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Background: Hyperuricemia (HUA) is a metabolic disease caused by reduced

excretion or increased production of uric acid. This research aims to study the

practical components, active targets, and potential mechanism of the “Radix

ginseng (RG)-Ziziphus jujube (ZJ)” herb pair through molecular docking,

network pharmacology, and animal experiments.

Methods: The potential targets of “Radix ginseng (RG)-Ziziphus jujube (ZJ)” herb

pair were obtained from the TCMSP database. The therapeutic targets of HUA

were acquired from the GendCards, OMIM, PharmGkb, and TTD databases.

Protein-protein interaction network (PPI) was constructed in the STRING

11.0 database. The David database was used for enrichment analysis.

Molecular Docking was finished by the AutoDock Vina. And we employed

Radix ginseng and Ziziphus jujube as raw materials, which would develop a

new functional food fresh ginseng paste (FGP) after boiling. In addition,

benzbromarone (Ben) (7.8 mg/kg) and allopurinol (All) (5 mg/kg) were used

as positive drugs to evaluate the hyperuricemia induced by FGP (400 and

800mg/kg) potassium oxazine (PO) (100 mg/kg) and hypoxanthine (HX)

(500 mg/kg) on mice.

Results: The results showed that 25 targets in the “RG-ZJ” herb pair interacted

with hyperuricemia. Then protein-protein interaction (PPI) analysis showed that

TNF, IL-1β, and VEGFAwere core genes. KEGG enrichment analysis showed that

the Toll-like receptor signaling pathway and IL-17 signaling pathway were

mainly involved. Meantime, animal experiments showed that FGP could
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improve the HUA status of mice by reducing serum UA BUN, XO, and liver XO

levels (p < 0.05, p < 0.01). Furthermore, we analyzed themain ingredients of FGP

by HPLC.We found that themain ingredients of FGP had solid binding activity to

the core target of HUA by molecular docking.

Conclusion: This study explored the active ingredients and targets of the “RG-

ZJ” herb pair on HUA through network pharmacology, molecular docking, and

animal experiments. It revealed the improvement of FGP in mice with HUA.

KEYWORDS

radix ginseng, ziziphus jujube, fresh ginseng paste, hyperuricemia, network
pharmacology, molecular docking

Introduction

Hyperuricemia (HUA) is a disease caused by purine

metabolic disorder or decreased uric acid (UA) excretion

leading to increased serum UA levels (Wu et al., 2020). At

present, people’s living standards continue to improve, and

the diet structure has undergone unreasonable changes.

People’s excessive intake of high protein and purine food

leads to an increasing trend in the number of HUA patients,

characterized by younger age (Simin et al., 2022). HUA can cause

gout, also an inducing factor for hypertension, obesity,

cardiovascular disease, renal failure, and other diseases (Ma

et al., 2019; Bezerra et al., 2021; Yang et al., 2022). However,

the current first-line drugs to treat HUA have specific side effects,

such as Benzbromarone (Dalbeth et al., 2021) and Allopurinol

(Khanna et al., 2012).

In the development process of traditional Chinese medicine

(TCM), herb pairs (mixture of two herbs), as the basic

composition units of Chinese herbal formulas, have special

clinical significance in TCM and are much simpler than other

complex formulas without altering their basic therapeutic

features (Han et al., 2016). Radix ginseng (RG) contains

various active ingredients such as ginsenosides and

polysaccharides. It has various pharmacological activities, such

as pharmacological activities of antibiosis, anti-tumor activities,

antioxidation, anti-diabetes, and anti-cardiovascular diseases

(Khanna et al., 2012; Li et al., 2015). Moreover, it has strong

liver and kidney protection. In addition, many studies have

shown that the secondary saponins in ginseng have better

pharmacological activities, such as ginsenoside Rk3, Rh4, Rg3,

Rg5, and Rh2 (Yu et al., 2012; Li et al., 2016; Zhang et al., 2018;

Hu et al., 2019; Liu et al., 2020). Ziziphus jujube (ZJ) is a healthy

food containing various biologically active substances, such as

polysaccharides, polyphenols, alkaloids, and other nutrients

(Hernández et al., 2016; Lu et al., 2021). These nutrients from

ZJ have physiological functions, including antioxidant (Zhao

et al., 2014), anti-inflammatory, hypoglycemia (Kawabata

et al., 2017), and anti-hyperlipidemia (Jeong and Kim, 2019).

