
Current status of
immunotherapy for non-small
cell lung cancer

Tao Yang, Yilin Xiong, Yufei Zeng, Yan Wang, Jing Zeng, Jie Liu,
Shangfu Xu and Li-Sheng Li*

Zunyi Medical University, Zunyi, China

Nowadays, lung cancer is still the deadliest oncological disease in the world.

Among them, non-small cell lung cancer (NSCLC) accounts for 80%~85% of all

lung cancers, and its 5-year survival rate is less than 15%, making the situation

critical. In the past decades, despite some clinical advances in conventional

treatments, the overall survival rate of NSCLC is still not optimistic due to its

unique physiological conditions and the frequent occurrence of tumor escape.

In recent years, immunotherapy has become a new hot spot in lung cancer

research, including antibody therapy and cell therapy, which have been

developed and utilized one after another, especially immune checkpoint

inhibitor (ICI). These approaches have effectively improved the overall

survival rate and objective response rate of NSCLC patients by enhancing

the immune capacity of the body and targeting tumor cells more effectively,

which is more specific and less toxic compared with conventional

chemotherapy, and providing more strategies for NSCLC treatment. In this

paper, we reviewed the relevant targets, clinical progress and adverse reaction

in monoclonal antibodies, antibody-drug conjugates, ICI, bispecific antibodies,

T-cell receptor engineered T cell therapy (TCR-T), Chimeric antigen receptor

T-cell immunotherapy (CAR-T), and also report on their combination therapy

from the immune-related background to provide better NSCLC treatment and

prospective.
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Introduction

Lung cancer is the deadliest malignancy in the world with 2.2 million new cases and

about 1.8 million deaths in 2020 (Sung et al., 2021). Non-small cell lung cancer (NSCLC)

accounts for 80~85% of the total number of lung cancers and is the main cause of

mortality (Siegel et al., 2020). Unlike other cancers, smoking and secondhand smoke lead

to a higher tumor mutational burden (TMB) in lung cancer, while the unique oxygen

environment and pressure strengthen the role of molecular heterogeneity, and NSCLC is

more likely to develop drug resistance, drug toxicity and cancer migration (Zito Marino

et al., 2019). Clinically, only a small proportion of NSCLC patients are diagnosed at an
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early stage, and most of them are in the advanced or even

metastatic stage, with a 5-year survival rate of less than 15%

(Allemani et al., 2018). Conventional treatments for NSCLC are

usually administered in the staged approaches, with complete

surgical resection, usually a lobectomy, being recommended in

the early stages (Saji et al., 2022), and stereotactic and hyper-

fractionated radiation therapy may be considered for patients

who are apprehensive about surgery (Tandberg et al., 2018;

Chang et al., 2021; Dohopolski et al., 2021). Platinum-based

combination chemotherapy and thoracic radiation therapy are

commonly used for patients with advanced NSCLC (Vinod and

Hau, 2020; Zhou et al., 2022). Percutaneous treatments such as

thermal ablation as well as radiofrequency ablation can be used as

a prognostic and maintenance treatment to the above treatments

(Duma et al., 2019). Although these treatments have improved

the survival rate of NSCLC patients, an important cause of death

in lung cancer is due to the etiology or tendency of metastatic

disease already present at the time of diagnosis and treatment,

which cannot be effectively contained and treated by

conventional means, suggesting that further survival

improvement requires more effective approaches. The

emerging immunotherapy in recent years has better potential

to prevent cancer recurrence and metastasis by improving the

patient’s own immune capacity and killing cancer cells

specifically, raising the patient’s expectations for treatment.

This article will discuss immunotherapy for NSCLC and

related developments.

Immune circulation and
microenvironment in NSCLC

The body’s immune system is self-generated for the elimination

of cancer cells and is a set of recyclable operations. The first is that

cancer cells release the corresponding antigen, which is taken up by

dendritic cells, and the antigen forms a complex with major

histocompatibility complex (MHC) on the surface of dendritic

cells; then dendritic cells present the antigen to T cells, when

FIGURE 1
Mechanism of immunotherapy for NSCLC. Dual signaling activation of T cells causes upregulation of CTLA-4, which competes with B7 and thus
regulates T cell activation. ICI can perform immune enhancement by blocking these targets; Activation of EGFR causes upregulation of HIF-1α and
thus of VEGF. Simultaneous inhibition of EGFR and VEGF has a synergistic effect.
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MHC and T cell receptor (TCR) bind, B7 protein on the surface of

antigen-presenting cells binds to CD28 on the surface of T cells, and

double signals stimulate T cell activation (Figure 1); Activated T cells

come to the tumor tissue through the circulation and penetration;

effector T cells specifically bind and kill cancer cells; dead cancer cells

release more antigen to recruit more T cells (Chen and Mellman,

2013). Theoretically, this cycle will amplify the immune response,

but in reality, the process does not occur as expected in cancer

patients, because in order to prevent the occurrence of

autoimmunity, the body’s multiple steps of this cycle are

regulated and balanced in many aspects, and cancer cells use

these regulations for immune escape. These phenomena occur

during the antigen presentation stage, with down-regulation of

MHC, decreased phagocytosis by IL-10-polarized macrophages,

and release of more immunosuppressive factors (Pio et al., 2019);

during the activation of T cells, cytotoxic T lymphocyte-associated

antigen-4 (CTLA-4) competitively binds to B7 molecules and

programmed death-ligand 1 (PD-L1) binding to programmed

death-1 (PD-1) all inhibit T cells (Chen and Mellman, 2017);

and during the infiltration stage of tumor tissue, vascular

endothelial growth factor (VEGF) production of vascular

structures and transforming growth factor-β expression all reduce

invasion (Lee et al., 2020). By inhibiting the expression of the above

molecules, it is the theoretical basis for immunotherapy of lung

cancer.

