature displayed an excellent capacity for survival prediction and was linked

to worse clinicopathological features. Moreover, the signature correlated with

antitumor immunity, drug sensitivity, and CRC-related pathways. Among

molecular subtypes, the CSC subtype had the highest risk score.
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Experiments demonstrated that CDKN2A and UCN were up-regulated and

ACOX1, CPT2, NAT2, NRG1, PPARGC1A, CRYAB, and NGFR were down-

regulated in CRC than normal cells. In H2O2-induced CRC cells, their

expression was notably altered.

Conclusion: Altogether, our findings constructed an oxidative stress-related

signature that can predict survival outcomes and therapeutic response in CRC

patients, thuspotentially assistingprognosis prediction andadjuvant therapydecisions.
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Introduction

Modulation of redox homeostasis is essential for maintaining

normal cellular function and ensuring cell survival. Tumor cells are

characterized by high levels of oxidative stress that is a state of

imbalance between oxidation and antioxidation (Donohoe et al.,

2019). Accumulated evidence suggests that oxidative stress exhibits

dual roles in tumor progression (Yang and Chen, 2021). Reactive

oxygen species (ROS) exhibits antitumor effects by heightening

tumor cell apoptosis, necrosis, and ferroptosis and strengthening the

immune surveillance capacity of immune cells (Gorrini et al., 2013).

Instead, ROS promotes tumor progression via triggering DNA

damage and genomic changes, activating proliferation- and

epithelial–mesenchymal transition-related pathways, and

remodeling the tumor microenvironment for tumor invasion and

metastases (Falone et al., 2019).

Colorectal cancer (CRC) remains the third most diagnosed

cancer (10.0%), and the second leading cause of cancer death (9.4%)

worldwide, according to GLOBOCAN 2020 estimates (Sung et al.,

2021). Approximately 50% of patients die from tumormetastases (Li

et al., 2022). Currently, systemic treatment options comprise

adjuvant and neoadjuvant chemotherapy, and therapeutic

antibodies directed against growth factor receptors (Berlin et al.,

2022). Nevertheless, 30–40% of patients relapse despite treatment. A

reasonable and effective signature for prognostic assessment of CRC

patients is required. Oxidative stress can induce genetic instability

and alter cellular processes, leading to CRC (Wei et al., 2021). In a

large CRC patient cohort, higher reactive oxygenmetabolites exhibit

a strong association with more undesirable survival outcomes

(Boakye et al., 2020). Cancer cells adapt to chemotherapy-

induced oxidative stress using rapidly elevated cellular

antioxidant programs, and adaptation of oxidative defense results

in therapeutic resistance, a primary barrier to successful cancer

treatment (Čipak Gašparović et al., 2021). For instance, SIRT3-

mediated SOD2 and PGC-1α trigger chemoresistance in CRC cells

(Paku et al., 2021). Moreover, up-regulated NOX-2 and Nrf-2

facilitate 5-fluorouracil resistance of CRC cells (Waghela et al.,

2021). Given the crucial roles of oxidative stress in the

progression and therapeutic resistance of CRC, this study

attempted to construct a reliable oxidative stress-related signature

to predict patients’ clinical outcomes and therapeutic responses.

Materials and methods

CRC datasets

Transcriptome profiling (RNA-seq) of colon adenocarcinoma

(COAD) and rectum adenocarcinoma (READ) was performed, and

normal tissue samples were extracted from The Cancer Genome

Atlas (TCGA) via the Genomic Data Commons (GDC). The raw

counts were standardized to count-per-million (CPM) using the

edgeR package (Robinson et al., 2010). The threshold was set to 1 to

retain genes greater than 1 in 2 or more samples. The copy number

variation (CNV) data (masked copy number segment) and somatic

mutation data (Varscan2) of CRC samples were downloaded from

TCGA. Microarrays of CRC patients in GSE12945 (Staub et al.,

2009), GSE39582 (Marisa et al., 2013), and GSE103479 (Allen et al.,

2018) were acquired from the Gene Expression Omnibus (GEO).

Microarray data were corrected for background and normalized

through the robust multichip average (RMA) method. Missing data

were imputed through the K-nearest neighbor method.

Identification of differentially expressed
oxidative stress-related genes

Differentially expressed genes between CRC and normal

tissues were screened based on the criteria of |log2fold-

change|≥1 and adjusted p ≤ 0.05 utilizing the edgeR package.

