Check for updates

OPEN ACCESS

EDITED BY Dongmei Li, Georgetown University, United States

REVIEWED BY Md. Moklesur Rahman Sarker, State University of Bangladesh, Bangladesh Rohit Sharma, Banaras Hindu University, India

*CORRESPONDENCE Guirong Liu, 645173627@qq.com

SPECIALTY SECTION This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

RECEIVED 30 May 2022 ACCEPTED 08 August 2022 PUBLISHED 08 September 2022

CITATION

Pan L, Zhai X, Duan Z, Xu K and Liu G (2022), Systematic review and metaanalysis of Coptis chinensis Franch.containing traditional Chinese medicine as an adjunct therapy to metformin in the treatment of type 2 diabetes mellitus. *Front. Pharmacol.* 13:956313. doi: 10.3389/fphar.2022.956313

COPYRIGHT

© 2022 Pan, Zhai, Duan, Xu and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Systematic review and meta-analysis of *Coptis chinensis* Franch.-containing traditional Chinese medicine as an adjunct therapy to metformin in the treatment of type 2 diabetes mellitus

Linlin Pan¹, Xin Zhai², Zhanhui Duan², Kun Xu² and Guirong Liu^{1*}

¹Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China, ²Department of Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China

Background: In China, *Coptis chinensis* Franch. (Chinese name: Huanglian) prescriptions (HLPs) are prominent hypoglycemic agents used in glycemic control. However, the curative effect of HLPs as adjunctive therapies for type 2 diabetes mellitus (T2DM) has not been evaluated. Based on a systematic review and a meta-analysis, this study was conducted to assess the effects of HLPs combined with metformin as a reinforcing agent for T2DM.

Materials and methods: A total of 33 randomized controlled trials (RCTs) reporting on 2,846 cases concerning the use of HLPs in the treatment of T2DM were identified from the China National Knowledge Infrastructure (CNKI), Weipu (VIP), Wanfang, PubMed, Cochrane Library, and EMBASE databases. Primary outcomes included fasting blood glucose (FBG), 2-h postprandial blood glucose (2hPG), glycosylated hemoglobin, type A1c (HbA1c), fasting serum insulin (FINS), and homeostasis model assessment of insulin resistance (HOMA-IR). Secondary outcomes included total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), and gastrointestinal dysfunction (GD). Continuous data were expressed as mean differences (MDs) with 95% confidence intervals (CIs). The methodological quality of the included RCTs was assessed by Cochrane evidence-based medicine systematic evaluation.

Abbreviations: 2hPG, 2-h postprandial blood glucose; AIS, accrued information size; CI, confidence intervals; CNKI, China National Knowledge Infrastructure; DHHL, Dahuang huanglian xiexin; FBG, fasting blood glucose; FINS, fasting serum insulin; GD, gastrointestinal dysfunction; GGQL, Gege qinlian; GRADE, Grades of Recommendation Assessment Development and Evaluation; HbA1c, glycosylated hemoglobin type A1c; HDL-c, high density lipoprotein cholesterol; HLEJ, Huanglian ejiao; HLJD, Huanglian jiedu; HLPs, Huanglian prescriptions; HLWD, Huanglian wendan; HOMA-IR, homeostasis model assessment of insulin resistance; LDL-c, low density lipoprotein cholesterol; MD, mean difference; RCTs, randomized controlled trials; RIS, required information size; T2DM, type 2 diabetes mellitus; TC, total cholesterol; TCM, traditional Chinese medicine; TG, triglyceride; TSA, trial sequential analysis.

Statistical analysis was performed using the Review Manager and Stata software. The required information size and treatment benefits were evaluated by trial sequential analysis (TSA). The quality of evidence was rated using the Grades of Recommendation Assessment, Development, and Evaluation (GRADE) approach.

Results: The results revealed that HLPs are beneficial to improve the following: FBG (MD = -1.16%, 95% CI: -1.24 to -1.07), 2hPG (MD = -1.64%, 95% CI: -1.84 to -1.43), HbA1c (MD = -0.78%, 95% CI:-0.96 to -0.60), FINS (MD = -1.94%, 95% CI: -2.68 to -1.20), HOMA-IR (MD = -0.77%, 95% CI: -1.28 to -0.27), TC (MD = -0.70%, 95% CI: -1.00 to -0.39), TG (MD = -0.57%, 95% CI: -0.74 to -0.40), LDL-c (MD = -0.70%, 95% CI: -0.97 to -0.43), and HDL-c (MD = -0.21%, 95% CI: -0.32 to -0.10) for patients with T2DM. The funnel plot, Egger's test, and trim-and-fill method indicated a moderate publication bias in the results. The TSA showed that the required sample size of HLPs in improving FBG, 2hPG, HbA1c, FINS, HOMA-IR, TC, TG, LDL-c, and HDL-c could sufficiently draw reliable conclusions. GRADE assessment revealed that the quality of the evidence for the effectiveness of HLPs in improving FBG was moderate, but the quality of evidence for 2hPG, HbA1c, FINS, HOMA-IR, TC, TG, LDL-c, and HDL-c was low, and for GD was very low.

Conclusion: The systematic review and meta-analysis suggested that HLPs were beneficial for achieving glycemic control. However, HLPs recommended for T2DM patients have yet to be confirmed because of the poor methodological quality of some trials. Therefore, more RCTs with multicenter and double-blind designs are needed to assess the efficacy of HLPs for patients with T2DM.

KEYWORDS

coptis chinensis franch, type 2 diabetes mellitus, systematic review, meta-analysis, curative effect

1 Introduction

Diabetes mellitus, which seriously endangers human health, is mainly caused by defects in insulin secretion and insulin action and is characterized by disorders of glucose metabolism. (Lin and Sun, 2010). An International Diabetes Federation survey predicted that patients with diabetes mellitus will exceed 645 million by 2045 (Carracher et al., 2018). Generally, more than 90% of diabetes mellitus patients have type 2 diabetes mellitus (T2DM). In addition to following diet and lifestyle guidelines, due to the significant hypoglycemic effect of metformin, it is often recommended to intervene with metformin in patients with T2DM (Sharma et al., 2015; Sanchez-Rangel and Inzucchi, 2017). However, due to the certain limitations of metformin in long term use, options from natural products are being searched to meet the need (Sharma and Prajapati, 2017). In recent decades, traditional Chinese medicine (TCM) and its active ingredients have become increasingly popular in Asian countries, and combined with metformin, is widely used as a reinforcing agent in glycemic control (Pang et al., 2018; Tian et al., 2019; Wu et al., 2019).

Ancient TCM theories effectively study a disease as a whole and propose that the pathogenesis of diabetes mellitus lies in damp-heat accumulation in the spleen and stomach (Tong et al., 2009). In classic TCM books, Explanation of Materia Medica (Chinese name: Bencaojing Jizhu) and Tang Materia Medica (Chinese name: Tang Bencao) clarified that the prescriptions containing Coptis chinensis Franch. (Chinese name: Huanglian) can effectively alleviate the symptoms of polydipsia, polyphagia, and polyuria (Tong, 2013). Coptis chinensis Franch. As a treatment for diabetes mellitus and related complications, also has a long history in Japan, Korea, Malaysia, Singapore, and India (Li et al., 2013; Sharma et al., 2021). Modern pharmacological investigations have indicated that some ingredients in Coptis chinensis Franch. such as berberine, jatrorrhizine, coptisine, palmatine, epiberbeine, and polysaccharides, exert significant therapeutic effects on multiple targets to improve islet function and regulate glucose metabolism (Fu et al., 2005; Chen et al., 2012; Wang et al., 2019). For example, alkaloids can help alleviate hyperglycemia by promoting glucose uptake (Yang et al., 2014), polysaccharides can produce antidiabetic activity via its antioxidative effect (Jiang et al., 2015), and

berberine can improve insulin resistance by inhibiting the expression of tumor necrosis factor- α and free fatty acids (Huang et al., 2018).

Recent studies have indicated that Huanglian prescriptions (HLPs) contribute to enhancing insulin sensitivity, stimulating insulin secretion, protecting β -cells, and regulating glycometabolism disorders (Liu et al., 2010; Yu et al., 2012; Li et al., 2019). Therefore, either as monotherapy or adjunct therapy, HLPs are recognized as the most effective TCM antidiabetic prescriptions for T2DM in China. HLPs, such as Dahuang huanglian xiexin (DHHL) decoction, Gegen qinlian (GGQL) decoction, Huanglian ejiao (HLEJ) decoction, Huanglian jiedu (HLJD) decoction, and Huanglian wendan (HLWD) decoction, have been widely used as adjuvant therapies to metformin for glycemic control (Fan et al., 2017; Li et al., 2017; Song et al., 2022; Wang 2020; Zhou et al., 2022). However, to date, there is no large scale clinical evidence on the inhibitory effects of HLPs on T2DM. Also, no published reports can comprehensively evaluate the intervention and side effects of HLPs on glycolipids. Therefore, we included clinical randomized controlled trials (RCTs) for systematic review and meta-analysis to evaluate the effectiveness of HLPs as adjuvant therapies to metformin for patients with T2DM.

2 Materials and methods

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, obtaining data from published trials.

2.1 Search strategies

All articles were searched using medical subject headings terms and free words in the China National Knowledge Infrastructure (CNKI), Wanfang, Weipu (VIP), PubMed, Cochrane Library, and EMBASE databases. The search period for the encompassed articles from the established time to 30 July 2022. Two authors (Xin Zhai and Linlin Pan) independently searched the related articles regardless of type and language. The following terms were used in English databases: ["Type 2 diabetes" or "Type 2 diabetes mellitus" or "T2DM" or "Non insulin dependent diabetes mellitus" or "Impaired fasting glucose" or "Impaired glucose tolerance" or "Xiaoke"] and ["Random allocation" or "Randomized controlled trial" or "Random" or "Randomized" or "Placebo" or "RCT"] and ["Huanglian" or "Coptis chinensis Franch." or "Coptidis Rhizoma" or "Coptis chinensis" or "Rhizoma coptidis"]. The following terms were used in Chinese databases: ["Erxing Tangniaobing" or "Xiaoke" (T2DM)] and ["Suiji duizhao shiyan" or "Mangfa" or "Anweiji" (RCT)] and ["Huanglian"]. The search strategies are presented in detail in Supplementary Table S1.

2.2 Inclusion and exclusion criteria

The inclusion criteria were as follows: 1) *Participants*. Diagnosed with T2DM; 2) *Interventions*. Control group treated with metformin and experimental group treated using metformin incorporated with HLPs; 3) *Type of trials*. RCT; 4) *Outcomes*. Fasting blood glucose (FBG), 2-h postprandial blood glucose (2hPG), glycosylated hemoglobin, type A1c (HbA1c), fasting serum insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), and gastrointestinal dysfunction (GD). The exclusion criteria were as follows: 1) Non-clinical intervention trials (animal research, cell research, review, protocol); 2) Patients diagnosed with other diseases; 3) Patients with other TCM medications, acupuncture, massage or moxibustion.

TABLE 1 Characteristics of the included studies.

References	ences Trial Sample Sex types size (E/C) (M/F)		Sex (M/F)	Age (years) (E/C)	Course of disease (year) (E/C)	Interv	entions	Course of treatment
			EC			Ε	С	
Li et al. (2017)	RCT	76 (43/33)	Unknown	39-67 (Mean 53.2 ± 7.7)	Mean 5.3 ± 3.4	DHHL	M (50 mg ET, Tid)	12 weeks
Wu et al. (2019)	RCT*	86 (43/43)	(28/15)/ (29/14)	Mean 52.6 ± 10.2/52.3 ± 9.7	Mean 2.6 ± 1.7/ 2.6 ± 1.6	DHHL	M (0.5 g ET, Tid)	Unknown
Zou et al. (2016)	RCT*#	106 (53/53)	(29/24)/ (27/26)	Mean 53.69 ± 10.14/52.38 ± 10.03	Median 5-10	DHHL	M (50 mg ET, Tid)	24 weeks
Fan et al. (2017)	RCT	70 (35/35)	(21/14)/ (19/16)	18-60 (Mean 36.4 ± 7.1/ 38.0 ± 6.5)	Mean 3.1 ± 1.7/ 3.4 ± 1.5	GGQL	M (0.85 g ET, Bid)	8 weeks
Fu (2017)	RCT*	66 (33/33)	(17/13)/ (16/14)	18-60 (Mean 56.07 ± 8.25/ 57.50 ± 8.19	Mean 5.20 ± 2.09/ 5.60 ± 2.01	GGQL	M (0.5 g ET,Tid)	12 weeks
Jin et al. (2019)	RCT*	60 (30/30)	(16/14)/ (18/12)	25-83(Mean 58.06 ± 3.14)/22- 85 (Mean 57.98 ± 3.72)	Mean 3.52 ± 0.86/ 3.47 ± 0.91	GGQL	M (0.5 g ET, Qd)	8 weeks
Pang et al. (2018)	RCT#	90 (45/45)	(23/22)/ (24/21)	41-72(Mean53.5 ± 8.2)/42- 71(Mean54.1 ± 8.3)	Mean 5.5 ± 1.3/ 5.4 ± 1.1	GGQL	M (0.25 g ET, Tid)	8 weeks
Xiong (2019)	RCT*	100 (50/50)	(29/21)/ (30/20)	40-70(Mean53.7 ± 7.7)/40- 70(Mean53.5 ± 7.8)	Mean 4.85 ± 1.05/ 4.75 ± 1.10	GGQL	M (0.25 g ET, Tid)	8 weeks
Zhang (2019)	RCT	70 (35/35)	Unknown	35-70/36-71	Unknown	GGQL	M (0.25 g ET, Bid)	8 weeks
Zhang et al. (2018)	RCT*	95 (48/47)	(26/22)/ (25/22)	Mean 51.3 ± 6.8/51.2 ± 7.3	Mean 5.4 ± 2.3/ 5.6 ± 2.1	GGQL	M (0.5 g ET, Tid)	8 weeks
Liu (2006)	RCT	76 (47/29)	(29/18)/ (17/12)	45-63/41-65	1.5-16/1-16	HLEJ	M (0.5 g ET, Tid)	4 weeks
Liu et al. (2017)	RCT*	86 (43/43)	(30/13)/ (28/15)	45-76 (Mean 65.4 ± 4.7)/45- 75 (Mean65.1 ± 4.8)	Mean 6.8 ± 1.7/ 6.4 ± 1.5		М	
Gao (2020)	Unknown	66 (33/33)	(18/15)/ (19/14)	58.62 ± 6.13/58.54 ± 5.49	Mean 6.02 ± 1.68/ 6.08 ± 1.70	HLEJ	M (0.5 g ET, Bid)	4 weeks
Wang (2020)	RCT*	90 (45/45)	(27/18)/ (23/22)	Mean 51.4 \pm 3.4/52.3 \pm 5.1	Unknown	HLEJ	M (0.5 g ET, Tid)	15 days
Zhou et al. (2022)	RCT	120 (60/60)	(29/31)/ (33/27)	22-75 (Mean 53.25 ± 11.47)/ 24-75(Mean 54.25 ± 10.85)	Mean6.45 ± 2.51/ 6.51 ± 2.44	HLEJ	M (0.5 g ET, Tid)	8 weeks
Ding (2018)	RCT	104 (52/52)	(22/30)/ (23/29)	57-86 (Mean 69.0 ± 4.6)/57- 85(Mean 69.2 ± 4.7)	Mean 4.3 ± 2.4/ 4.1 ± 2.5	HLJD	M (0.25 g ET, Tid)	12 weeks
Feng (2019)	RCT*	90 (45/45)	(25/20)/ (26/19)	53-80(Mean 64.2 ± 7.5)/54- 81(Mean 64.7 ± 7.3)	Mean 4.48 ± 1.59/ 4.55 ± 1.67	HLJD	M (0.25 g ET, Tid)	12 weeks
Xing et al. (2017)	RCT	106 (51/55)	(27/24)/ (28/27)	35-61(Mean 58.3 ± 12.6)/38- 62(Mean 56.6 ± 11.7)	Mean 3.5 ± 1.8/ 3.6 ± 1.7	HLJD	M (0.5 g ET, Tid)	2 weeks
Yang and Wang. (2013)	RCT	66 (33/33)	(22/11)/ (20/13)	25-65 (Mean 42 ± 16/40 ± 15)	Unknown	HLJD	М	24 weeks
Zhang (2014)	RCT	260 (130/130)	140/120	42 -65 (Mean 51.9 ± 5.8)	Unknown	HLJD	M (0.25 g ET, Tid)	12 weeks
Chen and Wang. (2021)	RCT*	99 (50/49)	(28/22)/ (25/24)	38-70(Mean54.37 ± 2.56)/39- 71(Mean54.41 ± 2.24)	Mean10.27 ± 3.96/ 10.25 ± 3.94	HLJD	M (0.5 g ET, Tid)	12 weeks
Wei et al. (2021)	RCT	60 (30/30)	Unknown	40-65(Mean53.68 ± 5.02)/39- 68(Mean55.05 ± 4.82)	Mean 5.1 ± 0.5/ 5.00 ± 1.01	HLJD	M (0.5 g ET, Tid)	Unknown
Song et al. (2022)	RCT*	100 (50/50)	(34/16)/ (32/18)	29-70(Mean 52.45 ± 7.12)/30- 70(Mean 52.48 ± 7.15)	4 weeks-6 years/ 3 weeks-6 years	HLJD	M (0.25 g ET, Tid)	8 weeks
Chen (2018)	RCT	60 (30/30)	(12/18)/ (12/18)	Mean 58.57/58.9	Unknown	HLWD	M (0.5 g ET, Tid)	8 weeks
Dong (2017)	RCT*	70 (35/35)	(20/15)/ (19/16)	40-65 (Mean 51.3 ± 5.1/ 52.8 ± 4.7)	Unknown	HLWD	M (0.5 g ET, Tid)	12 weeks
Ji (2017)	RCT	60 (30/30)	(14/16)/ (12/18)	20-79	Mean 4.12 ± 3.45/ 4.66 ± 2.87	HLWD	M (0.5 g ET, Tid)	12 weeks

(Continued on following page)

References	Trial types	Sample size (E/C)	Sex (M/F)	Age (years) (E/C)	Course of disease (year) (E/C)	Interve	entions	Course of treatment	
			EC		•	Ε	С		
Zhang (2019)	RCT	60 (30/30)	(17/13)/ (13/17)	30-65 (Mean47.5 ± 7.7/ 48.53 ± 8.59)	Mean 3.64 ± 2.63/ 3.78 ± 3.42	HLWD	M (0.5 g ET, Tid)	12 weeks	
Fu (2021)	RCT*	120 (60/60)	(30/30)/ (31/29)	20-70(Mean55.72 ± 1.62)/19- 71(Mean56.59 ± 1.71)	Mean 7.21 ± 2.62/ 7.35 ± 2.23	HLWD	M (0.85 g ET, Tid)		
Liu et al. (2021)	RCT*	68 (34/34)	(19/15)/ (11/23)	Mean 55 ± 11/55 ± 7	Unknown	HLWD	M (0.5 g ET, Tid)	8 weeks	
Pan et al. (2021)	RCT	80 (41/39)	(20/21)/ (18/21)	40-60(Mean 50.1 ± 5.5)/42- 62(Mean51.2 ± 5.4))	Mean (4.32 ± 0.19/ 4.12 ± 0.23	HLWD	M (0.5 g once a day)	16 weeks	
Wang et al. (2021)	RCT*	60 (30/30)	(15/15)/ (13/17)	Mean 60.07 \pm 7.1/58.70 \pm 6.97	Unknown	HLWD	M (0.5 g ET, Tid)	8 weeks	
Wang Y 2022	RCT*	50 (25/25)	(16/9)/ (15/10)	50-70	1-6	HLWD	M (0.5 g once a day)	16	
Zhang (2022)	RCT	76 (38/38)	(18/20)/ (19/19)	Mean 69.42 ± 12.4/68.92 ± 11.89	1-6 (month)	HLWD	M (0.25 g ET, Bid)	8	

TABLE 1 (Continued) Characteristics of the included studies.