The growth and characteristics of NSCLC are closely related to

the tumor microenvironment (TME), which includes the non-

immune microenvironment and the immune microenvironment,

and their interactions influence the course of the disease and the role

of therapy (Binnewies et al., 2018). The non-immune

microenvironment includes extracellular matrix, fibroblasts, and

the vascular system. Extracellular matrix and fibroblasts provide

some structural help for tumor cells, and more importantly, it

contains adhesion components, which physically affect the

migration of tumor cells (Walker et al., 2018), while vascular

endothelial cells will build a large number of new blood vessels

at the tumor site and provide oxygen and nutrient substance for

tumor development (Ferrara and Adamis, 2016); at the same time,

tumor cells can secrete chemokines, which can recruit neutrophils

and bind to them, and the process will not only promote

angiogenesis but also may play a negative role in tumor

prognosis (Zhang et al., 2019). The immune microenvironment

is complex, including T lymphocytes, B lymphocytes, natural killer

cells, macrophages and dendritic cells (Stankovic et al., 2018), among

which regulatory T cells (Tregs) and related macrophages are more

special and may produce immunosuppression during the

development of NSCLC (Xie et al., 2020). Tregs, a subpopulation

of T lymphocytes, express large amounts of CTLA-4 on their surface

and can inhibit T cells by secreting suppressors or directly mediate

the killing of effector cells. Under the action of chemokines, Tregs

highly infiltrate around cancer cell tissues, that result in a strong

immunosuppressive effect (Frankel et al., 2017). Tumor-associated

macrophages, on the other hand, infiltrate near tumor cells through

chemokines and produce polarization. Polarized macrophages

express the immunosuppressive factor IL-10 as well as VEGF,

resulting in vascular endothelial remodeling and concomitant

migration (Wang et al., 2021). Therefore, the regulation of

T cells, tumor-associated macrophages and the inhibition of

VEGF could be an important means of treating cell lung cancer.

Antibody therapy in NSCLC

Monoclonal antibodies

Immunotherapy has been used in cancer therapy as early as

the late 18th century (Loughlin and Coley, 2020), but there has

been a lack of antibodies with high purity and specificity. In the

late 20th century, hybridoma technology was born, which fuses

B cells that specifically express antibodies withmyeloma cells that

can proliferate indefinitely in vitro (Parray et al., 2020). The

monoclonal antibodies (mAbs) produced by hybridoma cells are

of high purity and specificity, which greatly meet the needs of

immunotherapy. In the last half century, mAbs have been

developed rapidly, from the birth of hybridoma technology to

the realization of fully human antibody technology, mAbs have

become an important tool for cancer treatment (Waldmann,

2019).

Antibodies are usually composed of two identical light chains

and two identical heavy chains linked by disulfide bonds. Due to

the differences in heavy chains (α, δ, ε, γ and μ), antibodies can be
classified into five categories: IgA, IgD, IgE, IgM and IgG. Among

these five classes of antibodies, IgG accounts for 80% of human

serum and almost all antibodies approved for use are IgG (Goulet

and Atkins, 2020). IgG can be further divided into IgG1, IgG2,

IgG3, and IgG4, which differ in the length of their hinge regions

and the number of disulfide bonds, and more importantly, in

their Fc functions. For example, IgG1 and IgG3 have a strong

binding capacity to FcγR and can induce stronger antibody-

dependent cell-mediated cytotoxicity (ADCC), while IgG2 and

IgG4 have weak binding activity. Unlike other isoforms, IgG4 is

completely unable to bind C1q to induce complement-dependent

cytotoxicity (CDC). In addition, IgG3 has no binding ability to

FcRn, resulting in a half-life that is only one-third that of the

other isoforms (Yu et al., 2020). Therefore, it is crucial to select

the appropriate antibody type according to the therapeutic need

and the target of action.

In contrast to conventional therapies, antibodies not only kill

cancer cells, but their Fab ends also bind to specific host targets to

exert their corresponding effects.

Immune checkpoint inhibitor

Immune checkpoint inhibitor (ICI) is a breakthrough

therapy for NSCLC in recent years, and James P. Allison and
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Tasuku Honjo won the Nobel Prize in Medical Physiology as

discoverers in 2018. ICI does not have a direct killing effect on

cancer cells, but works by enhancing or restoring the patient’s

autoimmune capacity (Li et al., 2019). Immune checkpoints are

proteins on the surface of T cells that can negatively regulate

immune switch and intensity, including CTLA-4 and PD-1 (Wei

et al., 2018), whose purpose is supposed to control the immune

response to protect the body from autoimmunity (Figure 1).

Blockade of immune checkpoints relieves T cells of their braking

signals, thus allowing T cells to continue their effects. Several ICIs

have been used for NSCLC, but not every patient has responded

well to them. The selection and detection of markers may play an

important role, including biometric parameters of the tumor and

relevant markers from blood sampling (Brueckl et al., 2020). In

addition to combination with conventional chemotherapy,

combination with stereotactic ablative radiotherapy may be a

physiologically based approach, as radiation therapy

suppresses the body’s proper immune response (Vansteenkiste

et al., 2019).

Antibody–drug conjugates

Most mAbs do not have antitumor activity in combination

with antigen, even though they possess good specificity.