Adjusted p was calculated through the Bonferroni and Hochberg

method. In total, 1,399 oxidative stress-related genes were

extracted from the GeneCards according to relevance score≥7
(Supplementary Table S1). Afterward, differentially expressed

oxidative stress-related genes were intersected.

Prognostic model construction

Univariate cox regression models were established to determine

survival-related differentially expressed oxidative stress-related genes

with p < 0.05. Through the least absolute shrinkage and selection

operator method (LASSO), a prognosis gene signature was

developed with the glmnet package (Friedman et al., 2010). The
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risk score was computed by the expression of candidate genes along

with their coefficients. TCGACRC samples were randomly assigned

to the training set along with the testing set at 1:1 ratio (Liu et al.,

2020). In each set, the median risk score was set as the cut-off value

of low- and high-risk subsets.

Survival analysis

Kaplan–Meier curves along with the log-rank test were

conducted on oxidative stress-relevant gene signature and patients’

overall survival (OS), disease-free survival (DFS), disease-specific

survival (DSS), and progression-free survival (PFS) based on the

clinical data. Uni- and multivariate Cox regression models were

established on the gene signature, and clinical parameters and OS

with the survival package. Through the survival-ROC package,

receiver operator characteristic curves (ROCs) were drawn,

followed by the area under the curve (AUC) value.

Quantification of immune cell infiltration

Immune cell infiltrations were estimated across CRC tissues

through Cell Type Identification by Estimating Relative Subsets

of RNA Transcripts (CIBERSORT), a deconvolution approach

proposed by Newman et al. (2015). The LM22 gene set was set as

the reference set. This analysis was repeated 1,000 times, with p <
0.05 as the filtering condition.

Cancer immunity cycle

The cancer immunity cycle containing seven steps reflects the

antitumor immunity as previously described (Chen and

Mellman, 2013). The enrichment score of these steps was

quantified via the TIP approach (Xu et al., 2018).

Analysis of CNV and mutation data

On the basis of the recurrently altered regions derived from

the Genomic Identification of Significant Targets in Cancer

(GISTIC 2.0) algorithm (Mermel et al., 2011), significant focal

regions of gain and loss were identified and scored (G-score). The

parameter thresholds were set as gain or loss length>0.1 and p <
0.05. Somatic mutation data were analyzed with the maftools

package (version 2.6.0) (Mayakonda et al., 2018).

Drug sensitivity analysis

Drug Sensitivity data were acquired from the Genomics of

Drug Sensitivity in Cancer (GDSC) database (www.

cancerRxgene.org) (Yang et al., 2013). IC50 values were

estimated with the oncoPredict package (Maeser et al., 2021).

Gene set enrichment analysis

GSEA was carried out through the Java platform

(Subramanian et al., 2005). Gene sets of Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) were

obtained from the Molecular Signatures Database (Liberzon

et al., 2015). Terms with FDR<0.05 after 1,000 permutations

were significantly enriched.

Cell culture and treatment

Human colorectal mucosal cell lines (FHC) and CRC cell

lines (SW-480 and HCT-116) were maintained in DMEM with

10% fetal bovine serum, 100U/ml penicillin, and 100 μg/ml

streptomycin in a 37°C humidified incubator with 5% CO2.

To induce oxidative stress, the cells were administrated H2O2

in the medium, which was changed daily.

RT-qPCR

RNA extraction was performed using the TRIzol reagent

(Invitrogen, United States) and DNase I, followed by reverse

transcription into complementary DNAs (cDNAs) utilizing the

Superscript Reverse Transcriptase Kit (Thermo Fisher, United

States). RT-qPCR was implemented with the Super SYBR Green

Kit (BIO-RAD, United States) using the ABI7300 RT-qPCR system

(Applied Biosystems, United States). The primer pairs included

ACOX1, 5ʹ-TAACTTCCTCACTCGAAGCCA-3ʹ (forward), 5ʹ-

AGTTCCATGACCCATCTCTGTC-3ʹ (reverse); CDKN2A, 5ʹ-

GATCCAGGTGGGTAGAAGGTC-3ʹ (forward), 5ʹ-CCCCTG

CAAACTTCGTCCT-3ʹ (reverse); CPT2, 5ʹ-CATACAAGCTAC

ATTTCGGGACC-3ʹ (forward), 5ʹ-AGCCCGGAGTGTCTTCAG

AA-3ʹ (reverse); CRYAB, 5ʹ-CCTGAGTCCCTTCTACCTTCG-3ʹ

(forward), 5ʹ-CACATCTCCCAACACCTTAACTT-3ʹ (reverse);