Both RG and ZJ are typical medicinal and edible medicinal

materials with good pharmacological activities. The “RG-ZJ”

herb pair has greater medicinal value. In this study, we

developed a potential functional food Fresh Ginseng Paste

(FGP), which was prepared by cooking Radix ginseng (RG)

and Ziziphus jujube (ZJ) in the best proportion. The

preparation method of fresh ginseng paste is to select fresh

ginseng and jujube (RG: ZJ = 1: 3). Firstly, the ginseng was

purified, and the ginseng whiskers were separated from the main

root. At the same time, the jujube was crushed into 200mesh very

fine powder, and then the ginseng whiskers were added to the

purified water with a ratio of 1: 30 according to the mass. After

the fire was boiled, the fire was boiled for 30 min. After repeating

twice, it was crushed into a homogenate and mixed with the

jujube very fine powder. At 45°C, the control pressure was

1.1 Mpa for 30 min, and it was boiled into a thick paste. FGP

has been proved to have pharmacological activities such as

promoting sleep (Su et al., 2021) and anti-fatigue and has

great potential for development. Furthermore, FGP contains

abundant saponins and flavonoids, which can be effectively

improved.

Based on the above research, in the study, network

pharmacology was employed to predict the mechanism of

action of the “RG-ZJ” herb pair on HUA intervention, screen

out the foremost practical components, and predict the targets

that it acts on HUA. To verify the above results, the improvement

effect of FGP on HUA in mice was preliminarily explored.

Materials and methods

Materials and equipment

Sixteen ginsenosides 20(S)-ginsengoside Rg2, 20 (S)-

ginsengoside Rh1, 20 (R)-ginsenoside Rh1, F1, Rg6, F4, Rk3,

Rh4, 20 (S)-sinsenoside Rg3, 20 (R)-ginsenoside Rg3, CK, Rk1,

Rg5, 20 (S)-ginsenoside Rh2, 20 (R)-ginsenoside Rh2, and PPD

standards were purchased from the Hongjiu Biotech Co., Ltd.

(Jilin, China). The purity of all these standards was over 98% as

indicated by the manufacturer. HPLC-grade acetonitrile was

purchased from Merck Co. (Merck, Darmstadt, Germany).

Wahaha purified water was purchased from Hangzhou
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Wahaha Group Co., LTD. Ultraviolet spectrophotometer (UV)

was purchased from Shanghai Metash instruments Co., LTD.

(UV-9000, Shanghai, China). Other chemicals were of reagent

grade. Waters e 2695 HPLC system (Palo Alto, CA,

United States).

Sample preparation

Fresh Ginseng Paste (FGP) was produced and provided by

Liaoning XIFENG Pharmaceutical Group Co., Ltd. (License No.

SC10721052200667). FGP based on “RG-ZJ”, selected natural

growth was born of Panax ginseng C.A. Meyer cv. Silvatica,

covered for 5 years with high quality, using the unique patented

technology, scientific processing, transformation of rare active

substances, enrichment of the represented by Rg3, Rk1, Rg5, of

16 kinds of rare saponins group based on maximum keep the

effective active substances in the ginseng. 5 g FGP sample was

extracted three times with 100 ml of analytical pure methanol at

room temperature by ultrasonication (60 kHz, heat power

330 W; KQ-600KDB, Kun-shan, China) for 60 min. The

residue was dissolved in 1 ml of solvent (MeOH: H2O = 1:1,

v/v), and then filtered through a 0.45 µm polytetrafluoroethylene

(PTFE) syringe filter (Waters, Milford, MA, United States) and it

was ready for HPLC analysis.