Antibody-drug conjugates (ADCs) refer to the conjugation of

antibodies to deliver highly toxic cargoes (payloads). Commonly

used payloads today include calicheamicin and SN-38 against

DNA and auristatins and maytansinoids against tubulins (Chau

et al., 2019). Such antibodies with payloads specifically recognize

and bind antigens and enter the cytosol by endocytosis, followed

by the breakdown of the antigen-antibody-drug complex by a

number of hydrolases and fibrinolytic enzymes, leading to the

release of the drug intracellularly, thus providing a therapeutic

effect (Hafeez et al., 2020) (Figure 1). In recent years, with the

rapid development of ADCs, they have also shown good efficacy

in the field of NSCLC. The main targets involved include human

epidermal growth factor 2 (Her2), human epidermal growth

factor 2 (Her3), and tumor-associated calcium signal transducer

2 (Trop-2), which are all in the clinical trial stage (Desai et al.,

2022).

ADCs are a very successful form of drug delivery with both

the specificity of immunotherapy and the powerful efficacy of

chemotherapeutic agents, and their use can be foreseen in

NSCLC. However, in the clinical phase of the drug, some

adverse reactions due to the carriage of highly toxic

substances have been identified. In the trastuzumab

deruxtecan clinical trial, 19% of patients developed

neutropenia and 26% developed associated lung disease to the

point of death in two patients; patritumab deruxtecan may cause

hematologic toxicity; and sacituzumab govitecan caused

neutropenia in nearly 1/3 of patients (Heist et al., 2017; Jänne

et al., 2022; Li et al., 2022). Therefore, it may be important to

balance the relationship between antibodies and poisons, and the

combination of other targets and other drugs may further

improve the therapeutic effect.

Antibody fragment

The development and utilization of antibody fragments may

be a reliable way to address both efficacy and toxicity. Antibody

fragments are classified as natural Fab and F (ab’)2 and

genetically engineered scFv, minibody, single-domain

antibody, etc (Kholodenko et al., 2019). They retain the

specificity to bind antigen, while the major difference from

the common IgG-like mAbs is the absence of Fc structure.

This leads to two advantages, on the one hand, a smaller

molecular weight for better infiltration of the tumor

microenvironment and passage through the blood-brain

barrier, and on the other hand, the absence of Fc-mediated

ADCC and CDC effects, which may be responsible for

immunotoxicity (Chen et al., 2020). FDA has approved some

antibody fragments to act in advanced acute lymphoblastic

leukemia, North American rattlesnake venom infection, etc

(Kantarjian et al., 2017; Cuker et al., 2019; Wilson et al.,

2022). However, no antibody fragments have been approved

for cancer therapy, including NSCLC. The structural advantages

of antibody fragments cannot be ignored, and breakthroughs are

being made with antibody fragment-drug conjugates (AFDCs)

based on antibody fragments (Liu et al., 2019a; Jolivet et al.,

2022), while clinical trials have been conducted for NSCLC

(NCT01221675).

Bispecific antibodies

The above mAbs have good specificity and are important

tools for the therapy of NSCLC, but in the face of the complex

TME and pathogenesis of NSCLC, a single target often fails to

show satisfactory effects in vivo (Jänne et al., 2022), and

bispecific antibodies can play a bridging or coordinating

role against two epitopes in the immune microenvironment

of NSCLC, showing great promise (Labrijn et al., 2019). At the

same time, bispecific antibodies have better stability as well as

lower side effects compared to co-formulation or

simultaneous drug delivery because they are single

molecules (Wang et al., 2019a). Bispecific antibodies can be

broadly classified into two categories, one based on antibody

fragment design and the other based on IgG-like design.

Bispecific antibodies based on IgG-like design have

cytotoxic presence and longer half-life due to the presence

of Fc, but are prone to mismatching during production; in

contrast, bispecific antibodies based on antibody fragment

design have better tissue penetration and do not mismatch

(Register et al., 2021).
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Targets

Epidermal growth factor receptor

In NSCLC, epidermal growth factor receptor (EGFR)

mutations as its important oncogenic pathway have been

identified (Ye et al., 2021). The physiological role of EGFR is

to regulate epithelial cell function (Sigismund et al., 2018), and

mutated EGFR is aberrantly expressed to trigger cancer, and such

mutations are found in more than half of Asian NSCLC patients

(Lu et al., 2021). EGFR is a human epidermal growth factor

receptor (HER) family receptor and a tyrosine kinase receptor

(Liu et al., 2017). Correspondingly designed antibodies can block

its ligand EGF from binding to it, thereby inhibiting EGFR

phosphorylation and activation of downstream signaling for

therapeutic purposes. Necitumumab is a fully humanized anti-

EGFR mAb, which blocks its downstream pathway activation as

well as dimerization by binding to the EGFR receptor (Thakur

and Wozniak, 2017). Degradation of EGFR as well as ADCC

effect can be clearly seen using necitumumab in NSCLC cells

(Genova and Hirsch, 2016; Díaz-Serrano et al., 2019).

Necitumumab in combination with chemotherapy can

prolong survival by nearly 10 months in NSCLC patients with

high EGFR expression (Thatcher et al., 2015) and has been

approved as a first-line method for the treatment of advanced

NSCLC (Table 1). However, it is inevitable that drug resistance

develops after 10 months of medication, and some experiments

have demonstrated that EGFR resistance achieves tumor escape

by up-regulating PD-L1 expression (Figure 1) and inhibiting

T cells (Peng et al., 2019). Therefore, the combination of Immune

checkpoint inhibitors (ICIs) and EGFR mAbs may be a

promising approach in the face of NSCLC patients with EGFR

mutations that are high in PD-L1 expression (Yamada et al.,

2019).