Notes: E, experimental group; C, control group; M, metformin; *, Random number table method; #, Double-blind; Qd, One time a day; Bid, Two times a day; Tid, Three times a day; ET, each time.

2.3 Literature selection and data extraction

Two authors (Linlin Pan and Xin Zhai) independently evaluated the title, abstract, and full texts of the articles. The articles that met the inclusion criteria were then selected. Inconsistencies were settled by discussion. Finally, important information from the included articles was extracted for analysis, including the name of the first author, year of publication, trial types, sample size, sex, age, course of the disease, interventions, and course of treatment.

2.4 Risk of bias

Linlin Pan and Xin Zhai independently evaluated the methodological quality of each trial by using the Cochrane riskof-bias tool (Higgins et al., 2011). Disagreements were discussed and resolved by Guirong Liu. The criteria assessed were as follows: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other biases. The risk of bias was rated as high, unclear, or low.

2.5 Data synthesis and analysis

RevMan (version 5.3) was used to perform statistical analysis. Continuous data were expressed as the mean difference (MD) with a 95% confidence interval (CI), and p < 0.05 was considered statistically significant. Heterogeneity was evaluated using the

chi² and I² tests, and p < 0.10% or I² > 50% was considered to have marked heterogeneity. The low-heterogeneity data (p > 0.10% or I² < 50%) used the fixed-effect model, and the high-heterogeneity data (p < 0.10% or I² > 50%) used the random-effects model. Sensitivity analysis was evaluated using various statistical methods. Publication bias was assessed by visual observation of the symmetry of funnel plots, Egger's test (p < 0.05 indicates publication bias), and the trim-and-fill method.

Trial sequential analysis (TSA) was conducted to calculate the required information size (RIS) for meta-analysis and evaluate the intervention benefits on the basis of the accrued information size (AIS). The risk of a type I error was set at 5% with a power of 80%. The variance was calculated based on the data included in the trials, and the relative risk reduction was set at 20% (Wetterslev et al., 2017). The evidence for the intervention was considered reliable when cumulative Z-curves crossed sequential monitoring boundaries. The Grades of Recommendation Assessment, Development, and Evaluation (GRADE) approach was used to rate the quality of the evidence as high, moderate, low, or very low (Guyatt et al., 2008).

3 Results

3.1 Search results

A total of 714 articles were identified in the initial database search (Figure 1). First, we used Endnote to exclude 283 duplicates, and the articles were decreased to 431. Second, we read the titles and abstracts and excluded animal experiment TABLE 2 Details of the HLPs for each study.

Interventions	References	Prescription
DHHL decoction	Li et al. (2017)	Coptis chinensis Franch. 5 g, Rheum palmatum L. 10 g, Scutellaria baicalensis Georgi 5 g
	Wu et al. (2019)	Coptis chinensis Franch. 3 g, Rheum palmatum L. 6 g, Scutellaria baicalensis Georgi 10 g
	Zou and lao, (2016)	Coptis chinensis Franch. 5 g, Rheum palmatum L. 10 g, Scutellaria baicalensis Georgi 5 g
GGQL decoction	Fan et al. (2017)	Coptis chinensis Franch. 10 g, Scutellaria baicalensis Georg 15 g, Pueraria lobata (Willd.) Ohwi 30 g, Glycyrrhiza uralensis Fisch. 6 g
	Fu, (2017)	Coptis chinensis Franch. 30 g, Scutellaria baicalensis Georg 20 g, Pueraria lobata (Willd.) Ohwi 50 g, Glycyrrhiza uralensis Fisch. 6 g
	Jin et al. (2019)	Coptis chinensis Franch. 10 g, Scutellaria baicalensis Georg 15 g, Pueraria lobata (Willd.) Ohwi 30 g, Glycyrrhiza uralensis Fisch. 6 g
	Pang et al. (2018)	Coptis chinensis Franch. 22.5 g, Scutellaria baicalensis Georg 22.5 g, Pueraria lobata (Willd.) Ohwi 60 g, Glycyrrhiza uralensis Fisch. 15 g, Zingiber officinale Roscoe 3.5 g
	Xiong, (2019)	Coptis chinensis Franch. 22.5 g, Scutellaria baicalensis Georg 22.5 g, Pueraria lobata (Willd.) Ohwi 60 g, Glycyrrhiza uralensis Fisch. 15 g, Zingiber officinale Roscoe 3.5 g
	Zhang et al. (2019)	Coptis chinensis Franch. 5 g, Scutellaria baicalensis Georg 20 g, Pueraria lobata (Willd.) Ohwi 20 g, Glycyrrhiza uralensis Fisch. 5 g
	Zhang et al. (2018)	Coptis chinensis Franch. 20 g, Scutellaria baicalensis Georg 20 g, Pueraria lobata (Willd.) Ohwi 30 g, Glycyrrhiza uralensis Fisch. 9 g
HLEJ decoction	Liu, 2006	Coptis chinensis Franch. 10 g, Scutellaria baicalensis Georgi 15 g, Paeonia anomala L. 15 g, Asparagus acutifolius L 20 g, Colla corii asini 15 g
Ι	Liu, (2017)	Coptis chinensis Franch. 10 g, Scutellaria baicalensis Georgi 15 g, Paeonia anomala L. 15 g, Asparagus acutifolius L 20 g, Colla corii asini 15 g
	Gao, (2020)	Coptis chinensis Franch. 8 g, Rheum palmatum L. 10 g, Paeonia anomala L. 15 g, Colla corii asini 10 g, Semen Ziziphi Spinosae 25 g, Rehmannia glutinosa (Gaertn.) DC. 20 g, Polygonum multiflorum Thunb. 15 g, Anemarrhena asphodeloides Bunge 10 g, fresh egg yolk 1
	Wang, (2020)	Coptis chinensis Franch. 10 g, Scutellaria baicalensis Georgi 15 g, Paeonia anomala L. 15 g, Asparagus acutifolius L 20 g, Colla corii asini 15 g)
	Zhou et al. (2022)	<i>Coptis chinensis</i> Franch. 10 g, Scutellaria baicalensis Georgi 6 g, <i>Paeonia anomala</i> L. 10 g, fresh egg yolk 1, Colla corii asini 10 g
HLJD decoction	Ding, (2018)	Coptis chinensis Franch. 12 g, Scutellaria baicalensis Georgi 9 g, Phellodendron amurense Rupr. 9 g, Gardenia jasminoides J.Ellis 12 g
	Feng, (2019)	Coptis chinensis Franch. 12 g, Scutellaria baicalensis Georgi 9 g, Phellodendron amurense Rupr. 9 g, Gardenia jasminoides J.Ellis 12 g
	Xing et al. (2017)	Coptis chinensis Franch. 12 g, Scutellaria baicalensis Georgi 12 g, Phellodendron amurense Rupr. 9 g, Gardenia jasminoides J.Ellis 12 g
	Yang and Wang, (2013)	Coptis chinensis Franch. 15 g, Scutellaria baicalensis Georgi 10 g, Phellodendron amurense Rupr. 6 g, Gardenia jasminoides J.Ellis 10 g
	Zhang, (2014)	<i>Coptis chinensis</i> Franch. 9 g, <i>Scutellaria baicalensis</i> Georgi 6 g, <i>Phellodendron amurense</i> Rupr. 6 g, <i>Gardenia jasminoides</i> J.Ellis 9 g
	Chen and Wang, (2021)	Coptis chinensis Franch. 10 g, Scutellaria baicalensis Georgi 10 g, Phellodendron amurense Rupr. 10 g, Gardenia jasminoides J.Ellis 10 g, Ophiopogon japonicus (Thunb.) Ker Gawl. 12 g, Scrophularia ningpoensis Hemsl. 12 g, Rehmannia glutinosa (Gaertn.) DC. 12 g, Forsythia suspensa (Thunb.) Vahl 15 g, Taraxacum mongolicum HandMazz. 15 g, Lonicera japonica Thunb. 20 g
	Wei et al. (2021)	Coptis chinensis Franch. 10 g, Scutellaria baicalensis Georgi 15 g, Phellodendron amurense Rupr. 15 g, Gardenia jasminoides J.Ellis 10 g
	Song et al., 2022	Coptis chinensis Franch. 12 g, Scutellaria baicalensis Georgi 12 g, Phellodendron amurense Rupr. 9 g, Gardenia jasminoides J.Ellis 12 g
HlLWD decoction	Chen, (2018)	Coptis chinensis Franch. 9 g, Scutellaria baicalensis Georgi 9 g, Pueraria lobata (Willd.) Ohw 30 g, Trichosanthes kirilowii Maxim. 30 g, Citrus reticulata Blanco 15 g, Pinellia ternata (Thunb.) Makino 9 g, Bambusa tuldoides Munro 9 g, Curcuma phaeocaulis Valeton 9 g, Fritillaria thunbergii Miq. 15 g, Poria Cocos (Schw.) Wolf. 15 g, Atractylodes macrocephala Koidz. 15 g, Salvia miltiorrhiza Bunge 30 g, Bupleurum chinense DC. 15 g

(Continued on following page)

TABLE 2 (Continued) Details of the HLPs for each study.

References	Prescription
Dong, (2017)	Coptis chinensis Franch. 9 g, Citrus reticulata Blanco 12 g, Pinellia ternata (Thunb.) Makino 9 g, Bambusa tuldoides Munro 6 g, Poria Cocos (Schw.) Wolf. 15 g, Atractylodes macrocephala Koidz. 15 g, Salvia miltiorrhiza Bunge 15 g, Citrus aurantium L. 12 g, Astragalus propinquus Schischkin 20 g, Glycyrrhiza uralensis Fisch. 6 g, Trigonellafoenum-graeeum 15 g
Ji, (2017)	Coptis chinensis Franch. 9 g, Scutellaria baicalensis Georgi 12 g, Trichosanthes kirilowii Maxim 30 g, Citrus reticulata Blanco 15 g, Pinellia ternata (Thunb.) Makino 9 g, Poria Cocos (Schw.) Wolf. 15 g, Atractylodes macrocephala Koidz. 15 g, Pueraria lobata (Willd.) Ohw 15 g, Salvia miltiorrhiza Bunge 30 g, Citrus aurantium L. 6 g, Rheum palmatum L. 6 g
Zhang, (2019)	Coptis chinensis Franch. 6 g, Citrus reticulata Blanco 10 g, Citrus reticulata Blanco 10 g, Pinellia ternata (Thunb.) Makino 6 g, Poria Cocos (Schw.) Wolf. 15 g, Atractylodes macrocephala Koidz. 15 g, Pueraria lobata (Willd.) Ohw 15 g, Salvia miltiorrhiza Bunge 15 g, Agastache rugosa (Fisch. and C.A.Mey.) Kuntze 10 g, Magnolia officinalis Rehder and E.H.Wilson 6 g, Coix lacryma-jobi L. 15 g, Glycyrrhiza uralensis Fisch. 3 g
Fu, (2021)	Coptis chinensis Franch. 10 g, Poria Cocos (Schw.) Wolf. 20 g, Citrus aurantium L. 10 g, Pinellia ternata (Thunb.) Makino 15 g, Bambusa tuldoides Munro 10 g, Citrus reticulata Blanco 15 g, Pueraria lobata (Willd.) Ohw 15 g, Eupatorium fortunei Turcz. 10 g, Glycyrrhiza uralensis Fisch. 10 g
Liu et al. (2021)	Coptis chinensis Franch. 10 g, Poria Cocos (Schw.) Wolf. 20 g, Citrus aurantium L. 10 g, Pinellia ternata (Thunb.) Makino 15 g, Bambusa tuldoides Munro 10 g, Citrus reticulata Blanco 15 g, Pueraria lobata (Willd.) Ohw 15 g, Eupatorium fortunei Turcz. 10 g, Glycyrrhiza uralensis Fisch. 10 g
Pan et al. (2021)	Coptis chinensis Franch. 15 g, Poria Cocos (Schw.) Wolf. 15 g, Citrus aurantium L. 12 g, Pinellia ternata (Thunb.) Makino 6 g, Bambusa tuldoides Munro 15 g, Citrus reticulata Blanco 12 g, Glycyrrhiza uralensis Fisch. 15 g, Zingiber officinale Roscoe 10 g, Atractylodes macrocephala Koidz. 15 g
Wang et al. (2021)	Coptis chinensis Franch. 15 g, Poria Cocos (Schw.) Wolf. 15 g, Citrus aurantium L. 12 g, Pinellia ternata (Thunb.) Makino 6 g, Bambusa tuldoides Munro 15 g, Citrus reticulata Blanco 12 g, Glycyrrhiza uralensis Fisch. 15 g, Zingiber officinale Roscoe 10 g, Atractylodes macrocephala Koidz. 15 g
Wang, (2020)	Coptis chinensis Franch. 15 g, Poria Cocos (Schw.) Wolf. 15 g, Citrus aurantium L. 12 g, Pinellia ternata (Thunb.) Makino 6 g, Bambusa tuldoides Munro 15 g, Citrus reticulata Blanco 12 g, Glycyrrhiza uralensis Fisch. 15 g, Zingiber officinale Roscoe 10 g, Atractylodes macrocephala Koidz. 15 g
Zhang, 2022	Coptis chinensis Franch. 15 g, Poria Cocos (Schw.) Wolf. 15 g, Citrus aurantium L. 12 g, Pinellia ternata (Thunb.) Makino 6 g, Bambusa tuldoides Munro 15 g, Citrus reticulata Blanco 12 g, Glycyrrhiza uralensis Fisch. 15 g, Zingiber officinale Roscoe 10 g, Atractylodes macrocephala Koidz. 15 g
	References Dong, (2017) Ji, (2017) Zhang, (2019) Fu, (2021) Liu et al. (2021) Pan et al. (2021) Wang et al. (2021) Wang, (2020) Zhang, 2022

articles (n = 178), cell experiment articles (n = 80), reviews (n = 24), protocols (n = 8), case reports (n = 15), and non-RCT experimental trials (n = 47). Third, the trials using other TCM therapies (n = 29) and without metformin in the control group (n = 17) were excluded after reading the full text. Ultimately, 33 RCTs satisfying the inclusion criteria were identified (Yang and Wang, 2013; Zhang, 2014; Zhang et al., 2013; Zhou et al., 2022; Zou and Lao, 2016; Dong, 2017; Fan et al., 2017; Fu, 2017; Ji, 2017; Li et al., 2017; Liu, 2017; Liu, 2017; Xing et al., 2012; Zhang et al., 2018; Ding, 2018; Pang et al., 2018; Song et al., 2022; Zhang et al., 2018; Feng, 2019; Jin et al., 2019; Wu et al., 2019; Xiong, 2019; Zhang, 2019; Zhang et al., 2019; Gao, 2020; Wang, 2020; Chen and Wang, 2021; Fu, 2021; Liu et al., 2021; Pan et al., 2021; Wang et al., 2021; Wang et al., 2021).

3.2 Study characteristics

A total of 33 RCTs published from 2006 to 2022 were included in this study. The RCTs consisted of 2,846 patients with T2DM between 18 and 86 years of age (Table 1). All trials were single-center trials, and the detection time ranged from 2 to 24 weeks. A total of 1,437 patients in the experimental group underwent treatment using HLPs plus metformin, and

1,409 patients in the control group underwent metformin treatment. Among the 33 trials, three trials with 268 patients used DHHL decoction, seven trials with 551 patients used GGQL decoction, five trials with 438 patients used HLEJ decoction, eight trials with 885 patients used HLJD decoction, and ten trials with 704 patients used HLWD decoction (Table 2).