NAT2, 5ʹ-ACCTGGACCAAATCAGGAGAG-3ʹ (forward), 5ʹ-

TGTTCGAGGTTCAAGCGTAAAT-3ʹ (reverse); NGFR, 5ʹ-CCT

ACGGCTACTACCAGGATG-3ʹ (forward), 5ʹ-CACACGGTG

TTCTGCTTGT-3ʹ (reverse); NRG1, 5ʹ-CGGTGTCCATGCCTT

CCAT-3ʹ (forward), 5ʹ-GTGTCACGAGAAGTAGAGGTCT-3ʹ

(reverse); PPARGC1A, 5ʹ-TCTGAGTCTGTATGGAGTGACAT-3ʹ

(forward), 5ʹ-CCAAGTCGTTCACATCTAGTTCA-3ʹ (reverse);

UCN, 5ʹ-CAACCCTTCTCTGTCCATTGAC-3ʹ (forward), 5ʹ-CGA

GTCGAATATGATGCGGTTC-3ʹ (reverse); and GAPDH, 5ʹ-ACA

ACTTTGGTATCGTGGAAGG-3ʹ (forward), 5ʹ-GCCATCACG

CCACAGTTTC-3ʹ (reverse). With GAPDH as an internal

control, the relative expression was quantified using the 2−ΔΔCt

method.
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Western blot

Protein was extracted from cells using RIPA lysis buffer, and

protein concentration was assessed using the Bradford protein

assay kit (Keygen, China). Protein samples were subjected to 8 or

12% SDS-PAGE gels and transferred onto PVDF membranes,

followed by incubation with the primary antibody of ACOX1 (1/

1,000; ab184032), CDKN2A (1/1,000; ab270058), CPT2 (1/3,000;

ab181114), CRYAB (1/1,000; ab281561), NAT2 (1/5,000;

ab194114), NGFR (1/10,000; ab52987), NRG1 (1/1,000;

ab191139), PPARGC1A (1/1,000; ab188102), UCN (1/1,000;

ab231050), or GAPDH (1/1,000; ab125247) at 4°C. The next

FIGURE 1
Development of an oxidative stress-related gene signature for CRC. (A) Volcano plot of the DEGs between CRC and normal tissues in the
TCGA-COAD cohort. Red, up-regulated genes; blue, down-regulated genes. (B,C) Heatmaps of up- and down-regulated DEGs in CRC versus
normal tissues in the TCGA-COAD cohort. (D) Venn plot of the DEGs and oxidative stress-related genes. (E) Identification of the optimal coefficients
of oxidative stress-related genes according to the optimal lambda. X-axis is the log lambda; Y-axis is the coefficient of each variable. (F)Optimal
partial likelihood deviance along with the optimal lambda. (G) Forest plot of the univariate cox-regression results of the oxidative stress-relevant
genes within the LASSO model. (H) Expression of aforementioned genes among CRC samples. N = 597.
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day, the membrane was incubated with horseradish peroxidase-

linked secondary antibodies at room temperature for 1 h. Protein

bands were developed using the ECL reagent (Tanon, China),

and gray values were quantified via ImageJ software.

Statistical analysis

Statistical analysis was generated through R 3.6.1. Statistical

difference between groups was computed with unpaired Student’s

t-test, Wilcoxon test, Kruskal–Wallis test, or one-way analysis of

variance. Two-tailed p < 0.05 was set as statistical difference.