Chromatographic conditions

Samples were analyzed on a Waters e2695 HPLC system

(Waters Corporation, Milford, United States) equipped with a

UV detector. Analytes were separated on a Waters C18 column

(4.6 cm × 25 cm, 5 μm) at 30 °C and the detection wavelength was

set at 203 nm. The mobile phase consisted of a mixture of

acetonitrile (A) and water (B) and were set in a gradient

elution program: 0–40 min, 18.0%–21.0% A; 40–42 min,

21.0–26.0% A; 42–46 min, 26.0%–32.0% A; 46–66 min, 32.0%–

34.0% A; 66–71 min, 34.0%–38.0% A; 71–78 min, 38.0%–49.1%

A; 78–82 min, 49.1% A. 82–83 min, 49.1%–50.6% A.83–88 min,

50.6%–59.6% A.88–90 min, 59.6%–65% A.90–97 min, 65.0% A.

97–102 min, 65.0%–75.0% A.102–110 min, 75.0%–85.0% with a

flow rate of 1.0 ml/min. The injection volume was 20 μl.

Determination of ginsenosides in fresh
ginseng paste

20(S)-ginsengoside Rg2, 20 (S)-ginsengoside Rh1, 20 (R)-

ginsenoside Rh1, F1, Rg6, F4, Rk3, Rh4, 20 (S)-sinsenoside Rg3,

20 (R)-ginsenoside Rg3, CK, Rk1, Rg5, 20 (S)-ginsenoside Rh2, 20

(R)-ginsenoside Rh2, and PPD were prepared and diluted with 20%

(v/v) methanol aqueous solution to appropriate concentration for

the establishment of calibration curves (Table 1). The content of

total saponins in FGP was calculated by UV detection method, and

the type and content of ginsenosides were calculated by

normalization method of standard curve above.

TABLE 1 Active Ingredients of the RG- ZJ herb pair.