3.3 Quality assessment

A total of 33 RCTs were identified in this study (Figure 2), of which 16 used the random number table method to generate random sequences (Chen et al., 2012; Zou and Lao, 2016; Dong, 2017; Fu, 2017; Liu, 2017; Zhang et al., 2018; Feng, 2019; Jin et al., 2019; Wu et al., 2019; Xiong, 2019; Wang 2020; Wang, 2020; Fu, 2021; Liu et al., 2021; Song et al., 2022; Wang et al., 2021), and others only mentioned randomly assigned participants. Three trials used the double-blind method for participants and personnel (Zou and Lao, 2016; Pang et al., 2018; Song et al., 2022), and others provided no detailed information. The risk of detection bias was low in all trials, because FBG, 2hPG, HbA1c, FINS, HOMA-IR, TC, TG, LDL-c, HDL-c, LDL-c, and GD levels were evaluated based on objective criteria. In the study

conducted by Fu (2017), three patients in the experimental group and the control group withdrew from the trial (9% exit rate). The remaining trials without the loss of follow-up patients or with the loss of follow-up rate <5% were described as having a low-attrition bias. For the reporting bias, nine trials with only positive results were determined as

unclear (Zhang, 2014; Dong, 2017; Li et al., 2017; Liu, 2006; Liu, 2017; Pang et al., 2018; Zhang et al., 2018; Xiong, 2019; Zhang, 2019). For other bias, ten trials were unclear in the sex of the patient, course of the disease, and course of treatment (Chen et al., 2012; Dong, 2017; Liu et al., 2021; Wang, 2020; Wang et al., 2021; Wei et al., 2021; Wu et al., 2019; Yang and

Wang, 2013; Zhang, 2014; Zhang, 2019). Meanwhile, others with detailed information presented a low risk.

TSA results revealed that the AIS exceeded the RIS for the effectiveness of HLPs in improving FBG (AIS 2,846 was larger than RIS 268), 2hPG (AIS 2,280 was larger than RIS 338), HbA1c (AIS 2,698 was larger than RIS 834), FINS (AIS 1,191 was larger than RIS 748), HOMA-IR (AIS 943 was larger than RIS 680), TC

(AIS 1,235 was larger than RIS 695), TG (AIS 1,127 was larger than RIS 506), LDL-c (AIS 1,235 was larger than RIS 641), and HDL-c (AIS 753 was larger than RIS 204), and their cumulative Z-curves crossed the trial sequential monitoring boundary (Figures 3A–I), indicating that their current evidence was sufficient to draw a reliable conclusion. However, the AIS didn't exceed the RIS for the effectiveness of HLPs in

TABLE 3 GRADE evidence profile of clinical efficacy.

Quality a	ssessment			Effect	Quality	Importance		
Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	-			
FBG								
Serious ^a	No serious inconsistency	No serious indirectness	No serious imprecision	None	MD 1.16 lower (1.24–1.07 lower)	ÅÅÅO MODERATE	CRITICAL	
2hPG								
Serious ^b	Serious ^b	No serious indirectness	No serious imprecision	None ^c	MD 1.64 lower (1.84–1.43 lower)	ÅÅOO LOW	CRITICAL	
HbA1c								
Serious ^a	Serious ^b	No serious indirectness	No serious imprecision	None ^c	MD 0.78 lower (0.96–0.60 lower)	ÅÅOO LOW	CRITICAL	
FINS								
Serious ^a	Serious ^b	No serious indirectness	No serious imprecision	None	MD 1.94 lower (2.68–1.2 lower)	ÅÅOO LOW	CRITICAL	
HOMA-IR								
Serious ^a	Serious ^b	No serious indirectness	No serious imprecision	None	MD 0.77 lower (1.28–0.27 lower)	ÅÅOO LOW	CRITICAL	
TC								
Seriousª	Serious ^b	No serious indirectness	No serious imprecision	None	MD 0.70 lower (1.00–0.39 lower)	ÅÅOO LOW	IMPORTANT	
TG								
Serious ^a	Serious ^b	No serious indirectness	No serious imprecision	None	MD 0.59 lower (0.76–0.41 lower)	ÅÅOO LOW	IMPORTANT	
HDL-c								
Serious ^a	Serious ^b	No serious indirectness	No serious imprecision	None	MD 0.21 lower (0.32–0.1 lower)	ÅÅOO LOW	IMPORTANT	
LDL-c								
Seriousª	Serious ^b	No serious indirectness	No serious imprecision	None	MD 0.70 lower (0.97–0.43 lower)	ÅÅOO LOW	IMPORTANT	
GD								
Serious ^a	Serious ^b	No serious indirectness	No serious imprecision	Reporting bias ^c	32 fewer per 1,000 31 fewer per 1,000	ÅOOO VERY LOW	IMPORTANT	

^aNote: Most domain had unclear methodological bias risk.

^bThe trials included had obvious heterogeneity.

^cThe number of included studies is insufficient.

improving GD (Figure 3J), indicating that the current evidence was't sufficient to draw a reliable conclusion. GRADE assessment suggested that the quality of evidence was moderate for the effectiveness of HLPs in improving FBG, but the quality of evidence was low for 2hPG, HbA1c, FINS, HOMA-IR, TC, TG, LDL-c, and HDL-c, even very low for GD (Table 3).

3.4 Effectiveness of HLPs for T2DM

3.4.1 HLPs for FBG

As shown in Figure 4A, a total of 33 trials comprising 1,437 subjects in the experimental group and 1,409 subjects in the control group evaluated the effectiveness of HLPs in improving FBG. Subgroups were divided depending on the

type of HLPs for FBG. The results indicated that T2DM patients who received metformin in combination with DHHL decoction (MD = -0.99%, 95% CI: -1.35 to -0.63, and p < 0.00001), GGQL decoction (MD = -0.96%, 95% CI: -1.14 to -0.79, and p < 0.00001), HLEJ decoction (MD = -1.43%, 95% CI: -1.57 to -1.29, and p < 0.00001), HLJD decoction (MD = -0.97%, 95% CI: -1.13 to -0.81, and p < 0.00001), and HLWD decoction (MD = -1.21%, 95% CI: -1.44 to -0.98, and p < 0.00001) respectively were more likely to have reduced FBG relative to those with metformin alone. No significant heterogeneity was indicated in DHHL decoction (I² = 0%), GGQL decoction (I² = 8%), HLEJ decoction (I² = 15%) for FBG. Overall analysis showed that compared with metformin alone, HLPs

Churches and Cash annual	Marrie	xperimental	T - 4 - 1		Control	T-4-1	Mainh4	Mean Difference	Mean Difference
Study or Subgroup	wean	50	Total	Mean	50	Total	weight	IV, FIXed, 95% CI	IV, Fixed, 95% CI
	0.40	1.06	42	1 10	1 20102905	22	2.0%	1 20 [1 99 0 70]	
	-2.40	2 59770121	43	-1.10	2 20604476	33	2.0%	-1.30 [-1.00, -0.72]	
	-0.24	1.00705005	40	4.47	2.79094470	43	0.4 /0	-0.77 [-2.13, 0.39]	
	-2.33	1.23705295	120	-1.52	1.20022/11	120	5.0%	-0.01 [-1.29, -0.33]	▲
Subiolal (95 % Cl)	4 - 4 - 0	(D = 0.40); 12	- 00/			125	J.4 /0	-0.33 [-1.33, -0.03]	*
Test for overall effect: Z =	4, af = 2 = 5.45 (P	(P = 0.42); I* < 0.00001)	= 0%						
1.1.2 GGQL									
Fan YF 2017 GGQL	-1.62	1.294102	35	-0.94	1.20925597	35	2.0%	-0.68 [-1.27, -0.09]	
Fu GZ 2014 GGQL	-2.77	0.92666067	33	-1.76	0.82710338	33	3.8%	-1.01 [-1.43, -0.59]	
Jin C 2019 GGQL	-4.01	2.04311037	30	-2.97	2.00805876	30	0.6%	-1.04 [-2.07, -0.01]	
Pang XY 2018 GGQL	-1.31	0.68432448	45	-0.2	0.78809898	45	7.3%	-1.11 [-1.41, -0.81]	-
Xiong QJ 2019 GGQL	-1.6	0.76609399	50	-0.85	0.84787971	50	6.8%	-0.75 [-1.07, -0.43]	-
Zhang HF 2019 GGQL	-2.9	2.29128785	35	-1	2.62297541	35	0.5%	-1.90 [-3.05, -0.75]	
Zhang J 2018 GGQL	-3.96	2,14832493	48	-2.71	2.34578345	47	0.8%	-1.25 [-2.16, -0.34]	
Subtotal (95% CI)			276			275	21.8%	-0.96 [-1.14, -0.79]	•
Heterogeneity: Chi ² = 6.5	1, df = 6	$(P = 0.37); I^2$	= 8%						
Test for overall effect: Z =	= 10.71 (P < 0.00001)							
1.1.3 HLEJ									
Gao Y 2020 HLEJ	-4.71	1.35469554	33	-3.26	1.30984732	33	1.6%	-1.45 [-2.09, -0.81]	
Liu DH 2006 HLEJ	-1.96	0.6022458	47	-0.64	0.59228372	29	8.9%	-1.32 [-1.60, -1.04]	-
Liu J 2017 HLEJ	-2	0.6	43	-0.7	0.65574385	43	9.6%	-1.30 [-1.57, -1.03]	
Wang GZ 2020 HLEJ	-2.8	0.64815122	45	-1.1	0.57654141	45	10.6%	-1.70 [-1.95, -1.45]	-
Zhou XS 2022 HLEJ	-3.54	1.32276226	60	-2.29	1.28992248	60	3.1%	-1.25 [-1.72, -0.78]	
Subtotal (95% CI)			228			210	33.9%	-1.43 [-1.57, -1.29]	◆
Heterogeneity: Chi ² = 6.4 Test for overall effect: Z =	6, df = 4 = 19.83 ((P = 0.17); l ² P < 0.00001)	= 38%						
1.1.4 HLJD	0.05	0 10010170	50	4 07	0 5770 4050	40	0.00/	4 40 5 0 44 0 551	
Chen SS 2021 HLJD	-2.85	2.12819172	50	-1.37	2.57734359	49	0.8%	-1.48 [-2.41, -0.55]	
Ding X 2018 HLJD	-3.6	3.08058436	52	-1.6	3.459/68/8	52	0.4%	-2.00 [-3.26, -0.74]	
Feng JJ 2019 HLJD	-3.29	3.13/30//6	45	-1.72	3.31945779	45	0.4%	-1.57 [-2.90, -0.24]	
Song CL 2022 HLJD	-3.16	1.36040435	50	-2.38	1.31/30/86	50	2.5%	-0.78 [-1.30, -0.26]	
Wei YP 2021 HLJD	-3.53	1.9073804	30	-2.11	1.8976828	30	0.7%	-1.42 [-2.38, -0.46]	
Xing Y 2017 HLJD	-4.9	1.18203215	51	-4.14	1.30640729	55	3.0%	-0.76 [-1.23, -0.29]	
Yang WJ 2013 HLJD	-7.93	1.88422398	33	-6.96	1.55560278	33	1.0%	-0.97 [-1.80, -0.14]	-
Zhang XT 2014 HLJD	-2.7	0.84071398	130	-1.75	0.77736735	130	17.5%	-0.95 [-1.15, -0.75]	
	0 46 - 7	(D = 0.47), 12	441			444	20.3%	-0.97 [-1.13, -0.01]	•
Test for overall effect: Z =	3, af = 7 = 11.81 ((P = 0.47); I ² P < 0.00001)	= 0%						
1.1.5 HLWD									
Chen X 2015 HLWD	-2.67	1.1347687	30	-1.64	1.07196082	30	2.2%	-1.03 [-1.59, -0.47]	
Dong JX 2017 HLWD	-2.8	1.35277493	35	-1.4	1.70587221	35	1.3%	-1.40 [-2.12, -0.68]	
Fu ZH 2021 HLWD	-2.35	1.44665131	60	-1.06	1.44654761	60	2.5%	-1.29 [-1.81, -0.77]	
Ji GH 2014 HLWD	-2.06	1.52561463	30	-1.07	1.86032255	30	0.9%	-0.99 [-1.85, -0.13]	
Liu L 2021 HLWD	-2.8	1.55884573	34	-1.2	1.70587221	34	1.1%	-1.60 [-2.38, -0.82]	<u> </u>
Pan SS 2021 HLWD	-6.34	3.00291525	41	-3.45	2.85952793	39	0.4%	-2.89 [-4.17, -1.61]	
Wang MK 2021 HLWD	-2.73	2.38727879	30	-1.35	2.37309924	30	0.5%	-1.38 [-2.580.18]	
Wang Y 2022 HLWD	-3.9	2.15464614	25	-3.15	2.08624064	25	0.5%	-0.75 [-1.93, 0.43]	
Zhang GJ 2022 HLWD	-4.02	1.54825708	38	-3.13	1.2994999	38	1.6%	-0.89 [-1.53, -0.25]	
Zhang MY 2019 HLWD	-2.48	1.41417821	30	-1.48	1.17	30	1.6%	-1.00 [-1.660.34]	
Subtotal (95% CI)	2.10		353			351	12.6%	-1.21 [-1.44, -0.98]	◆
Heterogeneity: Chi ² = 10. Test for overall effect: Z =	56, df = = 10.22 (9 (P = 0.31); l [:] P < 0.00001)	² = 15%	•				• • •	
			1427			1400	100 08/	1 46 [4 34 4 4 57]	•
	44 -	22 (D - 0.004)	143/	10/		1409	100.0%	-1.10 [-1.24, -1.07]	
Test for everall effect: 7	+4, dI =	$S_{2} (P = 0.004)$, ı- = 4	+ 70					-4 -2 0 2 4
Test for subaroup different	- 27.50 (I nces: Ch	i ² = 25.54. df =	= 4 (P <	0.0001). I ² = 84.3%				Favours [experimental] Favours [control]
4									

combined with metformin improved FBG more (I 2 = 44%, MD = -1.16%, 95% CI: -1.24 to -1.07, and p < 0.00001).

3.4.2 HLPs for 2hPG

As shown in Figures 4A,B total of 27 trials comprising 1,191 subjects in the experimental group and 1,165 subjects in the control group compared the 2hPG among patients with T2DM. Subgroup analysis was performed based on the type of HLPs for 2hPG. Patients who received the following decoctions,

combined with metformin, were more likely to exhibit reduced 2hPG relative to the controls: DHHL decoction (MD = -2.38, 95% CI: -3.40 to -1.35, and p < 0.00001), GGQL decoction (MD = -1.18%, 95% CI: -1.46 to -0.91, and p < 0.00001), HLEJ decoction (MD = -1.84%, 95% CI: -2.01 to -1.67, and p <0.00001), HLJD decoction (MD = -1.49%, 95% CI: -2.12 to -0.87, and p < 0.00001), and HLWD decoction (MD = -1.54%, 95% CI: -1.90 to -1.18, and p < 0.00001). No significant heterogeneity was found in the following: GGQL

	E	xperimental			Control	_		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV. Random. 95% Cl
1.2.1 DHHL									
LI XM 2017 DHHL	-6.94	1.56038457	43	-4.01	1.55521703	33	3.9%	-2.93 [-3.64, -2.22]	
Zou ZQ 2016 DHHL Subtotal (95% CI)	-6.89	1.41322327	53 96	-5.01	1.34714513	53 86	5.0% 9.0%	-1.88 [-2.41, -1.35] -2.38 [-3.40, -1.35]	•
Heterogeneity: Tau ² = 0.4	15: Chi ² =	5.46. df = 1 (P = 0.02	2); ² = 8	2%				
Test for overall effect: Z =	= 4.53 (P	< 0.00001)		-,,					
1.2.2 GGQL									
Fu GZ 2014 GGQL	-3.07	1.0359054	33	-1.75	1.0694391	33	5.1%	-1.32 [-1.83, -0.81]	
Pang XY 2018 GGQL	-3.25	1.12907041	45	-2.22	1.24831887	45	5.2%	-1.03 [-1.52, -0.54]	
Kiong QJ 2019 GGQL	-2.47	1.20784933	50	-1.41	1.38112273	50	5.1%	-1.06 [-1.57, -0.55]	
Zhang HF 2019 GGQL	-1.7	5.24595082	35	0.7	6.10245852	35	0.5%	-2.40 [-5.07, 0.27]	
Zhang J 2018 GGQL	-4.72	2.43932368	48	-3.1	2.6158555	47	2.6%	-1.62 [-2.64, -0.60]	
Subtotal (95% Cl) Hotorogonoity: $Tou^2 = 0.0$	00. Chi2 -	2 28 df = 4 /	211	7). 12 - 0	0/	210	10.0%	-1.18 [-1.40, -0.91]	•
Test for overall effect: Z =	= 8.36 (P	< 0.00001)	0.6	r), I [_] = 0	76				
1.2.3 HLEJ									
Gao Y 2020 HLEJ	-11.33	2.19972726	33	-9.02	2.14962788	33	2.5%	-2.31 [-3.36, -1.26]	<u> </u>
iu DH 2006 HLEJ	-2.69	0.84539931	47	-0.88	0.83540409	29	5.9%	-1.81 [-2.20, -1.42]	-
Liu J 2017 HLEJ	-2.6	0.72111026	43	-0.9	0.81853528	43	6.3%	-1.70 [-2.03, -1.37]	-
Wang GZ 2020 HLEJ	-3.11	0.6408588	45	-1.15	0.56204982	45	6.8%	-1.96 [-2.21, -1.71]	-
Zhou XS 2022 HLEJ	-6.86	1.93744677	60	-5.37	1.89185095	60	4.1%	-1.49 [-2.18, -0.80]	<u> </u>
Subtotal (95% CI)			228			210	25.6%	-1.84 [-2.01, -1.67]	•
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	00; Chi² = = 21.43 (F	3.39, df = 4 (l < 0.00001)	P = 0.49	9); I² = 0	%				
1.2.4 HLJD									
Chen SS 2021 HLJD	-3.14	2.60850532	50	-1.29	3.30700771	49	2.1%	-1.85 [-3.02, -0.68]	
Song CL 2022 HLJD	-7.41	1.42937049	50	-5.77	1.45165423	50	4.8%	-1.64 [-2.20, -1.08]	
Wei YP 2021 HLJD	-6	2.04117613	30	-3.25	2.61157041	30	2.1%	-2.75 [-3.94, -1.56]	
Xing Y 2017 HLJD	-7.15	2.56906598	51	-7.21	2.86523996	55	2.5%	0.06 [-0.97, 1.09]	
Yang WJ 2013 HLJD	-11.4	2.70623354	33	-10.87	2.7109408	33	1.8%	-0.53 [-1.84, 0.78]	
Zhang XT 2014 HLJD	-5.25	1.26633329	130	-3.33	1.14594939	130	6.5%	-1.92 [-2.21, -1.63]	-
Subtotal (95% CI)	10. Chi2 -	10.20 46 - 5	344	0001.12.	- 740/	347	19.9%	-1.49 [-2.12, -0.87]	•
Test for overall effect: Z =	= 4.67 (P	< 0.00001)	(P = 0.0	JUZ); I ⁻ -	- 74%				
1.2.5 HLWD									
Chen X 2015 HLWD	-2.68	1.21766169	30	-1.74	1.18823398	30	4.5%	-0.94 [-1.55, -0.33]	
Dong JX 2017 HLWD	-3.8	1.80831413	35	-2	1.44222051	35	3.6%	-1.80 [-2.57, -1.03]	
Fu ZH 2021 HLWD	-4.1	1.09357213	60	-3.12	2.17441946	60	4.5%	-0.98 [-1.60, -0.36]	
Ji GH 2014 HLWD	-4.16	2.55319408	30	-2.57	2.19426525	30	2.1%	-1.59 [-2.79, -0.39]	
Liu L 2021 HLWD	-3.7	2.57099203	34	-1.9	2.88444102	34	1.8%	-1.80 [-3.10, -0.50]	
Wang MK 2021 HLWD	-5.06	2.19159759	30	-2.75	2.57582996	30	2.0%	-2.31 [-3.52, -1.10]	
Nang Y 2022 HLWD	-5.52	2.40788289	25	-3.27	2.33826859	25	1.8%	-2.25 [-3.57, -0.93]	
Zhang GJ 2022 HLWD	-4.03	1.75803868	38	-2	1.62040118	38	3.7%	-2.03 [-2.79, -1.27]	
Zhang MY 2019 HLWD	-3.98	2.00269818	30	-2.59	1.78216161	30	2.8%	-1.39 [-2.35, -0.43]	
Subtotal (95% CI)			312			312	26.8%	-1.54 [-1.90, -1.18]	▼
Heterogeneity: Tau² = 0.0 Test for overall effect: Z =	09; Chi² = = 8.43 (P	11.65, df = 8 < 0.00001)	(P = 0.1	17); l² =	31%				
Total (95% CI)			1191			1165	100.0%	-1.64 [-1.84, -1.43]	•
Heterogeneity: Tau ² = 0.1	14; Chi² =	67.49, df = 26	6 (P < 0	.0001);	l² = 61%				
Test for overall effect: Z =	= 15.81 (F	P < 0.00001)							-4 -2 U 2 4 Favours (experimental) Favours (control)
Test for subaroup differer	nces: Chi	² = 18.37. df =	4 (P =	0.001).	² = 78.2%				
4									