Results

Development of an oxidative stress-
related gene signature for CRC

In total, there were 1,918 up-regulated genes and

2,081 down-regulated genes in 638 CRC versus 51 normal

tissues (Figures 1A–C). The detailed information is listed in

Supplementary Table S2. From the GeneCards, we extracted

1,399 oxidative stress-related genes. After taking the intersection,

387 differentially expressed oxidative stress-related genes were

finally identified (Figure 1D). Among them, 53 genes were

significantly correlated with CRC prognosis (Supplementary

Table S3). Afterward, candidate genes with regression

coefficient≠0 were used for constructing an oxidative stress-

related gene signature using the LASSO algorithm (Figures

1E,F). The risk score was computed according to

(-0.00277909287793242) * ACOX1 expression +

0.0280830167034478 * CDKN2A expression +

(-0.163084055105811) * CPT2 expression +

0.0548399857226341 * CRYAB expression +

(-0.0107247779354099) * NAT2 expression +

0.0267977941327448 * NGFR expression +

(-0.160185818265943) * NRG1 expression +

(-0.00515077740891848) * PPARGC1A expression +

0.10199017424903 * UCN expression. For CRC prognosis,

ACOX1, CPT2, NAT2, NRG1, and PPARGC1A were protective

factors, and CDKN2A,CRYAB,NGFR, andUCNwere risk factors

(Figure 1G). Figure 1H visualizes the expression of the

aforementioned genes across CRC samples.

The oxidative stress-related gene
signature accurately predicts CRC
prognosis

TCGA patients (N = 597) were randomly allocated into the

training set (N = 298) and testing set (N = 299) at 1:1 ratio.

Table 1 lists the patients’ clinicopathological characteristics in the

total, training along with testing sets. According to the median

value, CRC cases were allocated into the high- or low-risk subsets

(Figure 2A), with relatively more dead and recurred/progressed

cases in the high-risk subset (Figures 2B,C). The OS outcomes of

the high-risk subset were significantly decreased in comparison

to those of the low-risk subset in the training set (Figure 2D) and

the testing set (Figure 2E) along with the total set (Figure 2F).

ROCs under 4-, 5-, and 6-year OS of the training set (Figure 2G),

the testing set (Figure 2H) along with the total set (Figure 2I)

demonstrated the excellent performance of the oxidative stress-

related gene signature in predicting CRC prognosis.

We also measured the expression of two master regulators of

oxidative stress (NRF2 and KEAP1). Compared with normal

tissues, up-regulated KEAP1 and down-regulated NRF2 were

found in CRC tissues at the transcriptional level (Figure 2J),

indicating the enhanced oxidative stress during CRC

development. Additionally, we observed the difference in

NRF2 and KEAP1 between high- and low-risk subsets. As

shown in Figure 2K, the high-risk subset presented higher

KEAP1 expression and lower NRF2 expression in comparison

to the low-risk subset, demonstrating the heterogeneity in

oxidative stress between high- and low-risk CRC patients.

The oxidative stress-related gene
signature correlates to clinical
characteristics of CRC

Distribution of the risk score derived from the oxidative

stress-related gene signature was analyzed across different

clinical characteristics. With the increasing TNM and

pathological stage, the risk score was dramatically higher

(Figures 3A–D). Additionally, the risk score was positively

correlated to the lymph node (Figure 3E). Compared with

microsatellite-stable (MSS), microsatellite unstable-low (MSI-

L) had a significantly higher risk score (Figure 3F). Overall,

the oxidative stress-related gene signature was correlated to a

more serious pathological status.

The oxidative stress-related gene
signature acts as an independent
prognostic factor of CRC patients

Uni- and multivariate Cox regression models

demonstrated that the risk score acted as an independent

risk factor of CRC survival (Figures 3G,H). CRC patients were

stratified by the T stage (T1–2 and T3–4), N stage (N0 and

N1–2), M stage (M0 and M1), pathological stage (stage I–II

and stage III–IV), or sex (female and male). In each subgroup,

OS (Figures 4A–J), DFS (Supplementary Figures 1A–J), DSS

(Supplementary Figure S2A–J), and PFS (Supplementary

Figure S3A–J) of the high-risk subset were dramatically
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decreased in comparison with those of the low-risk subset.

Hence, this oxidative stress-relevant gene signature was

independent of other clinical characteristics in predicting

CRC patients’ prognosis.

External verification of the oxidative
stress-related gene signature

To prove the robustness of the oxidative stress-related gene

signature, this study included three independent cohorts. The

same formula was used for computing the risk score. Both in the

GSE103479 and GSE39582 cohorts, the high-risk subset

exhibited worse OS than the low-risk subset, with relatively

high AUCs at 4-, 5- and 6-year survival (Figures 5A–D). As

the N stage (Figures 5E,F), M stage (Figure 5G), and pathological

stage (Figures 5H,I) worsened, the risk score gradually increased.

The aforementioned data demonstrated that the signature

exhibited excellent robustness on distinct platforms.