Amivantamab, a bispecific antibody to EGFR and

mesenchymal epithelial transition factor (MET), was approved

for marketing by the FDA in 2021 for the treatment of NSCLC

(Syed, 2021). MET is a proto-oncogene that encodes the

hepatocyte growth factor receptor c-MET (Mo and Liu, 2017).

Even though MET amplification occurs only in a small

proportion of NSCLC, we still found that MET gene

amplification and overexpression showed correlation with

reduced degradation of c-MET as well as tumorigenesis

(Drilon et al., 2017). Although EGFR inhibitors have shown

good clinical results, it is noteworthy that their resistance is the

biggest obstacle limiting their being used, and some studies have

shown that MET amplification is an important mechanism for

the development of their resistance (Wang et al., 2019b). There is

new evidence that the combination ofMET inhibitors with EGFR

inhibitors is a promising therapeutic combination for the

TABLE 1 Antibodies currently approved or in development for NSCLC.

Drug Combination Target Study population Stage Toxicity Reference

Necitumumab with gemcitabine and
cisplatin

EGFR metastatic squamous NSCLC FDA Approved
(2015)

Skin rash,
hypomagnesemia

Díaz-Serrano
et al. (2019)

Bevacizumab with carboplatin and
paclitaxel

VEGF non-squamous NSCLC FDA Approved
(2004)

Gastrointestinal
perforation, pulmonary
hemorrhage

Russo et al.
(2017)

Ramucirumab with docetaxel versus
placebo and docetaxel

VEGF Stage IV NSCLC after platinum-
based therapy

FDA Approved
(2014)

Fatigue, neutropenia Garon et al.
(2014)

Trastuzumab
deruxtecan

HER2 metastatic HER2 mutation
NSCLC

Clinical Phase II
(NCT03505710)

Neutropenia, interstitial
lung disease

Li et al. (2022)

Patritumab
deruxtecan

with EGFR TKI HER3 locally advanced or metastatic
EGFR-mutated NSCLC

Clinical Phase I
(U31402-A-U102)

hematologic toxicities Jänne et al.
(2022)

Sacituzumab
govitecan

Trop-2 metastatic stage IV NSCLC Clinical Phase I
(NCT01631552)

Neutropenia, diarrhea Heist et al.
(2017)

Ipilimumab with Nivolumab CTLA-4 Advanced NSCLC Clinical Phase Ⅲ
(NCT02477826)

skin reactions, endocrine
events

Hellmann et al.
(2019)

Nivolumab with Ipilimumab PD-1 metastatic or recurrent NSCLC FDA Approved
(2015)

skin rash, hypothyroidism Kazandjian et
al. (2016)

Pembrolizumab With pemetrexed and a
platinum-based drug

PD-1 advanced NSCLC that lacks
targetable mutations

FDA Approved
(2015)

Pneumonitis, kidney
injury

Kwok et al.
(2016)

Atezolizumab bevacizumab and
chemotherapy

PD-L1 Metastatic Nonsquamous NSCLC FDA Approved
(2020)

Neutropenia, hypertension Akinboro et al.
(2022)

Durvalumab Chemoradiotherapy PD-L1 Unresectable stage III NSCLC FDA Approved
(2018)

pneumonitis Mehra et al.
(2021)

Amivantamab with Platinum
Chemotherapy

EGFR/
MET

locally advanced or metastatic
NSCLC harbouring EGFR Exon 20
insertion mutations

FDA Approved
(2021)

Rash, paronychia Syed et al.
(2021)
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treatment of cancer caused by EGFR mutations in early and

resistant stages of NSCLC (Pasquini and Giaccone, 2018).

Amivantamab inhibits proliferation of tumor cell in NSCLC

patients by effectively downregulating EGFR and MET gene

levels and inducing immune antitumor activity and increasing

IFNγ secretion (Yun et al., 2020). Among 81 patients with

NSCLC after platinum-based chemotherapy, the overall

remission rate was 40%, with a median duration of remission

of 11.1 months and a median progression-free survival of

8.3 months (Park et al., 2021). Clinical studies have shown

that amivantamab has a good and durable treatment effect,

even its side effects such as rash and nail fungus accompany

the treatment (Table 1).

Vascular endothelial growth factor

Vascular endothelial growth factor (VEGF) is an important

component of TME and plays an important role in regulating

angiogenesis, and to inhibit its overexpression is an important

strategy for the treatment of cancer (Frezzetti et al., 2017). VEGF

belongs to the platelet-derived growth factor (PDGF) family, and

its four types VEGF-A, VEGF-B, VEGF-C, and VEGF-D can

activate downstream pathways by binding to three VEGF

receptors (VEGFR-1, VEGFR-2, and VEGFR-3), leading to

division and migration of endothelial cells, and the increase of

vascular permeability (Melincovici et al., 2018). The growth of

tumor cells is maintained by expressing VEGF to construct new

blood vessels, which can supply more nutrients for themselves

(Manzo et al., 2017), and mAbs play a therapeutic effect by

blocking the binding of VEGF to receptors (Itatani et al., 2018).

Currently, two mAbs against VEGF have been approved for the

treatment of NSCLC, including bevacizumab against VEGF-A

and ramucirumab against VEGFR-2 (Garcia et al., 2020)

(Table 1). Compared with chemotherapy alone, the addition

of bevacizumab prolonged overall survival by 2 months with

fewer side effects, and based on this, bevacizumab was approved

by the FDA for the first-line treatment of NSCLC in 2006

(Yamada et al., 2019). Ramucirumab also prolonged overall

survival by 1–2 months and significantly increased response

rate, and was approved for NSCLC treatment in 2014.