decoction (0%), HLEJ decoction (I² = 0%), and HLWD decoction (I² = 31%) for 2hPG. By contrast, significant heterogeneity was found in DHHL decoction (I² = 82%) and HLJD decoction (I² = 74%) for 2hPG. Overall analysis indicated that decreases in 2hPG were greater in groups treated using HLPs combined with metformin (I² = 61%, MD = -1.64%, 95% CI: -1.84 to -1.43, and p < 0.00001).

3.4.3 HLPs for HbA1c

A total of 31 trials comprising 1,362 subjects in the experimental group and 1,336 subjects in the control group assessed changes in HbA1c levels (Figure 4C). Subgroup analysis was used in different

types of HLPs for HbA1c. Patients who received the following decoctions in combination with metformin were more likely to exhibit reduced HbA1c relative to that with metformin alone: DHHL decoction (MD = -0.25%, 95% CI: -0.41 to -0.09, and p = 0.003), GGQL decoction (MD = -0.74%, 95% CI: -1.17 to -0.32, and p = 0.0006), HLEJ decoction (MD = -1.13%, 95% CI: -1.47 to -0.78, and p < 0.00001), HLJD decoction (MD = -0.72%, 95% CI: -1.3 to -0.59, and p < 0.00001), and HLWD decoction (MD = -0.86%, 95% CI: -1.13 to -0.59, and p < 0.00001). No significant heterogeneity in DHHL decoction (I² = 95%), HLEJ decoction (I² = 83%), HLJD decoction (I² = 88%), and

Study or Subaroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV Random 95% Cl
1.3.1 DHHL	mean	00	Total	mean	00	Total	Weight	10, Randolli, 3576 Ol	10, Randolli, 3578 01
LI XM 2017 DHHL	-1	0.52	43	-0.81	0.49112117	33	4.0%	-0.19 [-0.42, 0.04]	-
Wu B 2019 DHHL	-3.26	1,91290355	43	-3.04	1.05484596	43	2.7%	-0.22 [-0.87, 0.43]	
Zou ZO 2016 DHHI	-1 14	0.66007575	53	-0.81	0.67557383	53	3.9%	-0.33 [-0.58 -0.08]	
Subtotal (95% CI)	-1.14	0.00001010	139	-0.01	0.07007000	129	10.6%	-0.25 [-0.41, -0.09]	◆
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	00; Chi² = = 2.98 (P	= 0.65, df = 2 (= 0.003)	(P = 0.7	′2); l² =	0%				
1.3.2 GGQL									
Fan YF 2017 GGQL	-0.14	0.3241913	35	-0.11	0.2946184	35	4.1%	-0.03 [-0.18, 0.12]	+
Fu GZ 2014 GGQL	-2.87	1.10122659	33	-1.76	1.05531986	33	3.1%	-1.11 [-1.63, -0.59]	
Jin C 2019 GGQL	-3.42	0.67	30	-2.22	0.68110205	30	3.7%	-1.20 [-1.54, -0.86]	
Pang XY 2018 GGQL	-1.8	0.3318132	45	-0.79	0.32511536	45	4.1%	-1.01 [-1.15, -0.87]	-
Xiong QJ 2019 GGQL	-1 15	0 52915026	50	-0.51	0 64023433	50	4 0%	-0.64 [-0.87 -0.41]	-
Zhang HE 2019 GGOI	-0.9	0.7	35	-0.4	0 6244998	35	3.8%	-0.50 [-0.81 -0.19]	
Zhang I 2018 GGOI	-4.1	7 11021097	48	-2 92	7 80889877	47	0.3%	-1 18 [-4 18 1 82]	
Subtotal (95% CI)	-4.1	7.11021037	276	-2.52	1.00003011	275	23.1%	-0.74 [-1.17, -0.32]	•
Heterogeneity: Tau ² = 0.2	26; Chi ² =	= 110.38, df =	6 (P <	0.0000	1); l² = 95%				
Test for overall effect: Z =	= 3.42 (P	= 0.0006)							
1.3.3 HLEJ									
Gao Y 2020 HLEJ	-3.89	1.23454445	33	-2.27	1.3066369	33	2.8%	-1.62 [-2.23, -1.01]	
Liu DH 2006 HLEJ	-1.13	0.47822589	47	-0.23	0.46486557	29	4.0%	-0.90 [-1.12, -0.68]	
Liu J 2017 HLEJ	-1.1	0.45825757	43	-0.3	0.45825757	43	4.0%	-0.80 [-0.99, -0.61]	
Wang GZ 2020 HLEJ	-2.4	0.7202083	45	-0.86	0.62984125	45	3.8%	-1.54 [-1.82, -1.26]	-
Zhou XS 2022 HLEJ	-3	1.87981382	60	-2.11	2.02289397	60	2.6%	-0.89 [-1.59, -0.19]	
Subtotal (95% CI)			228			210	17.3%	-1.13 [-1.47, -0.78]	•
Heterogeneity: Tau ² = 0.1	11; Chi2 :	= 23.22, df = 4	(P = 0	.0001);	l² = 83%				
Test for overall effect: Z =	= 6.46 (P	< 0.00001)							
1.3.4 HLJD									
Chen SS 2021 HLJD	-1.13	1.5063864	50	-0.3	1.68680171	49	2.8%	-0.83 [-1.46, -0.20]	
Ding X 2018 HLJD	-1.8	2.17025344	52	-0.7	2.26495033	52	2.2%	-1.10 [-1.95, -0.25]	
Feng JJ 2019 HLJD	-2.07	1.34580831	45	-0.73	1.41095712	45	3.0%	-1.34 [-1.91, -0.77]	
Song CL 2022 HLJD	-3.24	1.03145528	50	-2.39	1.03286011	50	3.5%	-0.85 [-1.25, -0.45]	
Wei YP 2021 HLJD	-1.5	0.43714986	30	-1	0.47159304	30	4.0%	-0.50 [-0.73, -0.27]	
Xing Y 2017 HLJD	-2.28	0.24979992	51	-2.24	0.36290495	55	4.1%	-0.04 [-0.16, 0.08]	1
Yang WJ 2013 HLJD	-4.2	1.93132079	33	-2.9	2.23383079	33	1.8%	-1.30 [-2.31, -0.29]	
Zhang XT 2014 HLJD	-2.83	0.90149875	130	-2.26	0.94440457	130	4.0%	-0.57 [-0.79, -0.35]	-
Subtotal (95% CI)			441			444	25.3%	-0.72 [-1.05, -0.38]	•
Heterogeneity: Tau ² = 0.1 Test for overall effect: 7 =	17; Chi² = = 4 19 (P	= 56.92, df = 7 < 0.0001)	' (P < 0	.00001)	; l² = 88%				
	1.10 (1	0.0001)							
1.3.5 HLWD Chen X 2015 HI WD	-2 11	0 97041228	30	-1.32	1 02454868	30	3.2%	-0 79 [-1 29 -0 29]	
Dong JX 2017 HI W/D	-1.9	0.7	35	_1	0 45825757	35	3.8%	-0.80 [-1.08 -0.52]	
Eu 7H 2021 HI WD	-1.56	1 06226174	60	-0.26	1 02430464	60	3 6%	-1 30 [-1 67 -0.02]	
	-0.62	1 20503112	30	-0.20	1 24012004	30	2 90/	-0.02 [-0.64 0.60]	
	-0.02	1 52092650	30	-0.0	1 71/67109	30	2.0 /0	-0.02 [-0.04, 0.00]	
Wang V 2022 I FLWD	-1.70	1.02903009	30	-0.00	1.7 1407 198	30	2.3%	-1.09 [-1.91, -0.27]	
Thong C L 2022 HLWD	-1.78	1.42/90000	20	-1.20	1.37 190939	20	2.4%	-0.55 [-1.51, 0.25]	
Zhang GJ 2022 HLWD	-2.13	1.32333049	38	-1.08	1.40042651	38	2.0%	-1.05 [-1.00, -0.44]	
Subtotal (95% CI)	-2.42	1.31502852	30 278	-1.29	1.16348614	30 278	2.8%	-1.13 [-1.76, -0.50] -0.86 [-1.13, -0.59]	•
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =)7; Chi² = = 6.29 (P	= 14.65, df = 7 < 0.00001)	(P = 0	.04); l²	= 52%				
T-4-1 (05%) C"		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4000			4000	100 001		▲
Total (95% CI)		010.05	1362			1330	100.0%	-0.78 [-0.96, -0.60]	✓
Heterogeneity: Tau ² = 0.2	20; Chi2 =	= 318.20, df =	30 (P <	0.0000	רע); I² = 91%				-4 -2 0 2 4
lest for overall effect: Z =	= 8.43 (P	< 0.00001)	- 1 (D -	0.000	1) 12 - 96 00/				Favours [experimental] Favours [control]
rescior subdroub differen	ices: Ch	- 30.54. df -	- 4 (P <	0.0000	11.1 80.9%				

HLWD decoction (I² = 52%) for HbA1c exhibited significant heterogeneity. Overall analysis indicated that HLPs combined metformin provided additional benefits to reduce HbA1c (I² = 91%, MD = -0.78%, 95% CI:-0.96 to -0.60, and p < 0.00001).

3.4.4 HLPs for FINS

A total of 15 trials comprising 595 subjects in the experimental group and 596 subjects in the control group assessed changes in FINS levels (Figure 4D). Subgroup

analysis was used in different types of HLPs for FINS. Patients who received the following decoctions in combination with metformin were more likely to exhibit reduced FINS relative to that with metformin alone: DHHL decoction (MD = -0.67%, 95% CI: -1.04 to -0.30, and p = 0.0004), GGQL decoction (MD = -3%.18%, 95% CI: -3.92 to -2.45, and p < 0.00001), and HLWD decoction (MD = -2.26%, 95% CI:-3.00 to -1.51, and p < 0.00001). No significant heterogeneity in DHHL decoction (I² = 0%) and

GGQL decoction (I² = 17%) for FINS was found, while HLWD decoction for FINS had significant heterogeneity (I² = 63%). In addition, HLJD decoction for FINS was not statistically significant (MD = -0.52, 95% CI: -1.60 to 0.56, and p = 0.34). Overall analysis indicated that patients treated with HLPs in combination with metformin were more likely to reduce FINS (I² = 86%, MD = -1.94%, 95% CI: -2.68 to -1.20, and p < 0.00001).

3.4.5 HLPs for HOMA-IR

A total of 12 trials comprising 471 subjects in the experimental group and 472 subjects in the control group reported HOMA-IR as an outcome (Figure 4E). Subgroup analysis was used in different types of HLPs for HOMA-IR. The results showed that patients who received metformin in combination with GGQL decoction (MD = -1.56%, 95% CI: -1.63 to -1.49, and p < 0.00001), HLJD decoction (MD = -0.82%, 95% CI: -1.08 to -0.56, and p < 0.00001), and HLWD decoction (MD = -0.58%, 95% CI: -0.80 to -0.36, and p < 0.00001) respectively were more likely to have reduced HOMA-IR relative to those with metformin alone. No significant heterogeneity was indicated in GGQL decoction

(I² = 0%), HLJD decoction (I² = 0%), and HLWD decoction (I² = 0%) for HOMA-IR. However, DHHL decoction for HOMA-IR was not statistically significant (MD = -0.08%, 95% CI: -0.22 to 0.06, and p = 0.26). Overall analysis showed that HLPs combined with metformin were more likely to reduce HOMA-IR compared with metformin alone (I² = 97%, MD = -0.77%, 95% CI: -1.28 to -0.27, and p = 0.003).

3.4.6 HLPs for blood lipids

A total of 16 trials comprising 628 subjects in the experimental group and 607 subjects in the control group evaluated the effectiveness of HLPs in improving TC (Figure 4F). Subgroups were divided depending on the type of HLPs for TC. The results revealed that patients who received metformin in combination with GGQLdecoction (MD = -0.57%, 95% CI:-0.99 to -0.15, and p = 0.008), HLEJ decoction (MD = -1.38%, 95% CI:-1.62 to -1.14, and p < 0.00001), and HLJD decoction (MD = -1.53%, 95% CI:-1.87 to -1.19, and p < 0.00001) respectively were more likely to have reduced TC relative to those with metformin alone. No significant heterogeneity was indicated in HLJD decoction for TC (I^2 =

0%), while significant heterogeneity was found in GGQL decoction (I² = 88%) and HLEJ decoction (I² = 70%) for TC. In addition, HLWD decoction for TC was not statistically significant (MD = -0.17%, 95% CI: -0.39 to 0.05, and p = 0.13). Overall analysis indicated that decreases in TC were greater in groups treated using HLPs combined with metformin (I² = 93%, MD = -0.70%, 95% CI: -1.00 to -0.39, and p < 0.00001).

A total of 15 trials comprising 593 subjects in the experimental group and 572 subjects in the control group evaluated the curative effect of HLPs in improving TG (Figure 4G). Subgroups were divided depending on the type of HLPs for TG. Patients who received the following decoctions, combined with metformin, were more likely to exhibit reduced TG relative to the controls: GGQL decoction (MD = -0.46%, 95% CI:-0.78 to -0.13, and *p* = 0.006), HLEJ decoction (MD = -1.19%, 95% CI:-1.84 to -0.55, and p = 0.0003), HLJD decoction (MD = -0.48%, 95% CI:-0.58 to -0.38, and p < 0.00001), and HLWD decoction (MD = -0.32%, 95% CI:-0.49 to -0.14, and p =0.0003). No significant heterogeneity was found in HLJD decoction ($I^2 = 0\%$) and HLWD decoction ($I^2 = 18\%$) for TG, while significant heterogeneity was found in GGQL decoction $(I^2 = 89\%)$ and HLEJ decoction $(I^2 = 96\%)$ for TG. Overall analysis indicated that decreases in TG were greater in groups

treated using HLPs combined with metformin (I² = 89%, MD = -0.57%, 95% CI: -0.74 to -0.40, and p < 0.00001).

A total of 16 trials comprising 628 subjects in the experimental group and 607 subjects in the control group evaluated the curative effect of HLPs in improving LDL-c (Figure 4H). Subgroups were divided depending on the type of HLPs for LDL-c. Patients who received the following decoctions, combined with metformin, were more likely to LDL-c exhibit reduced relative the controls: to GGQLdecoction (MD = -0.41%, 95% CI:-0.54 to -0.29, and p < 0.00001), HLEJ decoction (MD = -1.17%, 95% CI: -1.77 to -0.57, and p = 0.0001), and HLJD decoction (MD = -1.62%, 95% CI:-1.85 to -1.40, and p < 0.00001). No significant heterogeneity was found in GGQL decoction (I² = 11%) and HLJD decoction ($I^2 = 0\%$) for LDL-c, while significant heterogeneity was found in HLEJ decoction for LDL-c ($I^2 = 94\%$). In addition, HLWD decoction for LDL-c was not statistically significant (MD = -0.36%, 95% CI: -0.71 to 0.00, and p = 0.05). Overall analysis indicated that HLPs combined metformin provided additional benefits to reduce LDL-c ($I^2 = 94\%$, MD = -0.70%, 95% CI: -0.97 to -0.43, and p < 0.00001).