The oxidative stress-related gene
signature correlates to antitumor
immunity of CRC

Through the CIBERSORT approach, we estimated the

immune cell infiltration across CRC specimens (Figures 6A,B).

Activated dendritic cells, activated mast cells, monocytes,

neutrophils, resting NK cells, plasma cells, activated memory

T-cell CD4, and resting memory T-cell CD4 were significantly

lower in the high-risk subset than those in the low-risk subset

(Figures 6C,D). Meanwhile, M0macrophages, activated NK cells,

T-cell CD8, T-cell follicular helper, and T-cell regulatory (Tregs)

exhibited elevated infiltration in the high-risk subset. The

TABLE 1 Clinical characteristics of CRC patients in the total, training, and testing sets.

Variable Total set (N = 597) Training
set (N = 298)

Testing
set (N = 299)

Age 66.07 ± 12.7 66.52 ± 12.36 65.61 ± 13.03

Status (n, %)

Alive 472 (79.06) 233 (78.19) 239 (79.93)

Dead 125 (20.94) 65 (21.81) 60 (20.07)

Sex (n, %)

Male 322 (53.94) 169 (56.71) 153 (51.17)

Female 275 (46.06) 129 (43.29) 146 (48.83)

T stage (n, %)

T1 20 (3.35) 9 (3.02) 11 (3.68)

T2 103 (17.25) 55 (18.46) 48 (16.05)

T3 408 (68.34) 200 (67.11) 208 (69.57)

T4 64 (10.72) 33 (11.07) 31 (10.37)

Ti 1 (0.17) 1 (0.34) 0 (0)

Unknown 1 (0.17) 0 (0) 1 (0.33)

N stage (n, %)

N0 337 (56.45) 180 (60.4) 157 (52.51)

N1 147 (24.62) 63 (21.14) 84 (28.09)

N2 110 (18.43) 55 (18.46) 55 (18.39)

Unknown 3 (0.5) 0 (0) 3 (1)

M stage (n, %)

M0 443 (74.2) 220 (73.83) 223 (74.58)

M1 84 (14.07) 41 (13.76) 43 (14.38)

Unknown 70 (11.73) 37 (12.42) 33 (11.04)

Pathologic stage (n, %)

Stage I 103 (17.25) 55 (18.46) 48 (16.05)

Stage II 217 (36.35) 117 (39.26) 100 (33.44)

Stage III 175 (29.31) 77 (25.84) 98 (32.78)

Stage IV 87 (14.57) 43 (14.43) 44 (14.72)

Unknown 15 (2.51) 6 (2.01) 9 (3.01)
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FIGURE 2
Oxidative stress-related gene signature accurately predicts CRC prognosis. (A) Distribution of the risk score derived from the oxidative stress-
related gene signature in TCGA CRC patients. The vertical dotted line represents the median value. Red dots, high-risk samples; blue dots, low-risk
samples. (B) Scatter plots of alive (blue) and dead (red) cases along the increasing risk score. (C) Scatter plots of disease-free (blue) and recurred/
progressed (red) cases along the increasing risk score. (D–F) Kaplan–Meier OS for high- and low-risk subsets within the (D) training set, (E) the
testing set, along with (F) the total set. (G–I) ROCs under 4-, 5- and 6-year survival for the (G) training set, (H) the testing set, along with (I) the total
set. (J)Comparison of the expression of twomaster regulators of oxidative stress (NRF2 and KEAP1) in normal versus CRC tissues. (K)Comparison of
the expression of NRF2 and KEAP1 in r high- and low-risk subsets. ***p < 0.001. Total set: N = 597; training set: N = 298; testing set: N = 299.

Frontiers in Pharmacology frontiersin.org07

Cao et al. 10.3389/fphar.2022.991881

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.991881


expression of immune checkpoints (BTLA, CD274, CEACAM1,

IDO1, LGALS3, and PVR) exhibited down-regulation in the high-

risk subset (Figure 6E). Additionally, immunomodulators (IL6R,

ICOS, CCR3, CCL20, CCR6, CXCL6, TNFSF13, TNFRSF17,

CXCL3, CCL11, CXCL2, CXCL1, HHLA2, and CCL28) were

down-regulated in the high-risk subset (Figure 6F).

Meanwhile, higher CX3CL1 and TNFSF14 expressions were

found in the high-risk subset than in the low-risk subset.