1 Herb ID Ingredients OB% DL

2 ZJ MOL012921 Stepharine 31.55 0.33

3 ZJ MOL012940 Spiradine A 113.52 0.61

4 ZJ MOL012946 zizyphus saponin I 32.69 0.62

5 ZJ MOL012961 jujuboside A 36.67 0.62

6 ZJ MOL012976 coumestrol 32.49 0.34

7 ZJ MOL012980 Daechuine S6 46.48 0.79

8 ZJ MOL000422 kaempferol 41.88 0.24

9 ZJ MOL012981 Daechuine S7 44.82 0.83

10 ZJ MOL012986 Jujubesaponin V 36.99 0.63

11 ZJ MOL012989 Jujuboside C 40.26 0.62

12 ZJ MOL012992 Mauritine D 89.13 0.45

13 ZJ MOL000263 Oleanolic Acid 29.028 0.26

14 ZJ MOL001454 berberine 36.86 0.78

15 ZJ MOL001522 (S)-Coclaurine 42.35 0.24

16 ZJ MOL000211 Mairin 55.38 0.78

17 ZJ MOL003410 Ziziphin 66.95 0.62

18 ZJ MOL004350 Ruvoside 36.12 0.76

19 ZJ MOL000492 (+)-catechin 54.83 0.24

20 ZJ MOL000627 Stepholidine 33.11 0.54

21 ZJ MOL007213 Nuciferin 34.43 0.4

22 ZJ MOL000783 Protoporphyrin 30.86 0.56

23 ZJ MOL008034 Ceanothic acid 73.52 0.77

24 ZJ MOL008647 Moupinamide 86.71 0.26

25 ZJ MOL002773 β-carotene 37.18 0.58

26 RG MOL002879 Diop 43.59 0.39

27 RG MOL000449 Stigmasterol 43.83 0.76

28 RG MOL000358 β-sitosterol 36.91 0.75

29 RG MOL003648 Inermin 65.83 0.54

30 RG MOL004492 Chrysanthemaxanthin 38.72 0.58

31 RG MOL005308 Aposiopolamine 66.65 0.22

32 RG MOL005314 Celabenzine 101.88 0.49

33 RG MOL005317 Deoxyharringtonine 39.27 0.81

34 RG MOL005318 Dianthramine 40.45 0.2

35 RG MOL005320 arachidonate 45.57 0.2

36 RG MOL005321 Frutinone A 65.9 0.34

37 RG MOL005344 20(S)-ginsenoside Rh2 36.32 0.56

38 RG MOL005348 Ginsenoside-Rh4 31.11 0.78

39 RG MOL005356 Girinimbin 61.22 0.31

40 RG MOL005357 Gomisin B 31.99 0.83

41 RG MOL005360 malkangunin 57.71 0.63

42 RG MOL005376 Panaxadiol 33.09 0.79

43 RG MOL005384 suchilactone 57.52 0.56

44 RG MOL005399 alexandrin_qt 36.91 0.75

45 RG MOL005401 ginsenoside Rg5 39.56 0.79

46 RG MOL000787 Fumarine 59.26 0.83
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Chemicals and reagents

Hypoxanthine (CAS. 68-94-0, HX); Potassium oxazine (CAS.

2207-75-2, PO); Benzbromarone (CAS. 3562-84-3, Ben);

Allopurinol (CAS. 315-30-0, All) (Solabor Bio Co., Ltd.);

Commercial assay kits for uric acid (UA), xanthine oxidase

(XO), blood urea nitrogen (BUN) and hematoxylin and eosin

(H&E) dye kits were purchased from Nanjing Jiancheng

Bioengineering Institute (Nanjing, China).

Ingredients from “ RG-ZJ ” and
hyperuricemia target prediction

All the ingredient data of Radix ginseng (RG) and Ziziphus

jujube (ZJ) were retrieved from TCMSP (https://tcmspw.com/

tcmsp.php) and Swiss target, RG and ZJ as the search keywords,

oral bioavailability (OB) ≥ 30%, drug-like properties (DL) ≥ 0.

18 for screening, and then target prediction. Then, the target

information of hyperuricemia (HUA) was predicted through the

above four databases of GendCards, OMIM, PharmGkb, and

TTD, and the repeats were removed and intersected with the

drug targets. In addition, the Venn diagram is used for

visualization.

Enrichment analysis and network
construction

Common target proteins screened by the “RG-ZJ” herb pair

and HUA were uploaded to String (https://string-db.org/, v11.0)

online platform database (Chen et al., 2018; Lee et al., 2018), to

construct a protein-protein interaction network model and

obtain a PPI interaction network. Then the biological process

(BP), molecular function (MF), cellular component (CC), and

role of “RG-ZJ” in the potential targets of the HUA intervention

pathway were explored. This study used the critical targets of

proteins to submit the PPI network to the DAVID database

(https://david.ncifcrf.gov/, v6.8) (Jiang et al., 2022), for GO (Gene

Ontology) bioprocess enrichment analysis and KEGG pathway

enrichment analysis.

Animals and experimental design

6-week-old male ICR mice (weighting 18–23 g) were

obtained from Liaoning Changsheng Biotechnology Co., Ltd.

(Certificate No. SCXK [Liao] 2020-0001). The mice underwent

adaptive feeding for at least one week. All animal handling and

experimental procedures are maintained in accordance with the

Ethical Committee approval for Laboratory Animals of Jilin

Agricultural University.