A total of 10 trials comprising 378 subjects in the experimental group and 375 subjects in the control group evaluated the curative effect of HLPs in improving HDL-c

(Figure 4I). Subgroups were divided depending on the type of HLPs for HDL-c. The results revealed that patients who received metformin in combination with GGQL decoction (MD = -0.32%, 95% CI:-0.54 to -0.10, and p = 0.005) and HLJD decoction (MD = -0.32%, 95% CI:-0.41 to -0.23, and p <0.00001) respectively were more likely to have reduced HDL-c relative to those with metformin alone. No significant heterogeneity was indicated in HLJD decoction for HDL-c $(I^2 = 0\%)$, while significant heterogeneity was found in GGQL decoction for HDL-c ($I^2 = 81\%$). In addition, HLWD decoction for HDL-c was not statistically significant (MD = -0.07%, 95% CI: -0.17 to 0.03, and p = 0.19). Overall analysis showed that compared with metformin alone, HLPs combined with metformin improved HDL-c more ($I^2 = 84\%$, MD = -0.21\%, 95% CI: -0.32 to -0.10, and p = 0.0002).

3.4.7 HLPs for GD

A total of seven trials comprising 313 subjects in the experimental group and 294 subjects in the control group conducted analysis of HLPs for GD (Figure 4J). Patients who received HLPs can't reduce GD relative to those with metformin alone (OR = 0.54%, 95% CI:0.26 to 1.10, and p = 0.09).

3.5 Sensitivity analysis

The results in Table 4 suggest that patients with T2DM in the experimental group show improved FBG, 2hPG, HbA1c, FINS, HOMA-IR, TC, TG, LDL-c, and HDL-c relative to those in the control group. However, changes in the effectiveness of HLPs in improving 2hPG, HbA1c, FINS, HOMA-IR, TC, TG, LDL-c, and HDL-c showed significant heterogeneity. With regard to the subgroup sensitivity analysis, after excluding some underestimated or overestimated trials, the heterogeneity of the majority of studies was significantly reduced, including the following: HLJD for 2hPG, HLWD for FINS; GGQL, HLEJ, HLJD, and HLWD for HbA1c; GGQL and HLEJ for TC; GGQL and HLEJ for TG; HLEJ and HLWD for LDL-c; and DHHL for HDL-c. However, no statistically significant difference was found in DHHL for 2hPG, HLJD for FINS, and DHHL for HOMA-IR.

3.6 Publication bias

As shown in Figure 5, the funnel plots used to evaluate the effectiveness of HLPs in improving FBG are nearly

symmetrical, whereas those used to assess the effects of HLPs on 2hPG, HbA1c, FINS, HOMA-IR, TC, TG, LDL-c, and HDL-c are asymmetrical. Therefore, Egger's test (Stata version 13.0) was also performed to evaluate their publication bias. The Egger's test used to assess publication bias suggested that p > 0.05 in FBG, 2hPG, TC, TG, LDL-c, and HDL-c, whereas p < 0.05 in HbA1c, FINS, and HOMA-IR (Table 5). Finally, the trim-and fillmethod (Stata version 13.0) was used to evaluate the publication bias of HbA1c and HOMA-IR. In Figure 6A, theoretically missing studies show an adjusted improvement in HbA1c, corresponding to -1.083 MD [95% CI, -1.346 to -0.853], relative to -0.932 MD [95% CI, -1.182 to -0.791]. As shown in Figure 6B, five theoretically missing studies show corrected improvement in FINS, corresponding to 0.275 MD [95% CI, 0.069 to 0.412], compared with -1.144 MD [95% CI, -1.792 to -0.645]. As shown in Figure 6C, five theoretically missing studies show corrected improvement in HOMA-IR, corresponding to 0.141 MD [95% CI, 0.061 to 0.371], compared with -1.142 MD [95% CI, -1.787 to -0.582].

4 Discussion

The potential of HLPs to prevent and treat T2DM has been investigated in several studies, and its hypoglycemic mechanism is becoming increasingly apparent. DHHL decoction can regulate the glucose level by activating AMPK α and upregulating the expression of PGC-1a and GLUT4 (Hao et al., 2019). GGQL decoction can enhance glucose metabolism by regulating tryptophan, pantothenic acid, and adenine in IR-HepG2 cells (Chen et al., 2018), as well as improve liver insulin resistance by upregulating SIRT1 expression and reducing FoxO1 acetylation (Sui et al., 2018). HLEJ decoction can exert glucose-lowering and lipid-lowering effects by resisting inflammation and improving insulin resistance (Feng, 2015). HLJD decoction can exert hypolipidemic effects by inhibiting the increased activity of intestinal pancreatic lipase (Zhang et al., 2013) and increasing GLUT4 and PI3K p85 mRNA expression in adipose and skeletal muscle tissues (Chen et al., 2007; Jin et al., 2007). HLWD decoction can effectively treat glycometabolism disorder by repairing the insulin signaling pathway and inhibiting the release of inflammatory cytokines (Li et al., 2016; Chen et al., 2019).