High activity of priming and activation, recruitment of

CD4 T cells, dendritic cells, T cells, and Th1 cells; infiltration

of immune cells into tumors; and recognition of cancer cells by

T cells were found in high-risk subset compared to the low-risk

subset (Figure 6G). In contrast, B-cell recruitment, eosinophil

recruitment, MDSC recruitment, neutrophil recruitment,

Th2 cell recruitment, and Treg cell recruitment showed lower

activity in high-risk subset than the low-risk subset. Overall, the

oxidative stress-related gene signature was correlated to

antitumor immunity of CRC.

FIGURE 3
Oxidative stress-related gene signature correlates to clinical characteristics and serves as an independent prognostic factor in TCGA CRC.
(A–D) Distribution of the risk score derived from the oxidative stress-related gene signature across (A) T, (B) N, (C)M, and (D) pathological stage. (E)
Scatter plot of the correlation between the risk score and lymph node. (F) Distribution of the risk score across different microsatellite status. (G,H)
Forest plots of the uni- and multivariate Cox regression results. *p < 0.05; **p < 0.01; ***p < 0.001. N = 597.
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Difference in CNV and mutation between
high- and low-risk subsets

For the CNV data, we used GISTIC 2.0 to determine

24 amplified fragments and 44 deleted fragments in the

high-risk subset (Figures 7A,B). Meanwhile, 28 amplified

fragments and 40 deleted fragments were identified in the

low-risk subset (Figures 7C–G). Compared with the high-risk

subset, higher mutated frequencies of APC, FAT4, and OBSCN

occurred in the low-risk subset (Figures 7H–K). In contrast,

TP53, TTN, KRAS, SYNE1, MUC16, PIK3CA, and RYR2 had

higher mutated frequencies in the high-risk subset.

Additionally, mutated TP53 was significantly correlated to

high-risk CRC (Figure 7L).

Difference in drug sensitivity between
high- and low-risk subsets

Drug sensitivity was analyzed between high- and low-risk

subsets. The top 50 drugs were as follows: AZD3759, erlotinib,

gallibiscoquinazole, zoledronate, OF.1, carmustine, nelarabine,

GSK591, sinularin, TAF1, cyclophosphamide, gefitinib,

fulvestrant, picolinici acid, temozolomide, IAP, LY2109761,

EPZ5676, savolitinib, LGK974, AZD1208, MIRA.1, EPZ004777,

AGI.5198, GSK343, LCL161, IRAK4, BIBR.1532, VE821, IWP.2,

MK.8776, PFI3, crizotinib, dihydrorotenone, PD173074, VSP34,

CDK9, dinaciclib, YK.4.279, VE.822, I.BRD9, LJI308, AZD5991,

ABT737, GDC0810, fludarabine, GSK2578215A, Wee1.Inhibitor,

P22077, and CZC24832 (Figure 8A).

FIGURE 4
Oxidative stress-related gene signature is independent of other clinical features in predicting CRC patients’ prognosis. (A–J) Subgroup analysis
for the OS difference between high- and low-risk subsets in each subgroup stratified by (A,B) T (T1–2 and T3–4), (C,D) N (N0 and N1–2), (E,F) M
(M0 and M1), (G,H) pathological stage (stage I–II, stage III–IV), or (I,J) sex (female and male) in the TCGA dataset. N = 597.
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Difference in signaling pathways and
molecular subtypes between high- and
low-risk subsets

Molecular mechanisms involved in the oxidative stress-

related gene signature were further explored. The risk score

was significantly correlated with biological processes

(keratinization, serotonin receptor signaling pathway, cytosolic

calcium ion concentration, ARP 2/3 complex-mediated actin

nucleation, positive regulation of transcription of the notch

receptor target, and mitotic G2 DNA damage checkpoint;