In this study, HUA was induced in mice according to the

method in the previous study [24]. All experimental animals were

randomly divided into six groups (n = 8): normal group, HUA

group, positive groups (All: 5 mg/kg/day; Ben: 7.8 mg/kg/day),

and FGP treatment (400 and 800 mg/kg) groups. All groups

except the normal group received intraperitoneal injection of PO

(100 mg/kg/day) and gavage administration of HX (500 mg/kg/

day) for seven consecutive days to elevate UA levels. The same

volume of saline was employed in the normal group. The FGP

group was pre-administered with 400 and 800 mg/kg and

prepared FGP into suspension with normal saline once a day

for seven consecutive days. From the 14th day, all groups except

the normal group were injected with PO (100 mg/kg) and

administered intragastrically with HX (500 mg/kg) daily. The

continuous molding and administration were performed for

7 days. To ensure efficacy, Ben (7.8 mg/kg) and All (5 mg/kg)

were administered by intragastric administration one day before

the model was established in the positive group. In addition, we

fed the normal group with physiological saline. Twelve hours

after injection, blood samples were gathered and allowed to clot

for 45 min at room temperature. Then, the serum was

centrifuged (3500 rpm, 10 min, and 4°C) and stored at −20°C

for biochemical analysis, including UA, BUN, and XO detection.

The remaining serum was stored in a −80°C refrigerator for

subsequent indicators detection. After weighing the anatomical

liver and kidney tissues, part of them were fixed in 10% neutral

formalin buffer, and part of them was wrapped with tin paper,

frozen in liquid nitrogen, and stored at −80°C.

Determination of biochemical parameters

The activities of uric acid (UA), Xanthine oxidase (XO),

and blood urea nitrogen (BUN) in serum and the level of XO

in liver tissues were quantified by those mentioned above in

commercially available kits (Nanjing Jiancheng

Bioengineering Institute, Nanjing, China) according to the

manufacturer’s protocol. The absorbance was measured at

the corresponding wavelength using an automatic

microplate reader (Bio Tek Elx800, Berton Instruments,

United States).

hematoxylin and eosin staining

Kidney tissues were collected and then washed with

phosphate-buffered saline. The tissues were fixed with 4%

paraformaldehyde for 24 h, embedded in paraffin, and cut

into 5 μm thickness. The histopathological changes were

mounted with neutral gum, and representative images were

captured using a light microscope (Olympus BX-60, Tokyo,

Japan).
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Molecular docking

The binding ability of key compounds including (20R)-

ginsenoside Rg3, ginsenoside Rg5, ginsenoside Rh4, oleanolic

acid, and kaempferol to key targets in FGP was verified by

molecular docking. The above compounds were determined in

the PubChem database (https://pubchem.ncbi.nlm.nih.gov/),

and the crystal structures of TNF-α-P01375, IL-1β-M4WG34,

VEGFA-P15692 and XO-P80457 were obtained from the Protein

Data Bank database (http://www.rcsb.org/) in PDB format.

TABLE 2 Content of ginsenosides in FGP.

Ingredients Content (mg/g) Ingredients Content (mg/g)

(S)-Rg2 0.321 Rg6 0.332

(S)-Rh2 0.345 F4 0.525

(R)-Rh2 0.299 Rk3 0.395

F1 0.012 Rh4 0.576

(S)-Rg3 1.536 Rg5 3.263

(R)-Rg2 6.807 (S)-Rh2 0.360

CK 0.125 (R)-Rh2 1.335

Rk1 1.236 PPD 0.565

FIGURE 1
Analysis of principal components in FGP. Main components of Fresh ginseng paste (FGP) (A); Identification of the main components in FGP by
HPLC analysis (B); 1. (S)-Rg2; 2. (S)-Rh1; 3. (R)-Rh1; 4. F1; 5. Rg6; 6. F4; 7. Rk3; 8. Rh4; 9. (S)-Rg3; 10. (R)-Rg3; 11. CK; 12. Rk1; 13. Rg5; 14. (S)-Rh2; 15.
(R)-Rh2; 16. PPD.
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AutoDockTools-1.5.6 was used to save protein and ligand data in

PDBQT format. Finally, AutoDockVina.exe was used for

molecular docking, and the results were calculated. The

docking results of the critical target proteins with the best

binding ability to the compounds were shown by PyMOL

software.