VEGF and EGF share a common downstream pathway, and

activation of EGFR promotes the up-regulation of hypoxia-

inducible factor 1 alpha (HIF-1α), further promoting VEGF

expression (Nilsson et al., 2021), a process that is a positive

feedback process (Figure 1). We observed VEGF up-regulation

on EGFR-mutated tumor cells (Hung et al., 2016), and more

importantly, EGFR is also expressed on tumor-associated

endothelial cells. Based on the above, simultaneous inhibition

of EGFR and VEGF may produce more powerful anti-tumor

effects. Preclinically, it has been experimentally confirmed that

the use of EGFR inhibitor bevacizumab in combination in

models with EGFR mutations shows better antitumor activity

and later acquired resistance (Masuda et al., 2017). In clinical

trials, the progression-free survival of patients with advanced

NSCLC treated with bevacizumab was prolonged by 3–7 months

compared with erlotinib alone (Zhou et al., 2019; Maemondo

et al., 2020), while the progression-free survival of patients with

metastatic NSCLC treated with ramucirumab was prolonged by

7 months compared with erlotinib alone (Nakagawa et al., 2019).

Based on the above data, the FDA has used ramucirumab in

combination with erlotinib as a first-line option for the treatment

of EGFR-mutant NSCLC.

Human epidermal growth factor 2

Human epidermal growth factor 2 (HER2) is another proto-

oncogene in the HER family. Unlike other receptors in its family,

HER2 does not have a corresponding ligand to bind to it, and it

exerts its activity by heterodimerizing with other EGFR receptors

to promote cell growth and proliferation (Connell and Doherty,

2017). Overexpression of HER2 leads to abnormal cell growth

and proliferation, which may be associated with the development

of carcinogenesis, and HER2 overexpression is frequently seen in

breast and gastric cancers, but less common in NSCLC patients,

with an incidence of less than 5% (Takegawa and Yonesaka,

2017). However, following the use of EGFR inhibitors in NSCLC,

amplification of the HER2 gene was unexpectedly found, which

was importantly associated with resistance to EGFR inhibitors

(Baraibar et al., 2020). To date, HER2-targeted therapy has not

been approved for use in NSCLC patients. Trastuzumab

deruxtecan consists of a humanized anti-HER2 monoclonal

antibody, a cleavable tetrapeptide base linker, and a cytotoxic

topoisomerase I inhibitor that prevents cancer cells from

replicating DNA, leading to cancer cell death (Indini et al.,

2021) (Table 1). Trastuzumab deruxtecan was approved by

the FDA in 2019 for adult patients with unresectable or

metastatic HER2-positive breast cancer (Keam, 2020). After

the use of trastuzumab deruxtecan in patients with metastatic

HER2-mutated NSCLC who were not responding to standard

therapy, 55% of patients showed proven objective efficacy with a

median duration of efficacy of 9.3 months, median progression-

free survival of 8.2 months, and median overall survival of

17.8 months (Li et al., 2022). Therefore, treatment targeting

HER2 may be one of the solutions for EGFR inhibitor resistance.

Human epidermal growth factor 3

Human epidermal growth factor 3 (HER3) is a specific HER

family member with little or no tyrosine kinase activity, and its

activation depends on heterodimerization with another receptor,

so it is generally not oncogenic when overexpressed alone

(Haikala and Jänne, 2021). We can find abnormal

HER3 expression in a variety of cancers, including breast
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cancer, prostate cancer, gastric cancer, and NSCLC, which may

be associated with progression or poor prognosis in these cancers

(Kawakami and Yonesaka, 2016; Scharpenseel et al., 2019; Gil

et al., 2021). In EGFR-targeted therapy for NSCLC, there is

experimental evidence that HER3 plays a key role in cancer cell

survival and drug resistance (Yonesaka et al., 2016). However, as

of now, there are no internationally approved therapies targeting

HER3. Patritumab deruxtecan is an antibody-drug conjugate

consisting of a HER3 antibody attached to a topoisomerase I

inhibitor payload via a tetrapeptide-based cleavable linker for

targeted delivery of cytotoxic drugs into cancer cells (Lim et al.,

2022) (Table 1). In 57 patients with NSCLC previously treated

with a tyrosine kinase inhibitor (TKI), the confirmed objective

remission rate for patritumab deruxtecan was 39%; median

progression-free survival was 8.2 months (Jänne et al., 2022).

Since patritumab deruxtecan exhibits clinical activity to

overcome EGFR TKI resistance mechanisms, we can expect

that patritumab deruxtecan could be an option to overcome

drug resistance in the future.

Tumor-associated calcium signal
transducer 2

Tumor-associated calcium signal transducer 2 (Trop-2), a

transmembrane glycoprotein, is involved in intracellular calcium

signaling (Goldenberg et al., 2018). Trop-2 is highly

overexpressed in several solid tumors, especially in NSCLC,

and its downstream signaling is involved in cancer cell

survival, proliferation, migration and invasion (Shvartsur and

Bonavida, 2015), which can be inhibited by knockdown of Trop-

2 (Sun et al., 2020). Sacituzumab govitecan consists of a Trop-2

antibody coupled to a topoisomerase I inhibitor via a

hydrolyzable junction (Bardia et al., 2021), which was

approved by the FDA in 2021 for the treatment of refractory

triple-negative metastatic breast cancer (Fleming et al., 2021)

(Table 1). Among 54 patients with metastatic NSCLC treated

with 10 mg/kg sacituzumab govitecan, an objective remission

rate of 19% was achieved; the median duration of response was

6months and the clinical benefit rate was 43%, indicating that the

drug has a good durable response in patients with metastatic

NSCLC (Heist et al., 2017).