Study or Subarous	Mean	xperimentai	Total	Mean	Control	Total	Weight	Wean Difference	IV Pandom 95% Cl
1 8 1 GGOL	wean	50	Total	mean	50	Total	weight	IV, Random, 95% CI	IV, Random, 95% CI
For VE 2017 CCOL	0.50	0 46194412	25	0.20	0 40006570	25	6 70/	0.20 [0.51 0.00]	
Full 1F 2017 GGQL	-0.59	0.40104413	30	-0.29	0.42290572	30	0.7% E 00/	-0.30 [-0.31, -0.09]	
lin C 2010 CCOL	-1.11	0.73000173	30	-0.70	0.99579114	30	0.0%	-0.35 [-0.79, 0.09]	
	-1.15	0.5242137	30	-0.52	0.54990908	30	0.5%	-0.63 [-0.90, -0.36]	
Xiong QJ 2019 GGQL	-1.55	0.42720019	50	-1.10	0.49030603	50	0.7%	-0.37 [-0.55, -0.19]	
Subtotal (05% CI)	-1.1	0.99964994	40	-0.52	1.03203082	4/	0.0%	-0.56 [-0.99, -0.17]	•
Subtotal (95% CI)			193			192	31.7%	-0.41 [-0.54, -0.29]	•
Test for overall effect: Z	= 6.58 (F	= 4.52, df = 4 (P < 0.00001)	P = 0.3	34); 1* =	11%				
1.8.2 HLEJ									
Liu DH 2006 HI E.I	-1 78	0 69735214	47	-0.32	0 72917762	29	6.3%	-1 46 [-1 79 -1 13]	
	-1.8	0.65100603	43	-0.32	0.67022384	43	6.5%	-1.43 [-1.73, -1.15]	
Wang G7 2020 HI E I	-1 29	0.26514147	45	-0.64	0.07022004	45	6.8%	-0.65[-0.810.49]	-
Subtotal (95% CI)	-1.29	0.20314147	135	-0.04	0.47791213	117	19.5%	-1 17 [-1 77 -0 57]	
Hotorogonoity: Tau ² = 0	26. Chi2	- 33 00 df - 3	(P < 0	00001	12 - 0.49		10.070	-1.17 [-1.17, -0.07]	
Test for overall effect: Z	= 3.83 (F	e = 0.0001)	(F < 0	.00001), 1 = 34 /8				
1.8.3 HLJD									
Ding X 2018 HLJD	-2.2	0.4	52	-0.6	0.8660254	52	6.5%	-1.60 [-1.86, -1.34]	
Feng JJ 2019 HLJD	-2.31	1.11216006	45	-0.61	1.18528478	45	5.7%	-1.70 [-2.17, -1.23]	
Subtotal (95% CI)			97			97	12.2%	-1.62 [-1.85, -1.40]	◆
Heterogeneity: Tau ² = 0.	00; Chi ²	= 0.13, df = 1 (P = 0.7	72); l² =	0%			_	
Test for overall effect: Z	= 13.98 ((P < 0.00001)							
1.8.4 HLWD									
Chen X 2015 HLWD	-1.78	0.6794851	30	-1.22	0.67446275	30	6.2%	-0.56 [-0.900.22]	——
JI GH 2014 HLWD	-0.46	0.39962482	30	-0.73	0.3968627	30	6.7%	0.27 [0.07. 0.47]	
Liu L 2021 HLWD	-0.5	0.91651514	34	-0.3	1.15325626	34	5.6%	-0.20 [-0.70. 0.30]	
Wang MK 2021 HI WD	-1 02	1 46318146	41	-0.34	1 294102	39	5.2%	-0.68 [-1.28 -0.08]	
Zhang GJ 2022 HI WD	-1.09	0 78733728	38	-0.31	0.90266273	38	6.1%	-0.78 [-1.16, -0.40]	
Zhang MY 2019 HI WD	-0.54	0 44034078	30	-0.21	0.31796226	30	6.7%	-0.33 [-0.52 -0.14]	
Subtotal (95% CI)	0.04	0.44004070	203	0.21	0.01100220	201	36.5%	-0.36 [-0.71, 0.00]	-
Heterogeneity: $Tau^2 = 0$	16 [.] Chi ²	= 38 18 df = 5	(P < 0	00001	$1^2 = 87\%$				
• •									
Test for overall effect: Z	= 1.95 (F	P = 0.05)							
Test for overall effect: Z	= 1.95 (F	P = 0.05)					400.00/	0.707.007.0401	
Test for overall effect: Z = Total (95% CI)	= 1.95 (F	P = 0.05)	628		04)- 12 - 0.40/	607	100.0%	-0.70 [-0.97, -0.43]	◆
Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0.	= 1.95 (F 27; Chi²	P = 0.05) = 235.59, df =	628 15 (P <	< 0.000	01); l² = 94%	607	100.0%	-0.70 [-0.97, -0.43] -	-2 -1 0 1 2
Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z =	= 1.95 (F 27; Chi² = 5.11 (F	P = 0.05) = 235.59, df = P < 0.00001)	628 15 (P <	< 0.000	01); I² = 94%	607	100.0%	-0.70 [-0.97, -0.43] _	-2 -1 0 1 2 Favours (experimental) Favours (control)
Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z = Test for subgroup differe	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch	P = 0.05) = 235.59, df = P < 0.00001) hi ² = 89.59. df =	628 15 (P < = 3 (P <	< 0.000	01); I² = 94% 01). I² = 96.7%	607	100.0%	-0.70 [-0.97, -0.43] _	-2 -1 0 1 2 Favours [experimental] Favours [control]
Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z = Test for suboroup differe	= 1.95 (F 27; Chi² = 5.11 (F nces: Ch	P = 0.05) = 235.59, df = P < 0.00001) ni² = 89.59. df =	628 15 (P < = 3 (P <	< 0.000	01); I² = 94% 01). I² = 96.7%	607	100.0%	-0.70 [-0.97, -0.43] -	-2 -1 0 1 2 Favours [experimental] Favours [control]
Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z = Test for subaroup differe	= 1.95 (F 27; Chi² = 5.11 (F nces: Ch	≥ = 0.05) = 235.59, df = ≥ < 0.00001) hi² = 89.59. df =	628 15 (P < = 3 (P <	< 0.000	01); I² = 94% 01). I² = 96.7%	607	100.0%	-0.70 [-0.97, -0.43] -	-2 -1 0 1 2 Favours [experimental] Favours [control]
Test for overall effect: Z : Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subaroup differe	= 1.95 (F 27; Chi² = 5.11 (F nces: Ch	≥ = 0.05) = 235.59, df = ≥ < 0.00001) hi² = 89.59. df =	628 15 (P < = 3 (P <	< 0.000	01); l² = 94% 01). l² = 96.7%	607	100.0%	-0.70 [-0.97, -0.43] –	-2 -1 0 1 2 Favours [experimental] Favours [control]
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subarouo differe	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch	≥ = 0.05) = 235.59, df = > < 0.00001) ii ² = 89.59. df =	628 15 (P < = 3 (P <	< 0.000	01); l² = 94% 01). l² = 96.7% Control	607	100.0%	-0.70 [-0.97, -0.43] -	-2 -1 0 1 2 Favours [experimental] Favours [control]
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subaroup differe	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch E <u>Mean</u>	 = 0.05) = 235.59, df = > 0.00001) ai² = 89.59, df = xperimental SD 	628 15 (P < = 3 (P < Total	< 0.000 < 0.0000	01); ² = 94% 01). ² = 96.7% Control SD	607	100.0% Weight	-0.70 [-0.97, -0.43] - Mean Difference IV. Random, 95% Cl	-2 -1 0 1 2 Favours [experimental] Favours [control] Mean Difference IV. Random, 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subaroup differe Study or Subgroup 1.9.1 GGQL	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch E <u>Mean</u>	 = 0.05) = 235.59, df = < 0.0001) ni² = 89.59. df = xperimental SD 	628 15 (P < = 3 (P < Total	< 0.000 < 0.0000 <u>Mean</u>	01); l² = 94% 01). l² = 96.7% Control SD	607	100.0% Weight	-0.70 [-0.97, -0.43] -	-2 -1 0 1 2 Favours [experimental] Favours [control] Mean Difference IV. Random. 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subaroub differe Study or Subgroup 1.9.1 GGQL Fu GZ 2014 GGQL	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch <u>E</u> <u>Mean</u> -1.08	P = 0.05) = 235.59, df = P < 0.00001) $H^2 = 89.59. df = 0.0000000000000000000000000000000000$	628 15 (P < = 3 (P < <u>Total</u> 30	< 0.000 < 0.0000 <u>Mean</u> -0.62	01); I ² = 94% 01). I ² = 96.7% Control <u>SD</u> 0.20420578	607 , <u>Total</u> 30	100.0% Weight 11.6%	-0.70 [-0.97, -0.43] 	-2 -1 0 1 2 Favours [experimental] Favours [control] Mean Difference IV. Random. 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subaroup differe Study or Subgroup 1.9.1 GGQL FU GZ 2014 GGQL Jin C 2019 GGQL	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch E <u>Mean</u> -1.08 -0.41	> = 0.05) = 235.59, df = > < 0.0001) ii ² = 89.59. df = Experimental SD 0.37 0.17578396	628 15 (P < = 3 (P < <u>Total</u> 30 30	< 0.000 < 0.000 <u>Mean</u> -0.62 -0.23	01); I ² = 94% 01). I ² = 96.7% Control SD 0.20420578 0.14525839	607 Total 30 30	100.0% Weight 11.6% 13.8%	-0.70 [-0.97, -0.43] Mean Difference IV. Random. 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10]	-2 -1 0 1 2 Favours [experimental] Favours [control] Mean Difference IV. Random, 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup differe Study or Subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Lin C 2019 GGQL Zhang J 2018 GGQL	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch E <u>Mean</u> -1.08 -0.41 -1.28	> = 0.05) = 235.59, df = > < 0.00001) ii ² = 89.59. df = Experimental SD 0.37 0.17578396 0.90216406	628 15 (P < = 3 (P < Total 30 30 48	< 0.000 < 0.0000 Mean -0.62 -0.23 -0.93	01); ² = 94% 01). ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436	607 Total 30 30 47	100.0% Weight 11.6% 13.8% 5.2%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04]	Arean Difference
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jin C 2019 GGQL Subtotal (95% Cl)	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch <u>E</u> <u>Mean</u> -1.08 -0.41 -1.28	P = 0.05) = 235.59, df = P < 0.00001) $i^2 = 89.59$. df = xperimental SD 0.37 0.17578396 0.90216406	628 15 (P < = 3 (P < Total 30 48 108	< 0.0000 < 0.0000 Mean -0.62 -0.23 -0.93	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436	607 Total 30 30 47 107	100.0% Weight 11.6% 13.8% 5.2% 30.6%	-0.70 [-0.97, -0.43] Mean Difference [V. Random, 95% C] -0.46 [-0.61, -0.31] -0.38 [-0.26, -0.10] -0.32 [-0.54, -0.10]	-2 -1 0 1 2 Favours [experimental] Favours [control] Mean Difference IV. Random, 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Un GZ 2014 GGQL Jin C 2019 GGQL Zhang J 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch E <u>Mean</u> -1.08 -0.41 -1.28 03; Chi ² =	> = 0.05) = 235.59, df = > < 0.0001) ii ² = 89.59, df = (xperimental SD) 0.37 0.17578396 0.90216406 = 10.49, df = 2	628 15 (P < = 3 (P < Total 30 48 108 (P = 0.	< 0.0000 < 0.0000 Mean -0.62 -0.23 -0.93 005); I ²	01); I ² = 94% 01). I ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 ² = 81%	607 Total 30 30 47 107	100.0% Weight 11.6% 13.8% 5.2% 30.6%	-0.70 [-0.97, -0.43] Mean Difference IV. Random. 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.32 [-0.74, 0.04] -0.32 [-0.54, -0.10]	-2 -1 0 1 2 Favours [experimental] Favours [control] Mean Difference IV. Random, 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subarouo differe Study or Subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Dang J 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch E <u>Mean</u> -1.08 -0.41 -1.28 -0.41 -1.28 -0.41 -1.28 -0.41 -1.28	> = 0.05) = 235.59, df = > < 0.00011) i ² = 89.59. df = Experimental SD 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005)	628 15 (P < = 3 (P < Total 30 48 108 (P = 0.	< 0.000 < 0.000 Mean -0.62 -0.23 -0.93 005); 1 ²	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81%	607 Total 30 30 47 107	100.0% Weight 11.6% 13.8% 5.2% 30.6%	-0.70 [-0.97, -0.43] Mean Difference IV, Random, 95% Cl -0.46 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10]	Arrow State
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subarouo differe Study or Subgroup I.9.1 GGQL Fu GZ 2014 GGQL Din C 2019 GGQL Zhang J 2018 GGQL Subtotal (95% Cl) Test for overall effect: Z = 1.9.2 H D	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch <u>E</u> <u>Mean</u> -1.08 -0.41 -1.28 03; Chi ² = 2.81 (P	<pre>> = 0.05) = 235,59, df = > < 0.00001) i² = 89,59, df = xperimental SD 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005)</pre>	628 15 (P < = 3 (P < Total 30 48 108 (P = 0.	< 0.000 < 0.0000 Mean -0.62 -0.23 -0.93 005); I ²	01); ² = 94% 01). ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 := 81%	607 Total 30 30 47 107	100.0% Weight 11.6% 13.8% 5.2% 30.6%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10]	Arean Difference
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jin C 2019 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Diag X 2018 LH UD	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch <u>E</u> <u>Mean</u> -1.08 -0.41 -1.28 03; Chi ² = 2.81 (P	= 0.05) = 235.59, df = > < 0.00001) i ² = 89.59, df = SD 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005)	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0.	< 0.000 < 0.000 Mean -0.62 -0.23 -0.93 005); l ²	01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 = 81%	607 Total 30 47 107	100.0% Weight 11.6% 13.8% 5.2% 30.6%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.32 [-0.74, 0.04] -0.32 [-0.54, -0.10]	-2 -1 0 1 2 Favours [experimental] Favours [control] Mean Difference IV. Random, 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Unit C 2019 GGQL Ding 2 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Ding X 2018 HLJD	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch <u>Mean</u> -1.08 -0.41 -1.28)3; Chi ² = 2.81 (P -0.6	P = 0.05) = 235.59, df = P < 0.0001) $I^2 = 89.59$. df = $I^2 = 89.59$. df = $I^2 = 89.59$. df = $I^2 = 0.001$ $I^2 = 89.59$. df = $I^2 = 0.005$ $I^2 = 0.005$	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0.	 • 0.0000 • 0.000 • 0.62 • 0.62 • 0.62 • 0.63 • 0.05); 12 	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81%	607 Total 30 30 47 107	100.0% Weight 11.6% 13.8% 5.2% 30.6%	-0.70 [-0.97, -0.43] Mean Difference IV. Random. 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.30 [-0.44, -0.16] -0.41 [-0.75]	Action of the second se
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subaroub differe Study or Subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Din C 2019 GGQL Zhang J 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng J 2019 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng J 2019 HLJD Subtotal (95% Cl)	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch -1.08 -0.41 -1.28 03; Chi ² = 2.81 (P -0.66 -0.66	2 = 0.05) 2 = 235,59, df = 2 < 0.00001) 2 < 0.00001) 12 = 89,59, df = 2 2 3 3 3 0.37 0.17578396 0.37 0.17578396 0.37 0.17578396 0.37 0.17578396 0.37 0.37 0.32695565 0.3	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 45 52	 < 0.000 Mean -0.62 -0.23 -0.93 005); l² -0.3 -0.32 	01); ² = 94% 01). ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472	607 Total 30 30 47 107 52 45 52	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.30 [-0.44, -0.16] -0.34 [-0.47, -0.21] 0.21 [-0.44, -0.21]	Mean Difference IV. Random. 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jin C 2019 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Teng JJ 2019 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Teng JJ 2019 HLJD Subtotal (95% Cl) Heterogeneity: Cl)	= 1.95 (F 27; Chi ² = 5.11 (F nces: Ch -1.08 -0.41 -1.28 03; Chi ² = = 2.81 (P -0.66 -0.66	P = 0.05) = 235.59, df = P < 0.00001) $I^2 = 89.59$, df = SD 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 45 97	 < 0.0000 Mean -0.62 -0.23 -0.93 005); l² -0.32 -0.32 -0.32 	01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 ² = 81% 0.4 0.2787472	607 Total 30 30 47 107 52 45 97	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.32 [-0.74, 0.04] -0.32 [-0.74, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23]	A control of the second
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jin C 2019 GGQL Zhang J 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng JJ 2019 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	27; Chi ² = 5.11 (F = 5.11 (F nces: Cr -1.08 -1.08 -1.28 -1	P = 0.05) = 235.59, df = P < 0.0001) $i^2 = 89.59$, df = SD 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 ((0.0011)	628 15 (P < 3 (P < Total 30 30 48 8 (P = 0. 52 45 97 P = 0.6	 < 0.0000 Mean -0.62 -0.23 -0.93 005); l² -0.32 -0.32 -0.32 7); l² = 	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0%	607 Total 30 47 107 52 45 97	100.0% Weight 11.6% 13.8% 30.6% 12.1% 12.5% 24.6%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.32 [-0.74, 0.04] -0.32 [-0.74, -0.10] -0.30 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23]	A control of the second
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jin C 2019 GGQL Zhang J 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	= 1.95 (F 27; Chi ² = 5.11 (F = 5.11 (F <u>Mean</u> -1.08 -0.41 -1.28 -0.61 -0.66 -0.66i = 6.84 (P	P = 0.05) = 235.59, df = P < 0.0001) P < 0.0001) P < 0.0001) P = 0.0001 P = 0.0001 P = 0.0001 P = 0.0001 P = 0.00001	628 15 (P < 3 (P < Total 30 30 30 48 108 (P = 0. 52 45 97 P = 0.6	 Mean -0.62 -0.23 -0.93 005); l² -0.32 -0.32 7); l² = 	01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0%	607 <u>Total</u> 30 30 47 107 52 45 97	100.0% Weight 11.6% 13.8% 30.6% 12.1% 12.5% 24.6%	-0.70 [-0.97, -0.43] Mean Difference IV. Random. 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.32 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23]	A control of the second
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL ^T u GZ 2014 GGQL Jin C 2019 GGQL Zhang J 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD	 = 1.95 (F = 5.11 (F = 5.11 (F mces: Ct E Mean -1.08 -0.41 -1.28 -0.41 -1.28 -1.28<td><pre>> = 0.05) = 235.59, df = > < 0.0001) i² = 89.59, df = <u>SD</u> 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 (l < 0.0001)</pre></td><td>628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 45 97 P = 0.6</td><td> • 0.0000 • 0.0000 • 0.62 -0.23 -0.33 -0.32 -0.32 -0.32 -0.32 -0.32 </td><td>01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0%</td><td>607 Total 30 30 47 107 52 45 97</td><td>100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6%</td><td>-0.70 [-0.97, -0.43] Mean Difference IV. Random. 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.30 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23]</td><td>Mean Difference IV. Random, 95% Cl</td>	<pre>> = 0.05) = 235.59, df = > < 0.0001) i² = 89.59, df = <u>SD</u> 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 (l < 0.0001)</pre>	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 45 97 P = 0.6	 • 0.0000 • 0.0000 • 0.62 -0.23 -0.33 -0.32 -0.32 -0.32 -0.32 -0.32 	01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0%	607 Total 30 30 47 107 52 45 97	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6%	-0.70 [-0.97, -0.43] Mean Difference IV. Random. 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.30 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23]	Mean Difference IV. Random, 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL USUB 1.9.1 GGQL Test for Subgroup 1.9.1 GGQL Ding C 2019 GGQL Chang J 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD	= 1.95 (F = 5.11 (F) = 5.11 (<pre>> = 0.05) = 235,59, df = > < 0.00001) i² = 89,59, df = <u>sp</u> 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 ((< 0.00001) 0.3241913</pre>	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 97 P = 0.6 30	 Content of the second se	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664	607 Total 30 30 47 107 52 45 97 30	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6% 2.8%	-0.70 [-0.97, -0.43] Mean Difference IV, Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.30 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46]	Mean Difference IV. Random. 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jung J 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng JJ 2019 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Ji GH 2014 HLWD	= 1.95 (F 27; Chi ² = 5.11 (F = 5.11 (F mces: Cr -1.08 -0.41 -1.28 -0.41 -1.28 -0.41 -1.28 -0.66 -0.66 -0.66 -0.66 = -0.66 -0.66 = -0.66 -0.66 = -0.66 = -0.66 = -0.66 = -0.67 = -0.67 = -0.67 = -0.2	= 0.05) = 235.59, df = > < 0.00001) ii ² = 89.59, df = SD 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 (l < < 0.00001) 0.3241913 0.324515301	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 45 97 P = 0.6 30 34	 6 0.0000 Mean -0.62 -0.23 -0.93 005); l² -0.32 7); l² = -0.14 -0.14 	01); ² = 94% 01); ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 := 81% 0.4 0.2787472 0% 1.62169664 0.22	607 Total 30 30 47 107 52 45 97 30 30 34	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6% 2.8% 12.9%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, 0.01] -0.32 [-0.74, 0.04] -0.32 [-0.74, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07]	Mean Difference IV. Random. 95% CI
Test for overall effect: Z : Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Test for subgroup 1.9.1 GGQL Test for Subgroup 1.9.1 GGQL Test for Overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng JJ 2018 HLJD Feng JJ 2018 HLJD Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng JJ 2019 HLJD Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Liu L 2021 HLWD	= 1.95 (F 27; Chi ² = 5.11 (F = 5.11 (F mces: Ct -1.08 -0.41 -1.28 -0.6 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.67 -0.14 -0.27 -0.14 -0.03	> = 0.05) = 235.59, df = > < 0.0001) ii ² = 89.59, df = SD SD 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 (I < 0.00001) 0.3241913 0.324515301 0.70760158	628 15 (P < = 3 (P < 30 30 30 48 108 (P = 0. 52 45 97 P = 0.6 30 34 41	 Constant (1) Const	01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245	607 Total 30 30 47 107 52 45 97 30 34 39	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6% 2.8% 12.9% 6.8%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.30 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07] 0.15 [-0.16, 0.46]	Mean Difference IV. Random. 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subaroup differe Study or Subgroup 1.9.1 GGQL Test for subaroup differe GGQL 2014 GGQL Jin C 2019 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng JJ 2019 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Ji GH 2014 HLWD Ji GH 2014 HLWD Vang MK 2021 HLWD Vang JMK 2021 HLWD Vang JJ 2022 HLWD	= 1.95 (F = 5.11 (F) = 5.11 (<pre>> = 0.05) = 235,59, df = > < 0.00001) i² = 89,59, df = <u>sp</u> 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 ((< 0.00001) 0.3241913 0.24515301 0.70760158</pre>	628 15 (P < = 3 (P < = 3 (P < 30 30 48 108 (P = 0. 52 45 97 P = 0.6 30 34 41 38	 Mean -0.62 -0.33 -0.32 -0.32 -0.32 -0.32 -0.32 -0.32 -0.34 -0.14 -0.18 -0.08 	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245 0.71505245	607 Total 30 30 47 107 52 45 97 30 34 39 38	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6% 2.8% 12.9% 6.8% 7.9%	-0.70 [-0.97, -0.43] Mean Difference IV, Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.30 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07] 0.15 [-0.16, 0.46] -0.39 [-0.66, -0.12]	Mean Difference IV. Random, 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jin C 2019 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HJJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HJJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLJD Liu Gu 2014 HLJD Jiu GH 2014 HLWD Jiu GH 2014 HLWD Zhang GJ 2022 HLWD Zhang GJ 2022 HLWD Zhang MZ 2019 HLWD	= 1.95 (F 27; Chi ² = 5.11 (F mces: Cr = 5.11 (F Mean -1.08 -0.41 -1.28 -0.41 -1.28 -0.41 -1.28 -0.41 -1.28 -0.66 -0.66 -0.66 -0.66 -0.67 -0.14 -0.03 -0.41 -0.27 -0.14 -0.37 -0.14	= 0.05) = 235,59, df = > < 0.00001) ii ² = 89,59, df = 0.37 0.17578396 0.30216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 (l < 0.00001) 0.3241913 0.24515301 0.70760158 0.33192948 0.10535654	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 45 97 P = 0.6 30 34 41 38 30	 Mean -0.62 -0.23 -0.93 -0.32 -0.32 -0.32 -0.14 -0.14 -0.14 -0.18 -0.08 -0.18 -0.18 	01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 ² = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245 0.78619336 0.78619336	607 Total 30 30 47 107 52 45 97 30 34 39 38 30 34 39 38 30	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6% 2.8% 12.9% 6.8% 7.9% 6.8% 7.9%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.38 [-0.74, 0.04] -0.32 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.32 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07] 0.15 [-0.16, 0.46] -0.39 [-0.66, -0.12] -0.05 [-0.10, 0.00]	Mean Difference IV. Random. 95% CI
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jin C 2019 GGQL Zhang J 2018 GGQL Zhang J 2018 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng JJ 2019 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Liu L 2021 HLWD Wang MK 2021 HLWD Zhang MY 2019 HLWD Subtotal (95% Cl)	= 1.95 (F 27; Chi ² = 5.11 (F = 5.11 (F Mean -1.08 -0.41 -1.28 -0.61 -0.61 -0.66 -0.66 -0.66 -0.66 -0.66 -0.67 -0.27 -0.14 -0.41 -0	> = 0.05) = 235.59, df = > < 0.0001) ii ² = 89.59, df = 0.0001) ii ² = 89.59, df = 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 (I < < 0.00001) 0.3241913 0.324515301 0.70760158 0.31192948 0.10535654	628 15 (P < = 3 (P < 30 30 48 108 (P = 0. 52 45 97 P = 0.6 30 34 41 38 30 34 41 38 30 34 41 38	 Constant (1) Const	01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245 0.78619336 0.10583005	607 Total 30 30 47 107 52 45 97 30 30 43 97 30 30 43 97 30 107 107 107 107 107 107 107 10	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.5% 24.6% 12.5% 24.6% 12.9% 6.8% 7.9% 14.4%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.32 [-0.54, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07] 0.15 [-0.16, 0.46] -0.39 [-0.66, -0.12] -0.05 [-0.10, 0.00] -0.07 [-0.17, 0.03]	Mean Difference IV. Random. 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Test for subgroup 1.9.1 GGQL Test for Subgroup 1.9.1 GGQL Test for Overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng JJ 2019 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Zhang MX 2021 HLWD Zhang MX 2021 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Zhang MX 2021 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall (95% Cl)	= 1.95 (F 27; Chi ² = 5.11 (F mces: Ct E Mean -1.08 -0.41 -1.28 3)3; Chi ² = 2.81 (P -0.66 -0.666 -0.666 -0.666 -0.67 -0.27 -0.14 -0.03 -0.14 -0.15 -0.14 -0.15 -0.14 -0.27	P = 0.05) = 235.59, df = > < 0.0001) ii ² = 89.59, df = SD = 0.07 0.17578396 0.90216406 = 0.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 (I < < 0.00001) 0.3241913 0.324515301 0.70760158 0.31192948 0.0053664 = 7.79, df = 4 (I = 0.00)	628 15 (P < = 3 (P < 30 30 48 108 (P = 0. 52 45 97 P = 0.6 30 34 41 38 30 34 41 38 P = 0.1	 Mean -0.62 -0.23 -0.32 -0.33 (-0.14) -0.18 -0.08 -0.11 -0.18 -0.01 -0.19 -0.11 -0.11	01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245 0.78619336 0.10583005 49%	607 Total 30 30 47 107 52 45 97 30 34 397 30 34 39 38 300 171	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6% 12.9% 6.8% 7.9% 14.4% 44.8%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.30 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07] 0.15 [-0.16, 0.46] -0.39 [-0.66, -0.12] -0.05 [-0.10, 0.00] -0.07 [-0.17, 0.03]	Mean Difference IV. Random. 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Tu GZ 2014 GGQL Tu GZ 2014 GGQL Tu GZ 2014 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Liu L 2021 HLWD Zhang MZ 2014 HLWD Zhang MZ 2014 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Zhang MZ 2014 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 0.0 Test for overall effect: Z = 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	= 1.95 (F 27; Chi ² = 5.11 (F = 5.11 (F Mean -1.08 -0.41 -1.28 -0.6 -0.61 -0.61 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.27 -0.14 -0.03 -0.47 -0.15 -0.	<pre>> = 0.05) = 235.59, df = > < 0.0001) i² = 89.59, df = 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3269565 = 0.18, df = 1 (l < 0.00001) 0.3241913 0.3241913 0.324515301 0.70760158 0.31192948 0.10535654 = 7.79, df = 4 (l = 0.19)</pre>	628 15 (P < = 3 (P < 30 30 48 108 (P = 0. 52 45 97 P = 0.6 30 34 41 38 30 73 P = 0.1	 Constant (1) Const	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245 0.78619336 0.10583005 49%	607 Total 30 30 47 107 52 45 97 30 34 397 30 34 39 38 30 171	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.5% 24.6% 12.5% 24.6% 12.9% 6.8% 7.9% 14.4% 44.8%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.32 [-0.54, -0.10] -0.32 [-0.41, -0.23] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.39 [-0.66, -0.12] -0.05 [-0.10, 0.00] -0.07 [-0.17, 0.03]	Mean Difference IV. Random. 95% Cl
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Test for subgroup 1.9.1 GGQL Test for Subgroup 1.9.1 GGQL Test for Subgroup 1.9.1 GGQL Test for Overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Zhang GJ 2022 HLWD Zhang GJ 2022 HLWD Zhang MX 2011 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Zhang MX 2021 HLWD Zhang MX 2021 HLWD Zhang GJ 2022 HLWD Zhang GJ 2022 HLWD Zhang GS Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl)	= 1.95 (F 27; Chi ² = 5.11 (F mces: Ct E Mean -1.08 -0.41 -1.28 3)3; Chi ² = 2.81 (P -0.6 -0.66 -0.66 -0.66 -0.66 -0.66 -0.64 (P -0.27 -0.14 -0.14 -0.15 -0.15 -0.15 -1.32 (P	> = 0.05) = 235.59, df = > < 0.0001) i ² = 89.59, df = SD 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 (I < < 0.00001) 0.3241913 0.324515301 0.70760158 0.31192948 0.10535654 = 7.79, df = 4 (I = 0.19)	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 45 97.6 97.6 30 34 41 38 300 34 41 38 30 77.8	 Mean -0.62 -0.23 -0.32 -0.32 7); l² = -0.14 -0.18 -0.18 -0.18 -0.19 	01); ² = 94% 01), ² = 96.7% Control <u>SD</u> 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245 0.78619336 0.10583005 49%	607 Total 30 30 47 107 52 45 97 30 34 39 38 30 171 375	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.5% 24.6% 12.5% 24.6% 12.9% 6.8% 7.9% 14.4% 44.8%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.30 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.15 [-0.15, 0.07] 0.15 [-0.15, 0.07] 0.15 [-0.16, 0.46] -0.39 [-0.66, -0.12] -0.05 [-0.10, 0.00] -0.07 [-0.17, 0.03] -0.21 [-0.32, -0.10]	Mean Difference IV. Random. 95% Cl
Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z = Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jin C 2019 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Fest for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Ji GH 2014 HLWD Zhang MY 2019 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Zhang MY 2019 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl)	= 1.95 (F 27; Chi ² = 5.11 (F = 5.11 (F mces: Cr -1.08 -0.41 -1.28 -0.41 -1.28 -0.41 -1.28 -0.41 -1.28 -0.41 -0.41 -0.41 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.67 -0.15 -0.41 -0.41 -0.41 -0.27 -0.14 -0.32 -0.41 -0.27 -0.14 -0.32 -0.41 -0.41 -0.41 -0.66 -0.66 -0.66 -0.66 -0.61 -0.52 -0.5	<pre>> = 0.05) = 235,59, df = > < 0.00001) i² = 89,59, df = 0.37 0.37 0.3778396 = 10.49, df = 2 = 0.005) 0.32695565 = 0.18, df = 1 ((< 0.0001) 0.3241913 0.24515301 0.70760158 0.31192948 0.10535654 = 7.79, df = 4 ((= 0.19)</pre>	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 45 97 P = 0.6 30 34 41 38 30 34 41 8 30 77 P = 0.6 (P < 0. 73 78 8 (P < 0.	 C.00001 Mean -0.62 -0.33 -0.33 -0.37 -0.31 -0.32 -0.32 -0.32 -0.32 -0.33 -0.34 -0.14 -0.14 -0.14 -0.18 -0.08 -0.11 -0.18 -0.08 -0.11 <li< td=""><td>01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245 0.71505245 0.71505245 0.78619336 0.10583005 49% ; ² = 84%</td><td>607 Total 30 30 47 107 52 45 97 30 34 39 30 34 39 171 375</td><td>100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.5% 24.6% 12.9% 6.8% 7.9% 14.4% 44.8%</td><td>-0.70 [-0.97, -0.43] Mean Difference IV, Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.32 [-0.54, -0.10] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07] 0.15 [-0.16, 0.46] -0.39 [-0.66, -0.12] -0.30 [-0.66, -0.12] -0.30 [-0.66, -0.12] -0.32 [-0.17, 0.03] -0.21 [-0.32, -0.10]</td><td>Mean Difference IV. Random. 95% Cl</td></li<>	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245 0.71505245 0.71505245 0.78619336 0.10583005 49% ; ² = 84%	607 Total 30 30 47 107 52 45 97 30 34 39 30 34 39 171 375	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.5% 24.6% 12.9% 6.8% 7.9% 14.4% 44.8%	-0.70 [-0.97, -0.43] Mean Difference IV, Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.32 [-0.54, -0.10] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07] 0.15 [-0.16, 0.46] -0.39 [-0.66, -0.12] -0.30 [-0.66, -0.12] -0.30 [-0.66, -0.12] -0.32 [-0.17, 0.03] -0.21 [-0.32, -0.10]	Mean Difference IV. Random. 95% Cl
Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z = Test for subgroup 1.9.1 GGQL Fu GZ 2014 GGQL Jung Z 2014 GGQL Jung Z 2019 GGQL Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.2 HJJD Ding X 2018 HLJD Feng JJ 2019 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Zhang GJ 2022 HLWD Zhang GJ 2022 HLWD Zhang MZ 2019 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Test for overall effect: Z = T	= 1.95 (F 27; Chi ² = 5.11 (F mces: Cr -1.08 -0.41 -1.28 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.67 -0.14 -0.03 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.57 -0.14 -0.27 -0.14 -0.27 -0.14 -0.27 -0.14 -0.27 -0.14 -0.27 -0.15 -0.57 -0	P = 0.05) = 235,59, df = 2 > < 0.0001) ii ² = 89,59, df = 3 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.3 0.32695565 = 0.18, df = 1 (l < < 0.0001) 0.3241913 0.24515301 0.70760158 0.331192948 0.33192945 = 0.10535654 = 7.79, df = 4 (l = 0.002)	628 15 (P < = 3 (P < Total 30 30 48 108 (P = 0. 52 45 97 P = 0.6 30 34 41 38 30 34 41 38 97 P = 0.1 378 (P < 0.	 Mean -0.62 -0.23 -0.23 -0.93 005); l² -0.32 -0.32 -0.32 -0.14 -0.14 -0.14 -0.18 -0.08 -0.10); l² = 00001) 	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 ² = 81% 0.2787472 0% 1.62169664 0.22 0.71505245 0.78619336 0.10583005 49% ; ² = 84%	607 Total 30 47 107 52 45 97 30 34 39 38 30 171 375	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.5% 24.6% 2.8% 12.9% 6.8% 7.9% 14.4% 44.8%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.32 [-0.54, -0.10] -0.32 [-0.54, -0.10] -0.32 [-0.44, -0.16] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07] 0.15 [-0.16, 0.46] -0.39 [-0.66, -0.12] -0.55 [-0.10, 0.00] -0.07 [-0.17, 0.03] -0.21 [-0.32, -0.10]	Mean Difference IV. Random. 95% CI
Test for overall effect: Z : Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z : Test for subgroup 1.9.1 GGQL Test for subgroup 1.9.1 GGQL Test for Subgroup 1.9.1 GGQL Test for Subgroup 1.9.1 GGQL Test for Overall effect: Z = 1.9.2 HLJD Ding X 2018 HLJD Feng JJ 2018 HLJD Feng JJ 2018 HLJD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.9.3 HLWD Ji GH 2014 HLWD Zhang MZ 2019 HLWD Zhang MZ 2019 HLWD Zhang MZ 2019 HLWD Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Test	= 1.95 (F 27; Chi ² = 5.11 (F mces: Ct E Mean -1.08 -0.41 -1.28 30; Chi ² = 2.81 (P -0.6 -0.66 -0.66 -0.66 -0.66 -0.67 -0.14 -0.03 -0.14 -0.03 -0.14 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.27 -0.27 -0.15 -0.27 -0.27 -0.15 -0.27 -	<pre>> = 0.05) = 235.59, df = > < 0.0001) i² = 89.59, df = 0.37 0.17578396 0.90216406 = 10.49, df = 2 = 0.005) 0.32695565 = 0.18, df = 1 (l < 0.00001) 0.3241913 0.24515301 0.70760158 0.31192948 0.10535654 = 7.79, df = 4 (l = 0.19) = 54.95, df = 9 = 0.0002) i² = 13.40, df =</pre>	628 15 (P < 30 30 48 108 (P = 0. 52 45 97 6 30 34 41 38 30 30 34 41 38 30 778 (P < 0. 2 (P =	 Mean -0.62 -0.23 -0.32 -0.32 7); l² = -0.14 -0.18 -0.19 00; l² = 00001) 0.0011 	01); ² = 94% 01), ² = 96.7% Control SD 0.20420578 0.14525839 1.00955436 = 81% 0.4 0.2787472 0% 1.62169664 0.22 0.71505245 0.78619336 0.10583005 49% ; ² = 84% , ² = 84% , ² = 85.1%	607 Total 30 30 47 107 52 45 97 30 34 39 38 30 171 375	100.0% Weight 11.6% 13.8% 5.2% 30.6% 12.1% 12.5% 24.6% 12.5% 24.6% 12.9% 6.8% 7.9% 14.4% 44.8%	-0.70 [-0.97, -0.43] Mean Difference IV. Random, 95% Cl -0.46 [-0.61, -0.31] -0.18 [-0.26, -0.10] -0.35 [-0.74, 0.04] -0.32 [-0.54, -0.10] -0.32 [-0.54, -0.10] -0.34 [-0.47, -0.21] -0.32 [-0.41, -0.23] -0.13 [-0.72, 0.46] -0.04 [-0.15, 0.07] 0.15 [-0.16, 0.46] -0.39 [-0.66, -0.12] -0.05 [-0.10, 0.00] -0.07 [-0.17, 0.03] -0.21 [-0.32, -0.10]	Mean Difference IV. Random. 95% Cl