Statistical analysis

All data were expressed as the mean ± standard deviation

(Mean ± S.D). Statistical graphs were performed using

GraphPad Prism 8.0.2 software (San Diego, CA,

United States). P < 0.001, p < 0.01 or p < 0.05 were

considered being significant.

Results

Chemical constituents of fresh ginseng
paste and acquisition of active
constituents of “RG-ZJ” herb pair

As shown in Table 2, the “RG-ZJ” active ingredients data

were screened according to the TCMSP database and related

literature. The results showed that 46 effective compounds

and corresponding gene targets were obtained (Figure 1), and

HPLC identified saponins in FGP. Quantitative analysis of

saponins in FGP was determined as follows: 1. (S)-Rg2:1.76%;

2. (S)-Rh1:1.88%; 3. (R)-Rh1:1.59%; 4. F1:0.06%; 5. Rg6:

1.76%; 6. F4:2.79%; 7. Rk3:2.09%; 8. Rh4:3.06%; 9. (S)-Rg3:

8.16%; 10. (R)-Rg3:36.15%; 11. CK:0.66%; 12. Rk1:6.56%; 13.

FIGURE 2
Visualization of the interaction targets between “RG-ZJ” components and the HUA disease diagram. Screened core targets (A); Venn diagram
showing the numbers of the overlapped and specific targets among the RG- ZJ herb pair (blue circle) and HUA (red circle) (B); Compound-target-
pathway network of the “RG- ZJ” herb pair against HUA. The light green and yellow nodes are active ingredients of ZJ and RG, respectively. The pink
nodes is the potential targets (C); Construction of protein interaction network (D).
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Rg5:17.33%; 14. (S)-Rh2:1.91%; 15. (R)-Rh2:7.09%; 16. PPD:

3.00%. The total saponin content in FGP was 0.883 g/100 g

FGP (Table 2).

Network construction and enrichment
analysis of “RG-ZJ” herb pair and HUA-
related targets

We associated drug targets with disease genes, obtained

25 targets of 12 active components in Figures 2B,C, and

further constructed a regulatory network diagram of active

ingredients and related targets in “RG- ZJ.” There were

49 nodes and 73 edges. As shown in Figure 3A, we

obtained 1140 biological processes (BP), 147 cellular

components (CC), and 69 molecular functions (MF) by GO

enrichment analysis, involving responses to heterogeneous

stimuli, regulation of leukocyte chemotaxis, osteoblast

differentiation, regulation of leukocyte migration, and

mitochondrial membrane gap, platelet alpha particle lumen,

and membrane microregions. We obtained 64 related

signaling pathways, including Toll-like receptors and IL-17,

and MAPK signaling pathways through KEGG enrichment

analysis (Figure 3B).

Effect of fresh ginseng paste on
biochemical indicators in Hyperuricemia
mice

As shown in Figure 4, compared with the normal group, the

levels of UA, BUN and XO after PO (100 mg/kg) and HX

(500 mg/kg) administration were significantly increased (p <
0.05) (p < 0.05). It is indicated that the HUA model was

successfully established. After administration of Ben and All,

the UA level in mice was significantly decreased (p < 0.05). In

addition, the levels of UA, BUN, and XO in the 400 mg/kg and

800 mg/kg of FGP were significantly lower than this in the HUA

group (p < 0.05). In particular, the level of UA in the serum of

mice was significantly reduced (p < 0.01).

Effect of fresh ginseng paste on
histopathological alterations in
Hyperuricemia mice

The results showed that compared with the normal group, the

renal coefficient of the model group was significantly increased

(p < 0.05), which was related to renal edema caused by HUA

(Table 3). However, both positive drugs and FGP treatment

FIGURE 3
GO enrichment (A) and KEGG pathway analysis (B) of the HUA targets of the “RG-ZJ” herb pair.
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attenuated this change. In addition, the H&E staining results in

Figures 4E,F showed that compared with the normal group, the

number of glomeruli in the model group was significantly reduced

(p < 0.05), and there were local edema, glomerular ablation, and

unclear boundary. However, FGP effectively improved this

pathological state, reduced glomerular ablation, and increased

the number of glomeruli. The above results show that FGP

could promote the excretion of UA and avoid renal edema.