Figure 8B); cellular components of keratin filament, T-cell

receptor complex, intermediate filament, condensed nuclear

chromosome kinetochore, pericentriolar material, and WASH

complex (Figure 8C); molecular functions of neuropeptide

hormone activity, G protein-coupled serotonin receptor

FIGURE 5
External verification of the oxidative stress-related gene signature. (A,B) Survival analysis and ROCs under 4-, 5-, and 6-year survival in the
GSE103479 dataset. (C,D) Survival analysis and ROCs under 4-, 5-, and 6-year survival in the GSE39582 dataset. (E,F) Risk score across the N stage in
the (E) GSE103479 and (F) GSE12945 datasets. (G) Risk score across the M stage from the GSE39582 dataset. (H,I) Risk score across the pathological
stage in the GSE103479 and GSE39582 datasets. *p < 0.05; **p < 0.01; ***p < 0.001. GSE103479: N = 156; GSE39582: N = 562; GSE12945:
N = 62.
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activity, structural constituent of eye lens, proline-rich region

binding, ribosomal small subunit binding, and RNA polymerase

II CTD heptapeptide repeat kinase activity (Figure 8D); KEGG

pathways of olfactory transduction, asthma, microRNAs in

cancer, homologous recombination, Hippo signaling pathway-

multiple species, and protein export (Figure 8E). Additionally,

there was a remarkable difference in the risk score among

different molecular subtypes (CIN, CSC, dMMR, and

KRASm) of CRC (Figure 8F). Particularly, the CSC subtype

had the highest risk score.

Experimental verification of the genes
within the oxidative stress-relevant gene
signature

The genes in the signature were verified in the human

colorectal mucosal cell line (FHC) along with CRC cell lines

(SW-480 and HCT-116) through RT-qPCR or Western blot.

CDKN2A and UCN were up-regulated and ACOX1, CPT2,

NAT2, NRG1, PPARGC1A, CRYAB, and NGFR were down-

regulated in CRC than normal cells (Figures 9A–C). Next, we

FIGURE 6
Oxidative stress-related gene signature correlates to the antitumor immunity of CRC. (A) Relative percent of the infiltration levels of immune
cells across TCGA CRC. (B) Correlations between different immune cell populations. (C,D) Comparison of the infiltration of immune cells between
subsets. (E) Comparison of immune checkpoints between subsets. (F) Difference in the expression of immunomodulators between subsets. (G)
Difference in the activity of cancer immunity cycle between subsets. *p < 0.05; **p < 0.01; ***p < 0.001. N = 597.
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FIGURE 7
Differences in CNV and mutation between high- and low-risk subsets. (A–D) Copy number gains and deletions identified in (A,B) high- and
(C,D) low-risk subsets by GISTIC 2.0. X-axis represents the CNV fractions on each chromosome, and y-axis represents the chromosome number.
The mutation location on the chromosome is marked on the right side. Red and blue represent the significantly amplified and deleted regions,
respectively. (E–G) Significant gains and deletions of copy number in high- and low-risk subsets. (H,I) Landscape ofmutations in high- and low-
risk subsets. (J,K) Difference in the frequencies of the top 10 mutated genes between subsets. (L) Forest plot of the correlation between mutated
genes and high-risk. N = 597.
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further validated the relationships between the genes in the

signature and oxidative stress. After exposure to H2O2, their

expression was measured in SW-480 and HCT-116 cells.

Higher expression of ACOX1, CPT2, NAT2, NRG1,

PPARGC1A, CRYAB, and NGFR as well as lower expression

of CDKN2A and UCN were observed in H2O2-induced CRC

cells (Figures 9D–F), indicating the relevance of oxidative

stress during CRC development.

Discussion

Oxidative stress-related signatures have been established in

acute myeloid leukemia (Dong et al., 2021), melanoma (Yang

et al., 2021), clear-cell renal cell carcinoma (Wu Y. et al., 2021a),

gastric cancer (Wu Z. et al., 2021b), head and neck squamous cell

carcinoma (Wang and Zhou, 2021), glioma (Lu et al., 2021), and

bladder cancer (Zhang et al., 2022). Alterations in redox status

accompanied by increased production of ROS have been

implicated in CRC (Lee et al., 2021). Nevertheless, so far, no

oxidative stress-related model has been proposed for CRC.

Considering the fact that oxidative stress is a complex process

involving different genes, in the present study, we proposed an

oxidative stress-related gene signature composed of ACOX1,

CPT2, NAT2, NRG1, PPARGC1A, CDKN2A, CRYAB, NGFR,

and UCN to predict CRC patients’ clinical outcomes with the

LASSO approach.

Reliable markers in predicting immunotherapeutic

responses of CRC patients are still insufficient in clinical

practice (Chen L. et al., 2021b). Dual suppression of

endoplasmic reticulum stress and oxidation stress may

manipulate macrophage polarization following hypoxia to

enhance immunotherapeutic sensitivity (Jiang et al., 2021).