ADCs are a very successful form of drug delivery with both

the specificity of immunotherapy and the powerful efficacy of

chemotherapeutic agents, and their use can be foreseen in

NSCLC. However, in the clinical phase of the drug, some

adverse reactions due to the carriage of highly toxic

substances have been identified. In the trastuzumab

deruxtecan clinical trial, 19% of patients developed

neutropenia and 26% developed associated lung disease to the

point of death in two patients; patritumab deruxtecan may cause

hematologic toxicity; and sacituzumab govitecan caused

neutropenia in nearly 1/3 of patients (Heist et al., 2017; Jänne

et al., 2022; Li et al., 2022). Therefore, it may be important to

balance the relationship between antibodies and poisons, and the

combination of other targets and other drugs may further

improve the therapeutic effect.

Cytotoxic T-lymphocyte antigen 4

Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is the first

costimulatory receptor and have been found to play a role in

immunosuppression. As mentioned previously in this article,

T cell activation requires the binding of CD28 to B7, and when

CD28 binds to B7 to activate T cells, it also promotes the

expression of CTLA-4, which can compete with homologous

CD28 to bind B7 ligands (Hosseini et al., 2020). The affinity of

CTLA-4 to B7 is stronger than that of CD28, thus the expression

of CTLA-4 inhibits the activation of T cells (Rowshanravan et al.,

2018). Blocking the binding of CTLA-4 to its ligand allows more

B7 ligands to bind to CD28 and achieve immune enhancement.

Also, since CTLA-4 is highly expressed on the surface of Tregs,

blocking CTLA-4 would reduce the immunosuppressive effect of

Tregs (Tekguc et al., 2021). Until now, no CTLA-4 class

antibodies have been approved for first-line NSCLC treatment

alone, but it can be seen in combination with other drugs in the

clinic. Ipilimumab is a fully human mAb against CTLA-4 that

achieves anti-tumor effects by binding to CTLA-4 and blocking

its action with the B7 molecule. In a clinical study, treatment of

NSCLC patients with the combination of ipilimumab and

nivolumab had an overall survival of 17.1 months, which was

better than the overall survival of 13.9 months with

chemotherapy alone (Table 1), and was independent of PD-L1

expression (Hellmann et al., 2019). However, one report showed

that the combination of nivolumab and ipilimumab caused more

immune-related adverse events than nivolumab alone

(Shoushtari et al., 2018).

Programmed cell death protein 1

Programmed cell death protein 1 (PD-1) is an innate

immunosuppressive agent that has a small homologous

sequence with CD28 and CTLA-4 and is expressed on B cells,

T cells, dendritic cells, and NK cells, especially on the surface of

T cells (Han et al., 2020). When T cells are activated, the second

immune checkpoint PD-1 inhibits T cell activation and

inflammatory factor production by binding to its ligands PD-

L1 and PD-L2 leading to dephosphorylation of CD28, while

cancer cells usually overexpress PD-L1 to escape (Ai et al., 2020).

T cells that are in the TME for a long time will highly express PD-

1 and show insufficient anti-tumor ability, and the immune

ability of these T cells can be enhanced by blocking PD-1

(Jiang et al., 2019). PD-1 expressed on Tregs as well as

tumor-associated macrophages, on the other hand, exerts an
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inhibitory effect on immunity and the anti-tumor effect can be

improved by blocking it (Gordon et al., 2017; Overacre-Delgoffe

et al., 2017). Nivolumab is the first PD-1 blocking mAb for the

treatment of NSCLC, which significantly improves objective

remission rate and overall survival compared with traditional

chemotherapy (Borghaei et al., 2015), especially in patients with

PD-L1 expression ≥50% in cancer cells, so nivolumab was

approved by the FDA in 2015 for the treatment of metastatic

NSCLC (Cortinovis et al., 2016) (Table 1). Pembrolizumab

(Keytruda) is a humanized IgG4 anti-PD-1 mAb with no

ADCC and CDC effects, and therefore is not cytotoxic. In a

clinical study, not only did overall survival improve, but median

progression-free survival was nearly 4 months longer with

pembrolizumab administered in combination chemotherapy

than chemotherapy alone (Gandhi et al., 2018).

Pembrolizumab was approved by the FDA in 2015 as a first-

line regimen for the treatment of metastatic NSCLC expressing

PD-L1 (Table 1). However, after using pembrolizumab to treat

lung cancer, some patients developed symptoms of colitis and

pancreatitis (Ofuji et al., 2021).

Programmed death-ligand 1

Programmed death-ligand 1 (PD-L1), the ligand of PD-1,

belongs to the B7 protein series and is usually expressed on some

macrophages and dendritic cells, and tumor cells tend to

overexpress PD-L1 in order to escape from immune killing

(Ohaegbulam et al., 2015). The expression of PD-L1 is

regulated by interferon, and it has been experimentally

demonstrated that IFN-γ leads to PD-L1 up-regulation in

ovarian cancer cells (Abiko et al., 2015). It has also been

shown that PD-L1 activates proliferation signals after binding

to its receptor and non-immune proliferation occurs in tumor

cells (Dong et al., 2018). Nearly 30% of NSCLC show high PD-L1

expression, so blocking PD-L1 can be effectively counteracted.

Atezolizumab, a mAb that targets PD-L1 and activates T cells and

kills tumor cells by blocking their binding to PD-1 (Crist and

Balar, 2017), was approved by the FDA in 2016 for the treatment

of NSCLC (Table 1). From clinical trials, atezolizumab

monotherapy for NSCLC prolonged overall survival by nearly

7 months compared with chemotherapy alone, and the rate of

adverse events was significantly lower than in the chemotherapy

group (Herbst et al., 2020). In combination, atezolizumab used in

addition to a VEGF inhibitor plus chemotherapy significantly

improved overall survival as well as progression-free survival in

patients with metastatic NSCLC (Socinski et al., 2018).