FIGURE 4

(Continued). Forest plot for evidence that compared HLPs plus metformin with metformin. Note: (A), HLPs plus metformin vs. metformin for FBG; (B), HLPs plus metformin vs. metformin for 2hPG; (C), HLPs plus metformin vs. metformin for HbA1c; (D), HLPs plus metformin vs. metformin for FINS; (E) HLPs plus metformin vs. metformin for HOMA-IR; (F), HLPs plus metformin vs. metformin for TC; (G), HLPs plus metformin vs. metformin for TG; (H), HLPs plus metformin vs. metformin for LDL-c; (I), HLPs plus metformin vs. metformin for HDL-c; (J), HLPs plus metformin vs. metformin vs. metformin for TG; (G), HLPs plus metformin vs. metformin for TG; (G), HLPs plus metformin vs. metformin for TG; (I), HLPs plus metformin vs. metformin for HDL-c; (I), HLPs plus metformin vs. metformin vs.

This systematic review and meta-analysis included 33 RCTs involving 2,846 participants. In this study, the included RCTs were rigorously screened and controlled. With regard to quality, the risks of detection bias (33 trials had low risks), attrition bias (32 trials had low risks), reporting bias (24 trials had low risks), and other bias (23 trials had low risks) were generally low, but the risks of selection bias (18 trials had low risks) and performance

bias (3 trials had low risks) were generally unclear. Therefore, the methodological quality was considerably moderate. Findings from this study indicate that compared with metformin alone, HLPs combined with metformin is more beneficial for FBG, 2hPG, HAb1c, FINS, HOMA-IR, TC, TG, LDL-c, and, HDL-c, but the improvement of HLPs on GD was not statistically significant.

TABLE 4 Sensitivity analysis via excluding the under or over estimated trials.

Analysis	MD (95% CI)	I2 (%)	p (Z test)	Excluded studies [reference]	MD (95% CI)	I ² (%)	p (Z test)
2hPG-DHHL	-2.38 [-3.40,-1.35]	82%	<i>p</i> < 0.00001		Not applicable		
2hPG-HLJD	-1.49 [-2.12,-0.87]	74%	p < 0.00001	Xing et al. (2017)	-1.80 [-2.23, -1.37]	42	p < 0.00001
HbA1c-GGQL	-0.74 [-1.17,-0.32]	95%	p = 0.0006	Fan et al. (2017)	-1.04 [-1.16,-0.92]	0	p < 0.00001
				Xiong, (2019)			
				Zhang, (2019)			
HbA1c-HLEJ	-1.13 [-1.47, -0.78]	83%	p < 0.00001	Gao, (2020)	-0.85 [-0.99, -0.70]	0	p < 0.00001
				Wang, (2020)			
HbA1c-HLJD	-0.72 [-1.05, -0.38]	88%	p < 0.0001	Feng, (2019)	-0.64 [-0.81, -0.48]	15	p < 0.00001
				Xing et al. (2017)			
HbA1c-HLWD	-0.86 [-1.13, -0.59]	52%	p < 0.00001	Ji, (2017)	-0.96 [-1.15, -0.77]	8	p < 0.00001
FINS-HLJD	-0.52 [-1.60, 0.56]	0%	p = 0.34	Not applicable			
FINS-HLWD	-2.26 [-3.00, -1.51]	63%	p < 0.00001	Wang et al. (2021)	-1.97 [-2.51, -1.42]	37	p < 0.00001
HOMA-IR-DHHL	-0.08 [-0.22,0.06]	0%	p = 0.26	Not applicable			
TC-GGQL	-0.57 [-0.99, -0.15]	88%	p = 0.008	Fan et al. (2017)	-0.60 [-0.80, -0.40]	0	p < 0.00001
				Jin et al. (2019)			
TC-HLEJ	-1.38 [-1.62, -1.14]	70%	p < 0.00001	Wang, (2020)	-1.50 [-1.68, -1.33]	0	p < 0.00001
TG-GGQL	-0.46 [-0.78, -0.13]	89%	p = 0.006	Jin et al. (2019)	-0.26 [-0.38, -0.14]	4	p < 0.0001
TG-HLEJ	-1.19 [-1.84, -0.55]	96%	p = 0.0003	Wang, (2020)	-1.48 [-1.70, -1.26]	0	p < 0.00001
LDL-c-HLEJ	-1.17 [-1.77, -0.57]	94%	p = 0.0001	Wang, (2020)	-1.44 [-1.66, -1.23]	0	p < 0.00001
LDL-c-HLWD	-0.36 [-0.71, 0.00]	87%	p = 0.05	Ji, (2017)	-0.48 [-0.68, -0.28]	36	<i>p</i> < 0.00001
HDL-c-DHHL	-0.32 [-0.54, -0.10]	81%	p = 0.005	Jin et al. (2019)	-0.45 [-0.59, -0.30]	0	p < 0.00001

HbA1c; (D) Represents FINS; (E) Represents HOMA-IR; (F) Represents TC; (G) Represents TG; (H) Represents LDL-c; (I) Represents HDL-c.

TABLE 5 Egger's publication test of the trials that compared HLPs plus metformin vs. metformin.

Detection indicators	p Value
FBG	<i>p</i> = 0.325
2hPG	p = 0.233
HbA1c	p = 0.007
FINS	p < 0.001
HOMA-IR	p < 0.001
TC	p = 0.063
TG	p = 0.058
LDL-c	p = 0.286
HDL-c	<i>p</i> = 0.370

In this study, treatment with different HLPs exhibited different hypoglycemic and lipid-lowering effects, suggesting that metformin combined with different HLPs may cause variations in medicinal metabolism. This study found that DHHL decoction can improve FBG, 2hPG, HbA1c, and FINS, but does not affect HOMA-IR. In addition, no well-established data are available to analyze the effect of DHHL decoction on TC, TG, LDL-c, and HDL-c. GGQL decoction can improve all blood glucose and blood lipid indicators. HLEJ decoction can improve FBG, 2hPG, HbA1c, TC, TG, and LDL-c, but its role in FINS, HOMA-IR, and HDL-c has not been reported. HLJD decoction can improve FBG, 2hPG, HbA1c, HOMA-IR, TC, TG, LDL-c, and HDL-c, but exerts no effect on FINS. HLWD decoction can improve FBG, 2hPG, HbA1c, FINS, HOMA-IR, and TG, but the

improvement in TC, LDL-c, and HDL-c was not statistically significant. Therefore, among all HLPs, GGQL decoction is potentially the most effective prescription for improving T2DM.

The advantages of this study are as follows: 1) In the sensitivity analysis, the difference in prescriptions may be the important source of heterogeneity, so we performed a subgroup analysis in different HLPs. Meanwhile, the overall results exhibited heterogeneity in this study, so we excluded the individual trials that caused heterogeneity, and the heterogeneity was significantly reduced. 2) With regard to publication bias, we used funnel plot, Egger's test, and trim-and-fill method to evaluate the publication bias. The results of funnel plot and Egger's test suggest that no publication bias was found in the enhancing effect of HLPs on FBG, 2hPG, TC, TG, LDL-c, and HDL-c. Then the trim-and-fill method was used to further evaluate the publication bias of HbA1c, FINS, and HOMA-IR, which still has important reference significance for the improvement of HbA1c, FINS, and HOMA-IR with HLPs. 3) This study also applied TSA analysis to assess the sample size required and thereby draw reliable conclusions. The sample size of all but one (HLPs for GD) were found sufficient to support this study and thereby draw reliable conclusions. Therefore, the results of this study present high reliability.

The present study also has several limitations: 1) All RCTs included in this study were Chinese, which likely led to geographical bias. Thus, an international collaboration should be conducted to ensure the generalizability of the findings. 2) The methodological quality of the RCTs was low, only half of the RCTs described the allocation concealment and blinding method, which might have led to a nonnegligible risk of bias. Thus, more scientific RCTs with specific randomize allocation details are needed. 3) Different kinds of HLPs vary in their hypoglycemic mechanism of action. Thus, high heterogeneity was observed among different HLPs, limiting the confirmation of the efficacy of HLPs in the treatment of T2DM. 4) Variations in dose in the same prescription are a concern in TCM. Variations in dose may also lead to differences in efficacy, leading to heterogeneity in research. 5) Current evidence shows that GGQL decoction can be potentially used as the optimal complementary approach to regulate glucose and lipid levels, but this finding has yet to be proved. Therefore, more rigorously designed and large-scale RCTs are required to confirm our findings.

5 Conclusion

Current evidence from this meta-analysis and systematic review suggests that compared with metformin alone, HLPs provide more benefits for the treatment of T2DM, particularly in FBG, 2hPG, HAb1c, FINS, HOMA-IR, TC, TG, LDL-c, and HDL-c. Due to insufficient data from the included RCTs, the therapeutic effect of HLPs on GD has not been demonstrated, and the findings should be elucidated with caution because of the limitations. Therefore, larger-scale and well-designed RCTs are essential to verify HLPs as a promising candidate treatment for patients with T2DM.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

Conception and design, development of methodology by LP and ZD. Literature search, article selection and data extraction by LP and XZ. The assessment of methodological bias risk and statistical analysis by GL and LP. Preparing the manuscript draft by LP and GL. Study supervision, review and revision of the manuscript by KX and ZD. All authors read and approved the final version of the manuscript.