SENP7 can sense oxidative stress to maintain metabolic fitness

FIGURE 8
Oxidative stress-related gene signature is linked to drug sensitivity, signaling pathways, and molecular subtypes of CRC. (A) Difference in
sensitivity to the top 50 drugs between high- and low-risk subsets. (B–E)Difference in biological processes, cellular component, molecular function,
and KEGG pathways between subsets. (F) Difference in the risk score among molecular subtypes. ***p < 0.001. N = 597.
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FIGURE 9
Experimental verification of the genes from the oxidative stress-relevant gene signature. (A–C) RT-qPCR andWestern blot for the expression of
ACOX1,CPT2,NAT2,NRG1, PPARGC1A,CDKN2A,CRYAB,NGFR, andUCN in FHC, SW-480, and HCT-116 cells. (D–F) RT-qPCR andWestern blot for
their expression in H2O2-induced SW-480 and HCT-116 cells. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. N = 3.
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and antitumor effects of CD8+ T cells (Wu et al., 2022).

Moreover, altered tumor metabolism via CD4+ T cells

results in TNF-α-dependent intensified oxidative stress and

tumor cell deaths (Habtetsion et al., 2018). The oxidative

stress-related gene signature was correlated with the

antitumor immunity of CRC, indicating that this signature

might enable prediction of the immunotherapeutic response

(Liu et al., 2020). Genomic alterations and CNVs were

compared between high- and low-risk subsets. Particularly,

the high-risk subset was remarkably linked to more aggressive

molecular alteration: mutated TP53 that triggers enhanced

proliferative capacity via consuming oxygen and producing

abnormal vasculature during the early stage of cancer

development. There were remarkable differences in drug

sensitivity between high- and low-risk subsets. Additionally,

the risk score was linked to CRC-related pathways, such as

mitotic G2 DNA damage checkpoint, microRNAs in cancer,

and Hippo signaling pathway.

Our experimental studies demonstrated that CDKN2A

and UCN were up-regulated and ACOX1, CPT2, NAT2,

NRG1, PPARGC1A, CRYAB, and NGFR were down-

regulated in CRC cells (SW-480 and HCT-116) compared

with human colorectal mucosal cells (FHC). In H2O2-induced

CRC cells, their expression was remarkably altered. Butyrate-

induced colonocyte differentiation determines CDKN2A as a

prognostic biomarker of CRC recurrence (Dasgupta et al.,

2019). Patients who have tumor chromosomal CDKN2A

deletion are prone to immunotherapeutic resistance (Horn

et al., 2018). ACOX1 may attenuate the migration and

invasion of CRC cells (Sun et al., 2017). Down-regulated

CPT2 induces stemness and oxaliplatin resistance in CRC

through the ROS/Wnt/β-catenin-triggered glycolytic

metabolism (Li et al., 2021). Additionally, its down-

regulation heightens proliferation and weakens apoptosis

via p53 signaling in CRC (Liu et al., 2022). NAT2 down-

regulation is also found in CRC, which correlates to CRC

patients’ metastasis and survival (Zhu et al., 2021). CRYAB

correlates to clinical outcomes and immunocyte infiltrations

in CRC (Deng et al., 2021). NGFR improves the

chemosensitivity of CRC cells by strengthening the

apoptotic and autophagic effects of 5-fluorouracil by

activating S100A9 (Chen H. et al., 2021a). Combining

previous evidence, the genes in the oxidative stress-related

signature play essential roles in CRC progression.

Our analysis is a retrospective study, resulting in unavoidable

limitations. As many datasets as possible were included, so

sampling bias from tumor heterogeneity and different

platforms can only be decreased, but not completely removed.

Although we experimentally validated the genes from the

oxidative stress-relevant gene signature, more experimental

studies are needed for clarifying the functional significance of

oxidative stress in CRC.

Conclusion

In summary, this study proposed an oxidative stress-related

signature composed of ACOX1, CPT2, NAT2, NRG1,

PPARGC1A, CDKN2A, CRYAB, NGFR, and UCN to predict

clinical outcomes and therapeutic responses of CRC patients,

which provided valuable information for understanding the

functional roles of oxidative stress in CRC development,

assisting prognosis prediction and guiding adjuvant therapy

(especially small molecular compounds and immunotherapy),

thereby facilitating precision oncology of CRC.
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