FIGURE 4
Effects on related indexes in HUAmice. Experimental animals and design process (A). Effects of FGP on UA, BUN levels in the serum inmice and
effects of FGP on XO activities in the liver and serum in mice (B); Histological examination of the kidney (200 ×) (C); Pathological changes of kidney
and Ridit analysis (D). Data are expressed as themean ± SD (n= 8). #p < 0.05, ##p < 0.01 vs. normal group; *p < 0.05, **p < 0.01 or ***p < 0.001 vs. HUA
group.
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TABLE 3 Effects of FGP on organ index of HUA mice.

Groups Dosage (mg/kg) Weights (g) Kidney index (%)

Normal — 38.16 ± 3.04 1.43 ± 0.16

Model — 38.14 ± 2.69 1.76 ± 0.13#

Benzbromarone 7.8 36.86 ± 2.41 1.48 ± 0.14*

Allopurinol 5 37.52 ± 2.55 1.54 ± 0.19

FGP-H 400 37.73 ± 2.35 1.5 ± 0.15*

FGP-L 800 37.88 ± 1.87 1.49 ± 0.13*

Note: #p < 0.05, ##p < 0.01 vs. normal group; *p < 0.05, **p < 0.01 vs. HUA, group.

TABLE 4 Docking of core targets with compounds in FGP.

Herbs Ingredients Hub gene binding energy (kcal/mol)

ZJ XO IL-1β TNF-α VEGFA

Oleanolic acid −9.4 −7.5 −6.9 −8.7

Kaempferol −9.5 −7.2 −8.6 −8.2

RG (20R)-Ginsenoside Rg3 −9.8 −7.0 −6.4 −9.1

Ginsenoside Rh4 −9.2 −7.2 −6.9 −8.9

Ginsenoside Rg5 −9.5 −7.4 −7.8 −9.0

FIGURE 5
Molecular docking of oleanolic acid and kaempferol with TNF-α, IL-1B, VEGFA, and XO, respectively.
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Molecular docking validation of core
targets and active compounds

Molecular docking was applied to analyze the binding of the

critical target TNF-α, IL-1β, VEGFA and XO with five main

active compounds in FGP. The binding energy between the above

compounds and the target was lower than −5.0 kJ/mol (Table 4).

As shown in Figures 5, 6, the key targets TNF-α, IL-1β, VEGFA,
and XO were stably combined with five compounds, including

(20R)-ginsenoside Rg3, ginsenoside Rg5, ginsenoside Rh4,

oleanolic acid, and kaempferol. The results showed that the

above compounds of FGP could affect the critical targets of

HUA. It is worth noting that XO has been studied as an

inhibitory target for UA reduction in many natural products.

Interestingly, the compounds in our FGP had excellent binding

activity to XO (Binding energies were less than −7.0 kJ/mol).

Discussion

Excessive UA level is considered the main cause of HUA

(Zhang et al., 2018). Renal excretion accounts for 70% of total UA

elimination, with the remaining 30% eliminated in the intestine.

Renal UA underexcretion is the leading cause of HUA, found in

approximately 90% of HUA patients (Lee et al., 2018). Both

Radix ginseng (RG) and Ziziphus jujube (ZJ) have the effect of

invigorating the kidney and enhancing metabolism (Rekha et al.,

2021). Therefore, this study explored the potential mechanism of

the “RG-ZJ” drug in the treatment of HUA through network

pharmacology, molecular docking, and animal experiments.