Funding

This work was supported by Qilu Zhiyuan academic school inheritance project (2022-93); Cultivation project of science and technology history of Shandong University of traditional Chinese Medicine (2021KJSKFKT-B03); National Traditional Chinese Medicine Administration Key Discipline Construction Project of Traditional

References

Carracher, A. M., Marathe, P. H., and Close, K. L. (2018). International diabetes federation 2017. J. Diabetes 10, 353–356. doi:10.1111/1753-0407.12644

Chen, G., Lu, F. E., and Xu, L. J. (2007). Effects of Huanglian Jiedu Decoction on glucose transporter 4 in target tissues of type 2 diabetic rats. *J. Chin. Integr. Med.* 5, 412–415. doi:10.3736/jcim20070410

Chen, H. Y., Ye, X. L., Cui, X. L., He, K., Jin, Y. N., Chen, Z., et al. (2012). Cytotoxicity and antihyperglycemic effect of minor constituents from Rhizoma Coptis in HepG2 cells. *Fitoterapia* 83, 67–73. doi:10.1016/j.fitote.2011.09.014

Chen, S. S., and Wang, Y. Q. (2021). Modified Huanglian Jiedu decoction combined with metformin in Treating 50 cases of diabetes complicated with obesity. *Zhejiang J. Tradit. Chin. Med.* 56, 711–712. doi:10.13633/j.cnki.zjtcm. 2021.10.005

Chen, X. (2018). Clinical observation on huanglian wendan decoction to interfere in the syndrome of phlegm and heat intermingling in type 2 diabetes with nonalcoholic fatty liver. Jinan, China: Shandong University of traditional Chinese Medicine.

Chen, Y., Xu, G. L., Li, B. T., Jiang, L., Sheng, Y. X., Zhou, Z. Y., et al. (2018). Effect of gegen qinlian Tang serum in regulating glucose metabolism of IR-HepG2 cells. *Chin. J. Exp. Tradit. Med. Form.* 24, 156–160. doi:10.13422/j.cnki.syfjx.2015050120

Chen, Y. X., Wan, H. J., Zhu, J. H., Gao, S. L., Sun, H. X., Zhou, G. P., et al. (2019). Effect of huanglian wendan Tang on FBG,INS and gut microbiota in rats with T2D. *Pharmacol. Clin. Chin. Materia Medica* 35, 2–7. doi:10.13412/j.cnki.zyyl.2019. 03.001

Ding, X. (2018). Clinical effect of Chinese medicine Huanglian Jiedu Decoction in treatment of type 2 diabetes mellitus. *China J. Pharm. Econ.* 13, 62–65. doi:10. 12010/j.issn.1673-5846.2018.08.018

Dong, J. X. (2017). Clinical effect of modified Huanglian Wendan Decoction Combined with metformin on type 2 diabetes mellitus. *China's Naturop.* 25, 66–67. doi:10.19621/j.cnki.11-3555/r.2017.10.055 Chinese Medicine National Chinese Medicine Offifice Letter (2012) No. 32.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar. 2022.956313/full#supplementary-material

Fan, Y. F., Cao, W., Hu, Y. X., Liu, K. M., and Liu, C. (2017). The rapeutic effectiveness of Gegen Qinlian decoction on newly diagnosed type 2 diabetes mellitus with insulin resistance. *Mod. J. Integr. Traditional Chin. West. Med.* 26, 115–117. doi:10.3969/j.issn.1008-8849.2017.02.001

Feng, J. J. (2019). Clinical effect of Huanglian Jiedu Decoction on type 2 diabetes mellitus. J. China Prescr. Drug 17, 94–95.

Feng, L. Y. (2015). Hypoglycemic mechanism of Huanglian Ejiao Decoction on type 2 diabetic rats. Guangzhou, china: Guangzhou University of traditional Chinese Medicine.

Fu, G. Z. (2017). Gegen Qinlian Decoction in patients with obese type 2 diabetes mellitus (damp heat type). Zhengzhou, China: Henan University of traditional Chinese Medicine. dissertation. Zhengzhou (IL).

Fu, Y., Hu, B., Tang, Q., Fu, Q., and Xiang, J. (2005). Hypoglycemic activity of jatrorrhizine. J. Huazhong Univ. Sci. Technol. Med. Sci. 25, 491–493. doi:10.1007/bf02895996

Fu, Z. H. (2021). Effects of modified Huanglian Wendan Decoction on blood glucose, IL-6, IL-10 and IL-12 levels in patients with type 2 diabetes mellitus with phlegm dampness syndrome. *Mod. Med. Health Res.* 5, 62–64.

Gao, Y. (2020). Clinical observation of huanglian ejiao decoction in treating diabetes due to yin-deficiency and heat-excess. *Chin. J. Mod. Drug Appl.* 14, 206–208. doi:10.14164/j.cnki.cn11-5581/r.2020.05.095

Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., et al. (2008). GRADE Working GroupGRADE: An emerging consensus on rating quality of evidence and strength of recommendations. *BMJ (online)* 336, 924–926. doi:10.1136/bmj.39489.470347.AD

Hao, J. H., Bao, Y. M., Bao, Y., Lu, W., Zhang, C. W., and Hao, Y. J. (2019). Effect of Dahuang Huanglian Xiexin Decoction on the expression of AMPKa, PGC-1a and GLUT4 in skeletal muscle of type 2 diabetic rats. *China Med. Her.* 16, 13–18.

Higgins, J. P. T., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., et al. (2011). The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 343, d5928. doi:10.1136/bmj.d5928 Huang, J., Hu, W., and Lin, X. D. (2018). Effect of berberine hydrochloride on insulin resistance in type 2 diabetes and its mechanism. *Chin. J. Gerontology* 38, 4130–4132. doi:10.3969/j.issn.1005-9202.2018.17.013

Ji, G. H. (2017). The clinical research of effect of huanglianwendan decoction on abdominal obesity type 2 diabetic insulin resistance. Jinan, china: Shandong University of traditional Chinese Medicine. [dissertation]. [Jinan (IL)].

Jiang, S., Wang, Y., Ren, D., Li, J., Yuan, G., An, L., et al. (2015). Antidiabetic mechanism of Coptis chinensis polysaccharide through its antioxidant property involving the JNK pathway. *Pharm. Biol.* 53, 1022–1029. doi:10.3109/13880209. 2014.952838

Jin, C., Zhang, Y., Li, R. H., and Liu, B. B. (2019). Effect of gegen qinlian decoction on glucose and lipid metabolism index and body weight in patients with type 2 diabetes mellitus. *Med. Inf.* 32, 164–165. doi:10.3969/j.issn.1006-1959.2019.14.055

Jin, D., Lu, F. E., Chen, G., Sun, H., and Lu, X. H. (2007). Effects of Huanglian Jiedu Decoction on phosphatidylinositol-3-kinase expression in target tissues of type 2 diabetic rats. *J. Chin. Integr. Med.* 5, 541–545. doi:10.3736/jcim20070513

Li, A. Y., Yang, J., Zhang, X. Y., and Zhang, N. (2019). Research progress on effect of hypoglycemic mechanism of berberine in treatment of type 2 diabetes mellitus. *Chin. J. Exp. Tradit. Med. Form.* 25, 219–226. doi:10.13422/j.cnki.syfjx.20191806

Li, J. C., Shen, X. F., and Meng, X. L. (2013). A traditional Chinese medicine JiuHuangLian (Rhizoma coptidis steamed with rice wine) reduces oxidative stress injury in type 2 diabetic rats. *Food Chem. Toxicol.* 59, 222–229. doi:10.1016/j.fct.2013.06.005

Li, X. M., Bao, Y., and Gao, X. M. (2017). Effect and mechanism of Dahuang Huanglian Xiexin Decoction combined with western medicine in the treatment of type 2 diabetes with fire syndrome. *Cardiovasc. Dis. J. Integr. traditional Chin. West. Med.* 5, 152–153. doi:10.16282/j.cnki.cn11-9336/r.2017.20.114

Li, Y. B., Zhang, W. H., Liu, H. D., Liu, Z., and Ma, S. P. (2016). Protective effects of Huanglian Wendan Decoction aganist cognitive deficits and neuronal damages in rats with diabetic encephalopathy by inhibiting the release of inflammatory cytokines and repairing insulin signaling pathway in hippocampus. *Chin. J. Nat. Med.* **11**, 813–822. doi:10.1016/S1875-5364(16)30098-X

Lin, Y., and Sun, Z. (2010). Current views on type 2 diabetes. J. Endocrinol. 204, 1–11. doi:10.1677/JOE-09-0260

Liu, D. H. (2006). Clinical study of Huanglian Ejiao Decoction on diabetes of yin deficiency and heat excess type. *Guangming Tradit. Chin. Med.* 21, 31–32.

Liu, J. (2017). The clinical effect of Huanglian Ejiao decoction combined with conventional western medicine in the treatment of diabetes mellitus with Yin deficiency and heat excess. *Chin J Clin. Ration. Drug Use* 10, 83–84. doi:10.15887/j. cnki.13-1389/r.2017.15.043

Liu, L., Yang, Y. G., Zou, G. L., Wu, X., Li, N., and Han, Y. B. (2021). Effects of modified Huanglianwendan decoction on cardiovascular risk factors in patients with metabolic syndrome complicated with type 2 diabetes mellitus with phlegm-heat interaction syndrome. *China Med.* 16, 1562–1566. doi:10.3760/j.issn.1673-4777.2021.10.029

Liu, X. M., Song, J. M., and Song, L. N. (2010). Effects of berberine on InsR and IRS-1/-2 protein expression in pancreatic islet cells of type 2 diabetic rats. *Acta Univ. Tradit. Medicalis Sin. Pharmacol. Shanghai* 24, 65–67. doi:10.16306/j.1008-861x.2010.04.022

Pan, S. S., Li, L., and Wang, X. (2021). Clinical effect of Huanglian Wendan Decoction Combined with metformin on early type 2 diabetic patients with damp heat syndrome. *Chin. Tradit. Pat. Med.* 43, 557–559. doi:10.3969/j.Issn.1001-1528.2021.02.055

Pang, X. Y., Pang, X. M., Li, Y., and Sui, S. (2018). Clinical study on gegen qinlian decoction for the treatment of type 2 diabetes. *Diabetes New World* 21, 103–104. doi:10.16658/j.cnki.1672-4062.2018.17.103

Sanchez-Rangel, E., and Inzucchi, S. E. (2017). Metformin: Clinical use in type 2 diabetes. *Diabetologia* 60 (9), 1586–1593. doi:10.1007/s00125-017-4336-x

Sharma, R., Amin, H., Galib, P. K., and Prajapati, P. K. (2015). Antidiabetic claims of tinospora cordifolia (willd) miers: Critical appraisal and role in therapy. *Asian pac. J. Trop. Biomed.* 5, 68–78. doi:10.1016/S2221-1691(15)30173-8

Sharma, R., Bolleddu, R., Maji, J. K., Ruknuddin, G., and Prajapati, P. K. (2021). *In-vitro* α-amylase, α-glucosidase inhibitory activities and *in-vivo* antihyperglycemic potential of different dosage forms of guduchi (*tinospora cordifolia* [willd.] miers) prepared with ayurvedic bhavana process. Front. *Pharmacol.* 12, 642300. doi:10.3389/fphar.2021.642300

Sharma, R., and Prajapati, P. K. (2017). Diet and lifestyle guidelines for diabetes: Evidence based ayurvedic perspective. *Rom. J. Diabetes Nutr. Metab. Dis.* 21, 335–346. doi:10.2478/rjdnmd-2014-0041

Song, C. L., and Zhang, W. N. (2022). Curative effect of modified huanglian jiedu decoction on type 2 diabetes mellitus. *Liaoning Journal of traditional Chinese Medicine* 49, 110–113. doi:10.13192/j.issn.1000-1719.2022.04.030

Sui, M., Chen, G. F., Mao, X. D., Wei, X., Wu, B., Huang, H., et al. (2018). The mechanism exploration of gegen qinlian decoction on hepatic insulin resistance through SIRT1/FoxO1 pathway. *J. Nanjing Univ. Tradit. Chin. Med.* 34, 578–582. doi:10.14148/j.issn.1672-0482.2018.0578

Tian, J., Jin, D., Bao, Q., Ding, Q., Zhang, H., Gao, Z., et al. (2019). Evidence and potential mechanisms of traditional Chinese medicine for the treatment of type 2 diabetes: A systematic review and meta-analysis. *Diabetes, Obes. metabolism* 21 (8), 1801–1816. doi:10.1111/dom.13760

Tong, X. L., Ji, H. Y., and Li, M. (2009). New discussion of pi-dan. Chin. J. Trad. Chin. Med. Pharm. 24, 988–991.

Tong, X. L. (2013). The application of Huanglian series of prescriptions in the treatment of diabetes. *J. traditional Chin. Med.* 54, 209–211.

Wang, G. Z. (2020). Clinical observation of Huanglian Ejiao decoction combined with western medicine in treating diabetes due to yin deficiency and excess heat. *Guangming Tradit. Chin. Med.* 35, 1718–1720. doi:10.3969/j.issn.1003-8914.2020.11.044

Wang, J., Wang, L., Lou, G. H., Zeng, H. R., Hu, J., Huang, Q. W., et al. (2019). Coptidis rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. *Pharm. Biol.* 57, 193–225. doi:10. 1080/13880209.2019.1577466

Wang, M. K., Cheng, L., Zhao, X., and Li, A. L. (2021). Clinical study of huanglian wendan decoction on type 2 diabetes mellitus with dampness-heat amassment pattern. *Res. Integr. Traditional Chin. West. Med.* 13, 369–372. doi:10.3969/j.issn. 1674-4616.2021.06.003

Wei, Y. P., Yang, Y. W., and Zhang, Y. (2021). Clinical analysis of huanglian jiedu decoction in treating obese type 2 diabetes. *World Compd. Med.* 7, 139–141.

Wetterslev, J., Jakobsen, J. C., and Gluud, C. (2017). Trial Sequential Analysis in systematic reviews with meta-analysis. *BMC Med. Res. Methodol.* 17, 39. doi:10. 1186/s12874-017-0315-7

Wu, B., Sui, M., Zhu, Y., Ding, K., and Fan, Y. F. (2019). Forty-three cases of type II diabetes mellitus with phlegm-dampness-heat accumulation syndrome treated with three yellows decoction. *Henan Tradit. Chin. Med.* 39, 839–842. doi:10.16367/j.issn.1003-5028.2019.06.0208

Xing, Y., Fu, X. L., Xin, Y., and Pei, J. K. (2017). Clinical effect of Huanglian Jiedu Decoction on type 2 diabetic patients with insulin resistance. *Gansu Med. J.* 36, 941–942. doi:10.15975/j.cnki.gsyy.2017.11.015

Xiong, Q. J. (2019). Clinical effect of Gegen Qinlian decoction in the treatment of type 2 diabetes. *Clin. Med. Res. Pract.* 4, 148–149. doi:10.19347/j.cnki.2096-1413. 201926063

Yang, T. C., Chao, H. F., Shi, L. S., Chang, T. C., Lin, H. C., and Chang, W. L. (2014). Alkaloids from Coptis chinensis root promote glucose uptake in C2C12 myotubes. *Fitoterapia* 93, 239–244. doi:10.1016/j.fitote.2014.01.008

Yang, W. J., and Wang, P. (2013). Intervention of Huanglian Jiedu Decoction on obesity patients with type 2 diabetes mellitus. *Shandong J. Tradit. Chin. Med.* 32, 535–537. doi:10.16295/j.cnki.0257-358x.2013.08.006

Yu, F. L., Xu, F. J., Li, Q., Tong, A. H., and Yu, F. Q. (2012). Effects of exenatide combined with berberine on early insulin secretion in patients with first-onset type 2 diabetes. J. Clin. Ration. Drug Use 5, 32–33. doi:10.15887/j.cnki.13-1389/r.2012.11.101

Zhang, G. J. (2022). Clinical effect of huanglian wendan decoction in the treatment of type 2 diabetes mellitus with accumulation of damp-heat. *Diabetes New World* 4, 64–67. doi:10.16658/j.cnki.1672-4062.2022.08.064

Zhang, H. F., Zhou, Y. Q., and Zhong, Z. Y. (2019). Efficacy of Gegen Qinlian Decoction combined with metformin in the treatment of type 2 diabetes with damp-heat. *Chin. Community Dr.* 35, 128–129. doi:10.3969/j.issn.1007-614x. 2019.05.085

Zhang, J., Ma, Q., and Chen, R. (2018). Clinical effect and mechanism of Gegen Qinlian Decoction on type 2 diabetes mellitus with lower extremity vascular disease. *Shanxi J. Traditional Chin. Med.* 39, 86–88. doi:10.3969/j.issn.1000-7369.2018. 01.028

Zhang, M. Y. (2019). Observation of the clinical effect on the treatment of obese T2DM damp-heat and spleen -trapping syndrome with modified huang lian wen dan decoction. Nanjing, China: Nanjing University of traditional Chinese Medicine. dissertation. Nanjing (IL).

Zhang, X. J., Deng, Y. X., Shi, Q. Z., He, M. Y., Chen, B., and Qiu, X. M. (2013). Hypolipidemic effect of the Chinese polyherbal Huanglian Jiedu decoction in type 2 diabetic rats and its possible mechanism. *Phytomedicine* 21, 615–623. doi:10.1016/ j.phymed.2013.11.004

Zhang, X. T. (2014). Clinical observation of huanglian jiedu decoction combined with metformin in treating type 2 diabetes. *Jilin Med. J.* 35, 3471–3473.

Zhou, X. S., Han, Y., Zhu, X. B., and Yang, J. (2022). Therapeutic effect of Huanglian Ejiao Decoction on type 2 diabetes with Yin deficiency and heat excess and its influence on glucose metabolism. *Journal of Sichuan of Traditional Chinese Medicine* 40, 114–116.

Zou, Z. Q., and Lao, C. Q. (2016). Observation of curative effect of Dahuang Huanglian Xiexin Decoction combined with western medicine on type 2 diabetes mellitus. *Guid. J. Traditional Chin. Med. Pharm.* 22, 104–106. doi:10.13862/j.cnki. cn43-1446/r.2016.15.035