Durvalumab is another PD-L1 antibody approved by the FDA

for the treatment of NSCLC (Table 1). Statistically, durvalumab

resulted in significantly better remission rates, median length of

remission duration, and progression-free survival than the

placebo group in a group of 713 NSCLC patients treated with

radiotherapy and chemotherapy (Antonia et al., 2017), and after

4 years the durvalumab group still had a much higher survival

rate of 49.6% than the 36.3% in the placebo group (Faivre-Finn

et al., 2021), with the common malignant adverse effect being

pneumonia.

Cell therapy in NSCLC

Adoptive cell transfer therapy (ACT) is another general

direction of immunotherapy for NSCLC, which is very

personalized by directly infusing immune cells with anticancer

activity into patients for treatment (Labanieh et al., 2018). One of

its most important advantages is that the TME can be regulated

by chemotherapy before immune cells can be infused back into

the patient to provide support for the infused immune cells

(Rosenberg and Restifo, 2015). Isolation of T cell populations

with specific TCRs from the human body, massive expansion by

T cell growth factor (IL-2) in vitro and finally reinfusion into

patients to achieve cancer elimination are many ways for ACT

application (Met et al., 2019). Clinical trials have shown that after

using a combination of chemotherapy pretreatment, tumor

infiltrating lymphocytes (TILs) and nivolumab, in 13 patients

with advanced NSCLC, three patients experienced significant

remission and 10 patients experienced symptom relief (Creelan

et al., 2021). However, this process first requires resectable tumor

tissue and the isolation of highly purified, specific T cells, a

process that is time consuming and can lead to immune reactions

due to purity (Sermer and Brentjens, 2019). With the

development of genetic engineering technology, the insertion

of exogenous TCR into T cells and chimeric antigen receptor

(CAR) has become possible, and there is also good specificity

when infused back into the body, and TCR-T and CAR-T

technologies have developed rapidly (Chandran and

Klebanoff, 2019; Chan et al., 2021).

T cell receptor T cell therapy

The TCR in TCR-T, a dimer composed of α and β peptide

chains, can specifically recognize and bind to MHC-presented

intracellular and extracellular antigen fragments, thereby

activating T cells to attack tumor cells (Zhao et al., 2021).

However, natural TCR in the human body often have weak

affinity for tumor cell antigens, and TCR-T relies on artificial

coding to design high-affinity TCRs, which greatly improves the

recognition affinity of T cells (Ohta et al., 2019). Data have shown

that the affinity of amino acid-modified TCR for tumor cell

common antigen TAA is significantly increased, and 80% of

myeloma patients have good clinical inhibition performance

(Rapoport et al., 2015). New York esophageal squamous cell

carcinoma-1 (NY-ESO-1) is a cancer-testis antigen that is barely

expressed in humans except in the testis, but is overexpressed in

solid tumors (Thomas et al., 2018), and its overexpression may
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also cause spontaneous humoral and cellular immunity, making

it a desirable therapeutic target (Table 2). Besides, NY-ESO-1 is

also a good biomarker for anti-PD-1 treatment of NSCLC (Ohue

et al., 2019). In a clinical study, NY-ESO-1 specific TCR

engineered-T cells showed benefit in metastatic NSCLC (Xia

et al., 2018).

Chimeric antigen receptor T cells

CAR-T are genetically engineered synthetic cells in which

CARs can specifically recognize cancer cell surface antigens,

and CARs consist of four components: extracellular antigen

recognition domain, extracellular spacer domain,

transmembrane domain, and intracellular T cell activation

domain (Sterner and Sterner, 2021), and CAR-T cells can

specifically recognize cancer cell surface antigens through

single-chain variable fragment (scFv). T cells are activated by

the signaling module CD3ζ and co-stimulatory molecules

(CD28, 4-1BB) (Sadelain et al., 2017) (Figure 1). Dual-signal

activation is the classical pathway of T-cell activation, in which

the first generation of CAR-T cells rely only on CD3ζ to activate
T cells, but T cells undergo rapid apoptosis (Zhang et al., 2017),

the effect is not ideal; the second generation of CAR-T cells add

co-stimulatory molecules CD28 or CD137, dual-signal

activation amplifies the stimulation signal and promotes

T cell proliferation (Lee et al., 2015); the third generation of

CAR-T cells even contain two co-stimulatory molecules,

further enhancing the ability to kill tumor cells; fourth-

generation CAR-T cells increase the expression of cytokines,

such as IL-2, which promotes T-cell growth and enhances T-cell

activity. The fifth generation of CAR-T cells, perhaps due to

their toxicity considerations, abandoned the design of dual co-

stimulatory molecules that started in the third generation and

added only the IL-2 receptor beta fragment to the second

generation of CAR-T cells. Notably, Jonathan T Sockolosky

et al. modified the amino acid site of murine-derived IL-2/IL-

2Rβ and redesigned IL-2 to stimulate only T cells expressing

orthologous IL-2Rβ, while wild-type IL-2 was unable to

stimulate IL-2Rβ on T cells, avoiding systemic toxicity due

to indiscriminate and unrestricted activation (Sockolosky et al.,

2018).