At present, the research on the analysis of active

compounds obtained from traditional Chinese medicine

(TCM) and disease targets through network pharmacology

is increasing, especially for herb pairs. The present study

explored potential targets in the “RG-ZJ” herb pair for

improving HUA through network pharmacology (Lu et al.,

2020). The results showed that the “RG-ZJ” herb pair could

improve HUA through CCL2, TNF-α, IL-1β, and VEGFA.

Previous studies have analyzed the potential mechanism of

Plantain in the treatment of HUA by network pharmacology

and found that Plantain can affect HUA by interacting with

MAPK1, TNF-α, and other targets (Pei et al., 2020). At the

same time, some studies have predicted the targets of practical

components in the “Gardenia-Poria” couplet on HUA, and the

results show that the core targets of its role include IL-1β and

IL-6 (Liu et al., 2021). In addition, previous studies found that

baicalin and baicalein could improve HUA by down-

regulating TLRs, NLRP3, and MAPK through network

pharmacology analysis (Huilong et al., 2021). Combined

with the above results, it can be found that the key

pathways affecting HUA are mainly concentrated on the

IL-17 signaling pathway and MAPK signaling pathway,

which is consistent with the results of this study. Our

prediction results were in line with previous reports and

confirmed the reliability of the prediction on effective

compounds of “RG-ZJ” against HUA. Besides, KEGG

FIGURE 6
Molecular docking of 20(R)-ginsenoside Rg3, ginsenoside Rg5, and ginsenoside Rh4 with TNF-α, IL-1βVEGFA, and XO, respectively.
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results also suggested that “RG-ZJ” might reduce the

inflammatory response in HUA by affecting the TNF-α
signaling pathway, IL-17 signaling pathway, and MAPK

signaling pathway. The results are also consistent with

previous studies.

The main role in the formation of UA is purines, and the

accumulation of purines in the body is the main reason for the

production of HUA. XO is the critical enzyme in the last step of UA

synthesis, which catalyzes the oxidation of hypoxanthine to xanthine

and then to UA, or directly to UA (Furuhashi et al., 2018; Kawachi

et al., 2021). Several studies have shown that flavonoids (Scheepers

et al., 2019) and saponins (Xu et al., 2022) isolated from TCM can

reduceUAby reducing the content of XO in the liver while enhancing

renal excretion of UA. Meanwhile, previous reports have shown that

Urtica extracts can reduce serum UA levels by improving renal

metabolism (Liu et al., 2020). Related research found that Hedyotis

diffusa extract could improve HUA symptoms by reducing UA and

BUN levels in serum (Zhang et al., 2021). In this study, animal

experiments found that FGP can significantly reduce the levels of UA,

BUN, and XO in HUAmice and improve the renal injury caused by

HUA. These results are consistent with the above research results.

Due to the limitations of network pharmacology, the

screening of drug components and disease targets is not

comprehensive. Therefore, based on network pharmacology,

this study screened five compounds that might play a role in

FGP. Three core targets are related to HUA, TNF, IL-1β, VEGFA,
and XO, through a large number of literature and previous

research accumulation. Through molecular docking

technology, the above compounds were docked with the

target. The results showed that the above compounds had a

strong binding ability with targets, which further proved the

possibility of FGP improving HUA and preliminarily revealed

the possible mechanism of action. However, there were still some

shortcomings in this research. Since the pathological

development of HUA involves complex pathological processes,

the mechanism predicted above of “RG-ZJ” in treating HUA still

needs to be supplemented by in vivo and in vitro experiments. In

the future, we will continue to explore the mechanisms of “RG-

ZJ” practical components in the treatment of HUA diseases in the

hope of providing new insights for clinical drug development.

Conclusion

In summary, firstly we analyzed the target of interaction

between “RG-ZJ” couplet medicines and HUA through network

pharmacology. Then through molecular docking and animal

experiments, the improvement effect of potential functional food

FGP processed by “RG-ZJ” on HUA was revealed, and the possible

effectmechanismwas preliminarily explored, providing a theoretical

basis for the further development of ginseng products.
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