Unlike TILs and TCRs, which specifically recognize MHC-

presented antigens, CARs do not depend on MHC expression,

and even if MHC expression is down-regulated in tumor cells,

CARs still efficiently recognize antigens and kill tumor cells

(Cohen, 2018), which may be the greatest advantage of CAR-T

over other modalities. Of great significance, anti-CD19 CAR-

T cells have been approved by the FDA for the treatment of

hematological B-cell malignancies due to favorable clinical

trials (Patel et al., 2020). In the study of CAR-T in solid

tumors, a large part of it has focused on NSCLC (Kiesgen et al.,

2018). Common targeted antigens of NSCLC include HER2,

EGFR, PD-L1, Mesothelin, etc (Liu et al., 2020a; Qu et al.,

2021; Zhang et al., 2021) (Table 2). Data support that after the

use of EGFR-targeted CAR-T cells in 11 NSCLC patients,

seven patients achieved response without malignant reaction

(Feng et al., 2016). However, due to the high sensitivity of

CAR-T cells, these antigens are also expressed in normal

tissues in addition to tumor cells, which may lead to some

side effects (Morello et al., 2016). Recently, lung-specific X

(LunX)-CAR-T has been used to successfully eradicate

NSCLC cells with high expression of LunX, and showed

better infiltration (Hu et al., 2020). Unlike conventional

targeted antigens, LunX is often highly expressed only in

the lung and nose, but hardly in other parts of the human

body, and cell therapy using LunX-CAR-T may be a new

means of treating NSCLC. However, there are a number of

factors that limit the development of CAR-T, starting with its

extremely high cost of construction and labor, with the total

cost of a complete treatment potentially reaching nearly a

million dollars (Lin et al., 2018). During the course of

treatment, cytokine release syndrome (CRS) and

neurotoxicity have been identified, which must be given

sufficient attention in future clinical studies (Brudno and

Kochenderfer, 2019).

TABLE 2 Clinical trials of cell therapy for NSCLC.

Type Antigen Study population Stage Toxicity References

TCR-T NY-ESO-1 metastatic NSCLC Clinical Phase I
(NCT02457650)

Transient anemia, White blood cell decrease Xia et al. (2018)

CAR-
T

EGFR advanced relapsed/refractory EGFR-positive
NSCLC

Clinical Phase
I(NCT03182816)

Gastrointestinal perforation, pulmonary
hemorrhage

Zhang et al.
(2021)

CAR-
T

LunX NSCLC preclinical Hu et al. (2020)

CAR-
T

PD-L1 NSCLC Clinical Phase I
(NCT03330834)

pulmonary Liu et al. (2020)

CAR-
T

Mesothelin NSCLC preclinical Ye et al. (2019)
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Conclusion and perspectives

With the increasing understanding of physiological

immunity in modern medicine, first-line clinical treatment

options and preclinical studies for NSCLC have changed

significantly from traditional surgical resection as well as

systemic chemotherapy to targeted and personalized

immunotherapy, highlighting the importance of

immunotherapy for the improvement of solid tumors. We

were surprised to see that these regimens were effective in

improving overall survival and progression-free survival in

NSCLC patients, and the FDA approved these drugs for

marketing and as first-line treatment for NSCLC, but

unfortunately these effects were not demonstrated in some

patients, and accompanied by adverse effects and drug

resistance. It is worthwhile to think about immunotherapy,

and in order to further improve the efficacy, we need to have

a deeper understanding of the mechanisms involved. We have

detailed antibody therapy and cell therapy in immunotherapy,

which includes first-line regimens and promising drugs still in

clinical trials, but in the face of heterogeneous NSCLC, some

patients are not suitable to use PD-L1 and EGFR expression

profiles as a basis for clinical dosing regimen selection.

Biomarkers play a key role in the selection of drug regimens,

and the importance of accurately classifying therapies and

developing additional biomarkers is now urgently needed.

EGFRmutations play a very important role in NSCLC, which

are mainly exon 19 deletion mutations, exon 21 point-mutations,

exon 20 mutations and exon 20 insertion mutations, etc

(Harrison et al., 2020). Unfortunately, there are no

corresponding antibodies for treatment except amivantamab,

while small molecule EGFR TKI (tyrosine kinase inhibitor)

has good clinical performance. Six EGFR TKI have been

approved by the FDA: Gefitinib (Rawluk and Waller, 2018),

Erlotinib (Abdelgalil et al., 2020), Afatinib (Harvey et al., 2020),

Dacomitinib (Shirley, 2018), Osimertinib (Remon et al., 2018),

and Mobocertinib (Markham, 2021). Further breakthroughs in

the use of antibodies against EGFR mutations can be expected as

research progresses.

In addition, Kirsten rat sarcoma (KRAS) is one of the most

commonly mutated oncogenes, and its mutation is another very

important cause of cancer in NSCLC, which accounts for a

quarter of all oncogenic mutations (Liu et al., 2019b).

Previous decades of research and treatment for KRAS have

ended in failure, including, of course, antibody therapy and

cellular therapy (Drosten and Barbacid, 2020). 2021 FDA

approval of Sotorasib for metastatic NSCLC with KRAS G12C

mutations suggests that more promising immunotherapy options

are about to emerge (Reck et al., 2021).

In terms of regimen selection, in addition to the traditional

combination with chemotherapeutic agents, we have found that

some targets and pathways work better in combination,

including EGFR with VEGF, PD-1 and CTLA-4, even though

some of them have not been approved by the FDA for individual

dosing. We can see them in some co-formulation as well as

bispecific targets, but with improved efficacy, we should also be

alert to their incremental toxicities.

In conclusion, although immunotherapy for NSCLC has

made some achievements, more potential options are worth

exploring at the same time. As theories and technologies

become more sophisticated, better treatment options are being

anticipated.
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